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1 Foreword

This was a group project conducted by the students for MATH 6400: Algebraic Topology in Fall 2021
under the kind guidance of Professor Ben Cooper.

The following color coding denotes the author of the notes on that particular day.
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• Juan Felipe Ariza Mejia

• Kevin Del Real Ramos

• Quanqi Hu

• Steven Un

• Nitesh Mathur (or regular ink)

Thanks to Ryan (Justin) Bianconi for thoughtful discussions in class all semester.
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2 Introduction

Monday, 23 August 2021

Definition 2.1 (Define a Circle S1).

S1 = {(x, y) ∈ R : X2 + y2 = 1} ⊂ R2.

S1 has the subspace topology. Now, consider S1 with base point p := (1, 0) ∈ S1. For X a
topological space, q ∈ X a base point, there is a topological space:

Definition 2.2 (Ωq(X)).

ΩqX := {f : (S1, p)→ (X, q) : f continuous, f(p) = q}.

. Compact-open topology subbasis is

S := {∪(K,W ) : K ⊂ S1 compact,W ⊂ Xopen}.

Here,
∪(K,W ) = {f ∈ ΩpX : f(K) ⊂W}.

• We call Ωq(x) the loop space of X at q.

• A point p ∈ ΩqX is a loop based at q.

• A path H : γ → γ′ between two points is a homotopy of loops.

Recall Fundamental Groups. If Π0(X,x0) is a set of path component (with some special one
containing x0), then,

Π0(Ωqx, q̄) = Πq(X, q)

, where q̄ = constant loop at q.
*Note, this can be used as an alternative definition of the Fundamental Group.
We can iterate the procedure as follows:

Πk+1(X, q) := Πk(ΩqX, q̄)

Example 1.

Π2(X, q) = Π1(ΩqX, q̄)

= Π0(Ωq̄ΩqX, ¯̄q)

“loops of loops”

An element of Π2(X) is a homotopy class of paths in the space of double loops Ω2(x) ⇐⇒ it is a
homotopy class of maps S2 → X. Here are some key points:

• Π3(x) = {S3 → X}/homotopy (is a finitely generated Abelian group).

• Πk(X) is a group for k ≥ 1.

• Πk(X) is an abelian group for k > 1.

However, it is “imossible to compute” Homotopy groups of X. In other words, homotopy groups
are purely geometric invariants (no algebra), but they aren’t computable.
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3 Cohomology Overview

Alternatively Cohomology is a dual construction, which is much more computable.

Theorem 2 (Dold-Kohn). (Co)homology is linearization of homotopy groups.

Either way, it is a dramatic simplicatiion, but still powerful. Because it is computable, it contains
higher dimensional information for k > 1.

25 August 2021

Last Time

Πn(X, p) = {Sn f−→ X : f(0, 0, ..., 1) = p}/f ∼ g

if ∃ H : I × Sn → Xcontinuous such thatH(0, θ) = f(θ), H(1, θ) = g(θ)

Example 3 (X = S2). ≡ p̄ constant loop at p by Upper Hemisphere Homotopy.

Recall that Π1 is the fundamental group (non-abelian, can be computed).

With Seifert-Van-Kampen theorem, one can figure out the Π1(x).

If X = U ∪ V, then Π1(X) = Π1(U) ∗Π1(U∩V ) Π2(V )

For Πn(abelian, high dimensional), we do not have such formula.

Example 4 (Π3(S2) ∼= Z). Consider the map S3 f−→ S2. This corresponds to f = 1.

Then, we have S3 = S1×D2∪S1×D2 (each point on either solid torus lies on S1 which intersects
a S2 ↪→ S3 with f (pt) = q. [So, f−1(g) = S1]). This is known as a Hopf-Fibration. Here is a
cool video to help us visualize this.

https://www.youtube.com/watch?v=AKotMPGFJYk

3.1 de Rham Cohomology

Definition 3.1 (de Rham Cohomology). This is the dual to homotopy groups.

X space (small manifold)←→ C∞(X)ring of smooth functions on X.

pt 7→ maximal ideal coming from evaluation map i.e.0 7→ mp → C∞(X)→ R→ 0.

In particular, we have the mapping pt 7→ ker( ev pt) = mpt (This is a short exact sequence).

Recall,
Π0(X) = path components of X

. Then,

|Π0(x)| = dimR{f :
∂f

∂xi
(p) = 0}

These are the “locally constant functions.”

Recall Ω∗(X)
d−→ Ω1(X)

d−→ Ω2(X)→ ....

In local coordinates, df = [
∂f

∂xi
dxi]ni=1, where f ∈ Ω0(X) = C∞(X).

So f is locally constant ⇐⇒ df = 0. We can now rewrite

|Π0(X)| = dimR(ker d : Ω0(X)→ Ω1(X))

Q How do we get higher dimensional thing?

A Π(X, p) = Π0(ΩpX, p̄), where p̄ is the constant loop.

The dual things should be functions from Ωp(X)→ R, which are locally constant!

5
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3.2 Differential Forms and Stokes

If θ ∈ Ω1(X), θ = f1dx
1 + f2dx

2 + ...+ fndx
n in coordinates.

ω ∈ ΩpX a curve, then ∫
γ

θ =

∫ 2π

0

γ∗θ dθ ∈ R.

So a 1-form θ defines a function on curves:

γ 7→
∫
γ

θ ∈ R,

where γ ∈ ΩpX.

Locally constant ⇒ γ1 is near γ, then ∫
γ

θ =

∫
γ1

θ.

By Stokes’ Theorem,
∫
γ
−
∫
γ1 θ =

∫
D
dθ, where γ, γ1 “cobound a region D.”

Hence, dθ = 0 tells us that a function is locally constant.

If θ = df , then the dθ = 0condition is trivially satisfied since

dθ = d(df)

= d2f

= 0

|Π0(ΩX)| = dimR{θ ∈ Ω1(X) = dθ = 0}
= dimR{θ : Ω1(X) : θ = df}

|Π0(ΩX)| ←→ Π1(X)

3.3 de Rham Cohomology

H1(X) = (
ker d : Ω1(X)→ Ω2(X)

imd : Ω0(X)→ Ω1(X)
)

Inductively, we have

Hn(X) = (
ker d : Ωn(X)→ Ωn+1(X)

imd : Ωn−1(X)→ Ωn(X)
)

27 August 2021 We now discuss the properties associated with Hn(X).

(0) dimHn(X) <∞

(1) Poincare Duality (If X compact), then Hn(X) = dimHm−n(X) (consequence of Stokes’)

(2) Observation If X is diffeomorphic to Y, then Ω(X) ∼= Ω(Y )isomorphic.

Exercise Moreover, Hn(X) ∼= Hn(Y ) for all n ∈ Z≥0

Much stronger statement, if X ' Y (homotopic), then Hn(X) ∼= Hn(Y ) isomorphic for n ∈ Z≥0.
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3.4 Homotopy

Pictures (Refer to the Schematic picture and concrete picture in class).

Example 5 (Concrete Picture). If X is a disk D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, then the cone
C = {(x, y, z) : x2 + y2 ≤ 1− z2, 0 ≤ z ≤ 1}.
This represents the homotopy D2 ' pt = (0, 0, 1).

Definition 3.2. f, g : X → Y continuous

(f ' g)f is homotopic to g if there is a continuous map

H : X × I → Y

H(x, 0) = f,H(x, 1) = g

Definition 3.3. X ' Y if ∃ maps

f : X → Y and g : Y → X such that

gf = 1X : X → X

fb = 1Y : Y → Y

3.5 Mayer-Vietoris Sequence

There is a long exact sequence (at least three nonzero terms, often infinite exact sequence)
relating the cohomology of X,U, V, and U ∩ V when X = U ∪ V , where U, V ⊂ X (open).

Suppose we are dealing with vector spaces. We now define the notion of an exact sequence (can
do similarly with Abelian groups).

Definition 3.4 (Exact Sequence). (?)W i ji−→W i+1 ji+1

−−−→W i+2 → ..., where W is a vector space.

Here f i : W i →W i+1 linear maps (so we can talk about images and kernels).

(?) is exact when (??) im(f i) = ker(f i+1) in W i+1 for all i.

Example 6 (1). 0
0−→ A

f−→ B

im 0 = 0 = ker(f) ⇐⇒ f is injective ⇐⇒ exactness.

Example 7 (2). A
g−→ B−→ 0−→ 0

im (g) = ker(0) = B ⇐⇒ g is survjective ⇐⇒ exactness.

Example 8 (3). 0→ A
h−→ B → 0 exactness ⇐⇒ h is an isomorphism.

Definition 3.5 (Short Exact Sequence). 0→ A
f−→ B

g−→ C → 0 By 1st Isomorphism Theorem,
we can rewrite this as follows: 0→ ker g → B → C(= co kernel)→ 0

3.6 Overview

In the first part, we will look at cohomology groups.

If X = U ∪ V, then there are exact sequence of cohomology groups.

← Hi+1(U ∩ V )← Hi(U)⊕Hi(V )← Hi(U ∩ V )← Hi−1(X)← ... At each place the exactness
condition holds.

Easy to Compute

Hn(Sm) =

{
R, n = m, 0

0, n 6= m, 0

7



For genus g,

Hn(
∑
g

) =


R, n = 0

R2g, n = 1

R, n = 2

0, n > 2

We will deal with spectral sequences in the second part.

Let X = ∪λ∈ΛUλ, where {Uλ,λ∈A is an open cover of X.

There is an analogue of the long exact sequence for open cover, which is the spectral sequence.

When {Uλ,λ∈A is good, ∀α0, α1, ..αn ∈ Λ,

Uα0 ∩ Uα1 ∩ ... ∩ Ualphan ∼=

{
DdimX

∅

Triangulations are nice.

Know

Hn(DdimX) =

{
R, n = 0

0, n 6= 0

Hn(∅) 6= 0∀n ⇒ Hn(X) can be computed completely combinatorially from a good cover (or
triangulation).

So the combinatorial definition resulting from is homotopy invariant. The solutions to the dif-
ferential equations in Hn

de Rham are completely combinatorially determined!

So, Hn
de Rham = Hn(X)⊗Z R (will also introduce Hn(X) over Z too).

Later Either (1) try to compute Πn(X) examples or (2) characteristic class of vector bundles (more
useful).

30 August 2021

4 R-Algebra

Rn affine space with the usual topology on it.

||x|| =

√√√√ n∑
i=1

x2
i ,

where x1, ..., xn coordingates on Rn, U ⊂ Rn any open subset.

Definition 4.1 (C0(Rn)).

C0(Rn) = {f : Rn → R : f is continuous}

It is a subset of C∞(Rn

Definition 4.2 (C∞(Rn)).

C∞(Rn) = {f : Rn → R :
∂k

∂xi1 ...∂xik
exists and is continuous∀k ≥ 0, 0 ≤ i1, ..., ik ≤ n}

These two are R-algebras i.e. C0(Rn), C∞(Rn) are R-vector spaces, are rings, contain the unit,
and multiplication is bilinear:

R→ C∞(Rn)

x 7→ fx

fx(v) = x is R linear

8



Exterior Algebra Formal R-algebra.

Ω· generated by symbols dx1, dx2, ..., dxn subject to the relations:

a) dx2
i = 0 ∀i = 1, ..., n

b) dxidxj = −dxjdxi ∀i, j = 1, ..., n

Proposition. ∃ a basis B for Ω· given by:

dxI := dxi1dxi2 · ...dxik

for all 1 ≤ i1 < i2 < ... < ik ≤ n.

Corollary 8.1. dim Ω· = 2n

We can grade this algebra: |dxi| = 1 on generators. This extends to all of Ω· because relations
are homogeneous (all monomial term in polynomial have same degree.

We can write Ω· as follows:
Ω· = Ω0 ⊕ Ω1 ⊕ Ω2 ⊕+...⊕ Ωn.

Note that 1 ∈ Ω0, dxi ∈ Ω1, dxidxj ∈ Ω2, ..., dxi....dxn ∈ Ωn.

Corollary 8.2. dim Ωk =
(
n
k

)
Binomial Theorem ⇒

∑n
k=0

(
n
k

)
= 2n.

4.1 de Rham Complex

de Rham complex is a combination of 2nd R-algebra C∞(Rn) and 3rd R-algebra Ω·.

Definition 4.3. Ω·(Rn) := C∞(Rn)⊗R Ω·

Similarly, U ⊂ Rn open. Ω·(U) := C∞(U)⊗R Ω·

An element ω ∈ Ω·(U), ω = [fI · dxI ], where I = (i1 < i2 < ... < ik) for various k.

Can write as Direct Sum
Ω·(U) = Ω0(U)⊕ Ω1(U)⊕ ...⊕ Ωn(U).

Note that f ∈ C∞(U) is in Ω0(U),
∑n
i=1 fidxi is in Ω1(U), and fi=1,...,ndx1dx2...dxn.

ω ∈ Ω2(U), ω =
∑
i<j fijdxidxj .

4.2 Exterior Derivative

There is an operator:
d : Ωi(U)→ Ωi+1(U).

1. IF f ∈ Omega0(U), then

df =

n∑
i=1

∂f

∂xi
dxi

2. If ω =
∑
fIdxI , then

dω =
∑

dfIdxI .

There is a wedge product on Ω·(U), which comes from the products on C∞(U) and Ω.

9



If Ω =
∑
fIdxI and τ =

∑
gJdxJ . Then,

ω ∧ τ = (
∑

IfIdxI) · (
∑
J

gJdxJ)

=
∑
I,J

fIdxI · gJdxJ

=
∑

(fIgJ) · dxIdxJ

Note that the following relation holds:

ω ∧ τ = (−1)|ω||τ |τ ∧ ω

for ω, τ homogeneous.

To prove Let ω = fdxI , τ = gdxJ . Then

fgdxIdxJ = fgdxi1 ....dxikdxj1 ....dxj`, where k = |w|, ` = |τ |
= (−1)k·`gfdxj1 ....dxj`....dxik
= gfdxIdxJ

The exterior derivative is compatible with the wedge product.

d(ω ∧ τ) = dω ∧ τ + (−1)|τ |ω ∧ dτ .

Assume ω = fdxI , τ = gdxJ . Then,

d(ω ∧ τ) = d(fgdxI ∧ dxJ) (by definition)

= d(fg)dxI ∧ dxJ
= (d(f)g + fd(g))dxI ∧ dxJ

Proposition. d2 = 0

Proof.

(WLOG) ω = fdxI

d2ω = d(

n∑
i=1

∂f

∂xi
dxi)dxI

=

n∑
i=1

d(
∂f

∂xi
dxidxI

=

n∑
i=1

n∑
j=1

∂2f

∂xj∂xj
dxjdxjdxI

= [
∑
i<j

fijdxjdxi +
∑
i=j

fijdxidxj︸ ︷︷ ︸
0

+
∑
j<i

fijdxjdxi] · dxI

⇒ fij = fji ∀f ∈ C∞(U)

= 0

The last line follows from property (b) dxjdxi = −dxidxj .

10



4.3 de Rham Cohomology Groups

Definition 4.4. de Rham cohomology groups of U ⊂ Rnopen. Then,

Hm(U) : − ker d : Ωm(U)→ Ωm+1(U)

im d : Ωm−1(U)→ Ωm(U)

for m = 0, ..., n.

Twist Story C∞c (U) ⊂ C∞(U) = {f : f−1(0) is compact.

Definition 4.5.

Hm
c (U) : − ker d : Ωmc (U)→ Ωm+1

c (U)

im d : Ωm−1
c (U)→ Ωmc (U)

for m = 0, ..., n.

11



1 September 2021

Last Time de Rham cohomology

Hn(U) =
ker d : Ωn −D → Ωn−1(D)

im d : Ωn−1(U)→ Ωn(U)

= R < ω ∈ Ωn(U) : dω = 0 > /ω ∼ τ ⇐⇒ ω − τ = dθ

Example 9. When U = R, let us compute Hn(R) and Hn
c (R) for all n.

Hn(R) : Ω∗(R) = 0→ Ω0(R)
d−→ Ω1(R)→ 0

C∞(R)C∞(R) dx

f 7→ ∂f

∂x
· dx

n = 0 Ω−1(R) = 0⇒ imd : Ω−1(R)→ Ω0(R)is 0.

(kernel) d(f) =
∂f

∂x
· dx = 0 ⇐⇒ ∂f

∂x
= 0⇒ f = c for some constant c ∈ R.

ker d

0
∼=

R
0
∼= R.

∴ H0(R) = R.

n = 1 d : Ω1(R)→ Ω2(R) = 0. So ker d = Ω1(R).

Claim im d = Ω1(R)⇒ im d ⊂ Ω1(R) by definition.

Suppose g dx ∈ Ω1(R).

FTC f(y) :=
∫ y

0
g dx ⇐⇒ ∂f

∂y
= g dx (by FTC).

f ∈ Ω0(R), df = gdx = {g dx : g ∈ C∞(R)}
Since im d = ker(d), H1(R) = 0.

Exact im () = ker (). How far is it being from being exact? Insight for (co) homology.

Hn(R) =

{
R, n = 0

0, n 6= 0

Poincare Lemma Same answer for Rn.
Example 10.

Hn
c (R) 0→ Ω0

c(R)
d−→→ Ω1

C(R)→ 0

n = 0 im (d) = 0.

ker(d) = {f ∈ C∞c (R)|∂f
∂x

= 0} = 0. (has to be constant and compact).

If f = C, then supp (f) = R− f−1(0) = R unless C = 0.

n = 1 d(f dx) = 0 for all f dx ∈ Ω1
C(R).

ker d = Ω1
C(R).

Want to compute
Ω1
C(R
imd

There is a linear map
∫

: Ω1
C(R)→ R.

f dx 7→
∫
R f dx and onto (∃f dx such that

∫
f dx = X.

So,
D

X
f dx 7→ D ∈ R.

12



Claim ker(
∫

) = im d.

If g dx ∈im d then

g dx =
∂f

∂x
dx ⇐⇒

∫
R g dx =

∫
R
∂f

∂x
dx

Then,
∂f

∂x
is compactly supported because f is compactly supported.∫

R
∂f

∂x
dx = limN→∞

∫ N
−N

∂

∂x
dx = limN→∞[f(N)− f(−N)] where f is compactly supported.

Since supp (f) bounded ⊂ R, then supp (f) ⊂ [−M,M ].

f(M), f(−M) = 0 and f(N), f(−N) = 0 for all N > M .

Hence, limN→∞ f(N)− f(−N) = 0⇒ im d ⊂ ker(
∫

)

Claim ker(
∫

) ⊂ im d if
∫
R g dx = 0.

Set h(y) =
∫ y
−∞ g dx⇒ dh = gdX

Claim
∫
g dx = 0⇒ supp (h) is compact.

Exercise (Turn this into a proof).

Rank-Nullity Ω1
C(R)/ ker(

∫
)→ R = H2

C(R) = C (by 1st Isomorphism Theorem, this is an isomorphism).

Corollary 10.1.

Hn
C(R) =

{
R, n = 1

0, n 6= 1

The de Rham Complex is an example of chain complex with differential d′s.

...→ C−1 d−1

−−→ C0 d0−→ C1 d1−→ C2 → ...

Question Cohomology: How fair is a chain complex from being a long exact sequence with d2 = 0? (since
im di+1 ≤ ker di ∀i ∈ Z ) Ci vector space.

13



5 Category Theory

Nitesh 3 September 2021

Definition 5.1 (Category). A category C is a collection of objects Ob (C) and for each X,Y ∈
Ob (C),Hom(X,Y ), f : X → Y .

f : X → Y, g : Y → Z, then g ◦ f : X → Z. Then, the following properties are satisfied:

1.

Hom (Y, Z) ∗ Hom (X,Y )→ Hom (X,Z) (1)

gf 7→ g ◦ f (2)

2. ∀X ∈ Ob (X), ∃1X ∈ Hom (X,X) such that

(a) (f ◦ g) ◦ h = f ◦ (g ◦ h)

(b) ∀f : X → Y, we have that

f ◦ 1X = f, 1Y ◦ f = f.

Now we will look some examples of categories.

Example 11. If R ring, CR is the category and Ob (CR) = {?} and Hom (?, ?) = R.

Example 12. For all rings (unital),

Hom (R,R′) = {f : R→ R′|f(ab) = f(a)f(b), f(a+ b) = f(a) + f(b), f(1R) = 1R′ .

Example 13. If R is a ring, R− mod is a category consisting of objects that are RM modules
M .

Then, ∃R→ End(M) homomorphism, i.e. Hom (M,M ′) is a R-module homomorphism.

Example 14. Vector Spaces

VectF is a category for F a field, Ob (Vect)F are finite dimensional vector spaces and Hom
(V,W ) = F -linear maps.

Example 15. Abelian Groups

Ch(Ab) chain complex of abelian groups denoted as Ob(Ch(Ab)). The corresponding homomor-
phism is

Hom (C,D) = {f i : Ci → Di so that the following diagram commutes.

• Ci Ci+1 •

• Di Di+1 •

dci

fi fi+1

Note that f i+1dic = dDif
i ∀i.

Example 16. Topological Spaces

Ob (Top) are topological spaces, Hom (X,Y ) = {f : X → Y, f continuous }.
Example 17. Manifolds

Ob (Man) are smooth manifolds, Hom (X,Y ) is a smooth map.
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5.1 Functor

Definition 5.2 (Functor). If C and D are categories, F : C → D is a Functor if:

(i) F : Ob (C)→ Ob(D) i.e. c ∈ Ob (C) maps to f(c) ∈ Ob (D).

(ii) f : X → Y in C, ∃F (f) : F (X)→ F (Y ), i.e. HomC(X,Y ) = HomD(F (X), F (Y )) such that

(iii) F (1X) = 1F (x)

Covariant (iv) F (f ◦ g) = F (f) ◦ F (g)

Contravariant (v) F (f ◦ g) = F (g) ◦ F (f)

Algebraic Topology The study of functors from C = Top, Man (category containing topological objects) to C = R−
mod , Ab, Ch (Ab) (algebraic categories).

Example 18 (Main Example). Consider the Fundamental Group, Π1 : Top∗ → Group

Example 19. Ω∗ : Man → Ch (Ab) maps

f : M → N 7→ f∗ : Ω∗(N)→ Ω∗(M))) (Pullback)

Example 20. Hn : Ch (Ab) → Ab for each n ∈ Z, there is a Functor such that:

Ob (C, d) = ....→ Ci
Ci+1

−−−→
di
→ Ci+1.

Hn(C, d) =
ker dn : Cn → Cn+1

imdn−1cn−1 → Cn
.

If f(C, dC), (D, dD) is a map, then there is a map:

H∗(f) := f∗ : Hn(c, d)→ Hn(D, dD).

Note that [c] ∈ ker dc
imdc

(equivalence class).

Pick c ∈ [c]. Then, define f∗([c]) = [f(c)].

If e ∈ [c], then c− e = dcx. Next, we have

f(c− e) = f(c)− f(e) = fdcx = dDf(x). Finally, we check that

α A

•

ρ

π
π◦ρ

[f(c)] = [f(e) + dDf(x)]

= [f(e)] + [dDf(x)]

= [f(e)] + 0

= [f(e)]

Hence, this is well-defined. Finally we check that:

Hn(1c : C → C).

(1c)∗([c]) = [1c(c)] = [c].

So, Hn(1c) = 1Hn(c) if f : (C, d) and g : (D, d)→ (E, d) , then

Hn(g) ◦Hn(f)([c]) = Hn(g)(f [c]) = [gf(c)] = Hn(g ◦ f)

15



6 Exact Sequences

8 September 2021

Elise

Theorem 21 (The Snake Lemma). Every short exact sequence of chain complexes

0→ A→ B → C → 0

gives a long exact sequence of cohomology groups.

Proof. Note f and g are chain maps so df = fd meaning di+1
B f i+1 = f i+2di+1

A and similarly
dg = gd. Moreover d2 = 0 or more specifically diAd

i+1
A = 0, diBd

i+1
B = 0, diCd

i+1
C = 0 for all i ∈ Z.

Moreover, by the exactness of the sequence, we know for all i ∈ Z, f i is injective, gi is surjective,
and Im(f i) = Ker(gi).

Define Hn(A) =
Ker(dnA:An→An+1)

Im(dn−1
A :An−1→An)

as well as Hn(B) and Hn(C) similarly. Then f∗ : Hn(A)→
Hn(B) where for [a] ∈ Hn(A), f∗([a]) = [fn(a)] ∈ Hn(B) and g∗ : Hn(B) → Hn(C) where for
[b] ∈ Hn(B), g∗([b]) = [gn(b)] ∈ Hn(C).

Now, we define a map, δ := (δn) : Hn(C)→ Hn+1(A) using the following motivation. (The map
δ is typically called the connecting map.

Pick [c] ∈ Hn(C) and let c ∈ Cn be such that dn+1
C (c) = 0. Now, since gn is onto, there exists

some b ∈ Bn such that gn(b) = c. Then dnB(b) ∈ Bn+1. However, the diagram commutes so
gn+1(dnB(b)) = 0 = dnCg

n(b) = dC(c). But this shows that dnB(b) ∈ Ker(gn+1) = Im(fn+1) by the
exactness. Thus, there exists a unique a ∈ An+1 (since f is injective) such that fn+1(a) = dnB(b).

Claim: dA(a) = 0.

16



Proof. First note that dn+1
B (dnB(b)) = 0. Then using the definition of dnB(b), we find dA(fn+1(a)) =

dn+1
B (dnB(b)) = 0. On the other hand, 0 = fn+1dA(a)) = dnB(fn(a)). Then we have dnA(a) ∈
Ker(fn+1) = {0} since fn+1 is injective. Therefore dA(a) = 0.

But now this gives that a ∈ Ker(dnA). Hence [a] ∈ Ker(dn+1)
Im(dn) = Hn+1(A).

With this motivation, we set δ([c]) = [a].

Claim: δ is well defined.

Subclaim 1: Our choice of c ∈ [c] is well defined.

Proof. Note it suffices to show δ(d(c′)) = 0 where c = c+ d(c′) for c′ ∈ Cn−1. Choose b ∈ Bn−1

such that gn−1(b′) = c
′

and notice that d(g(b′)) = d(c′) = g(d(b′)). Now, assume b = dB(b′).
Then d(dB(b′)) = 0 so dB(b′) ∈ Ker(g). Therefore, we define a := f−1(d(dB(b′)) = 0 giving a = 0.
Hence δ(d(c′)) = 0.

Subclaim 2: gn is onto which implies there exists some b ∈ Bn such that gn(b) = c.

Proof. Suppose g(b+b′) = c for b′ ∈ Ker(gn). Now, because of the exactness, Ker(gn) = Im(fn)
so b′ ∈ Im(fn). Then we have that d(b + b′) ∈ Ker(gn+1) since gn+1(d(b + b′)) = 0 = dC(c) =
dC(g(b + b′)). Therefore, there exists a unique a′ ∈ A with f(a′) = b′. Then d(b + f(a′)) ∈
Ker(gn+1) so gn+1(d(b+ f(a′)) = 0 = dC(gn(b+ f(a′)).

Following this argument through gives δ(a+da′) = b+ b′ giving [a+d(a′)] = [a] ∈ Hn+1(A).

17
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Elise For every open set of Rn, U ⊆ Rn, the deRham complex is a commutative differential graded
algebra denoted Ω∗.

If f : U → V is a smooth map for g ∈ C∞(V ), there exists f∗ ∈ C∞(U) defined by f∗(g) := g◦f .
This is a contravariant functor in the sense that (g ◦ f) : U → V → W and (f∗ ◦ g∗) : Ω0(U)→
Ω0(V ) → Ω0(W ). One other property this function possesses is that f∗ ◦ g∗ = (g ◦ f)∗ and for
1U : U → U , 1∗U = 1C∞(U).

Note if ω ∈ Ωk(V ) for k > 0, then ω =
∑
I gIdyI .

Moreover f∗w =
∑
I f
∗(gI)dfI =

∑
I(gI ◦f)d(yi1 ◦f) · · ·d(yin ◦f) =

∑
I(gI ◦f)dfi1 · · ·dfin where

I = (i1, ..., in). This extension is a contravariant functor.

Proposition. f∗(ω ∧ τ) = f∗(ω) ∧ f∗(τ)

Proposition. df∗ = f∗d

This shows that the assignment does indeed define a contracariant functor from the category with
objects being open subsets of Rn, Op(Man) = {M : M is a smooth manifold}, to the differential
graded algebra where Hom(U, V ) = {f : U → V : f is a smooth map}.
Now, suppose (x1, ..., xn) and (u1, ..., un) are two coordinate systems for U ⊆ Rn where U is an
open subset, then there exists a diffeomorphism f : U ⊆ Rn → Rn where f∗(xi) = xi ◦ f = ui
for all 1 ≤ i ≤ n.

Now, if g : U ⊆ Rn → Rn is a smooth map, then dg =
∑n
i=1

∂g
∂ui du

i =
∑n
i=1

∂g
∂ui

∂ui

∂xj dx
j =∑n

i=1
∂g
∂xj dx

j .

Similarly, (dω)(u1, ..., un) = (dω)(x1, ..., xn) for all ωinΩk(U).

Proposition. If f : U → V is a diffeomorphism, then f∗ : Ω∗(U)→ Ω∗(U) is an isomorphism.

If M is a smooth manifold, let {Uα, φα : Uα → M}α∈λ be a smooth atlas with M =
⋃
α∈λ Uα.

Then Ω∗(M) = {ωα : α ∈ λ, ωα ∈ Ω∗(Uα)} for ωα to be in this set, we must have that for all
α, β ∈ λ with Uα ∩ Uβ 6= ∅, then ωα|Uα ∩ Uβ = ωβ |Uα∩Uβ . If this is the case, ωα ∈ Ω∗|(Uα) ∼=
Ω∗(phiα(Uα)) where φα(Uα) ⊆ Rn.

This gives the following diagram for α, β ∈ λ;

Ω∗(Uβ)

Ω∗(Uα) Ω∗(Uα ∩ Uβ)
j∗

i∗

This diagram is induced by the following diagram;

Uβ

Uα Uα ∩ Uβj

i

Now, if M = U ∪ V for open sets U and V , then

U ∩ V U M

U ∩ V V M

i

j

Now, applying the functor, we find the following diagram.
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U ∩ V U

V M

This gives

Ω∗(U ∩ V ) Ω∗(U)

Ω∗(V ) Ω∗(M)

Now from this, we obtain a sequence of chain complexes,

Ω∗(U ∩ V ) Ω∗(U)⊕ Ω∗(V ) Ω∗(M)

Proposition. The above sequence of chain complexes is a short exact sequence.
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Kevin Let M = u ∪ v
by M.V. the LES computes H ∗ (M) in terms of H∗(u) and H∗(v) and H∗(u ∩ v) with the
following diagram

u ∩ v u

v M = u tu∩v v π1(utu∩v) ∼= π1(u) ∗π1(u∩v) π1(v)

with the diagram above it induces the following diagram

Ω∗(u ∩ v) Ω∗(u)

⊕

Ω∗(v) Ω∗(M)

which then their is a chain complex

Ω∗(M) Ω∗(u)⊕ Ω∗(v) Ω∗(v ∩ v)

we let OP = ob(Op) be open sets in M and

HOmOp(u, v) = { inclusionu ⊂ v
∅ u 6⊂ v

So we look at the a sheef with the covaraint functor

– (0)

Ω∗ = F : OP → AB

– (1)

if τ, ω ∈ F(u) and for all ui ⊂ u we have the following:

ω|ui = τ |ui = (F(ui ⊂ u)(ω) then ω = τ

– (2)

if {ui}i∈I and ωi ∈ F(ui) such that ωi|uI ∩ uj = ωj |ui∩vj for all i, j ∈ I then their is
ω ∈ F(

⋃
i∈I) such that ω|ui = ui

We note that F = Ω∗ is a sheef and (*) is determined by (0) thus we get

Ω∗(M) Ω∗(u)⊕ Ω∗(v) Ω∗(v ∩ v)

ω (ω|u, ω|v)

(α, β) α|u∩v − β|u∩v

A B

A injective: if ω|u = 0 and ω|v = 0 then by (1) we get that ω = 0

im(A)⊂ ker(B): if ω 7→ (ω|u, ω|v) 7→ ω|u − ω|v

20



⇐⇒ BA(ω) = 0 for all ω ∈ Ω∗(M) = 0

ker(B) ⊆ Im(A):

If B(α, β) = 0 then α|u∩v − β|u∩v = 0 iff α|u∩v = β|u∩v = 0

so there is ω ∈ Ω∗(M) so ω|u = α and ω|v = β

B is onto:

if ω ∈ Omega∗(u ∩ v) then we want (α, β) ∈ Ω(u)⊕ Ω∗(v) sp B(α, β = α|u∩v − β|u∩v = ω

then there is a partion of unity {ρu, ρv} subordniate to the open cover {u, v} of M

ρu, ρu : M → R≥0 ∈ C∞(M) with suppρu ∈ u and suppρv ∈ v and ρu + ρv = 1

thus we get α := ρvω ∈ Ω∗(u) and β := −ρuω ∈ Ω∗(v)

So B(α, β) = B(ρu, ρv) = 1ω|u∩v and we also have u 7→ Ω∗c()̆ there are smooth maps f : u → v
so that f∗ doesnt preserve the compact support property Ω∗c(u) not a contravariant functor for
all smooth maps. BUT

1) if f : v → v is proper (iff f−1(c) is compact if c is compact) then f∗ does preserve the
compactly supported functions

2) If u → v and inclusion then their is a map Ω∗c(u) → Ω∗c(v) f(ω) = ω so Ω∗c is a covariant
funcotr. form open sets and inclusion to chain complexes ie a SES as follows

0← Ω∗c(M)← Ω∗c(u)⊕ ω∗c (v)← Ω∗c(u ∩ v)← 0

21
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Elise 6.1 Computing H∗(S1) and H∗C(S
1)

Goal: Compute H∗(S1) and H∗C(S1)

In order to use the Mayer-Vietoris long exact sequence to compute the above homology, recall:

H∗(R) =

{
R ∗ = 0

0 ∗ 6= 0
H∗C(R) =

{
R ∗ = 1

0 ∗ 6= 1

Note S1 = U ∪ V where U and V are open intervals and diffeomorphic to R. Moreover U t V is
a disjoint union of open intervals so U t V ∼= R t R.
We note the de Rham complex, Ω∗ is diffeomorphism invariant since it is a functor and a
diffeomorphism is an isomorphism. Hence we have Ω∗(U) ∼= Ω(R), Ω∗(V ) ∼= Ω∗(R), and
Ω∗(U ∩ V ) ∼= Ω∗(R t R) ∼= Ω∗(R) ⊕ Ω∗(R). This gives that H∗(U) ∼= H∗(R), H∗(V ) ∼= H∗(R),
and H∗(U ∩ V ) ∼= H∗(R t R) ∼= H∗(R)⊕H∗(R). From this we obtain the following sequence

0

H1(S1) H1(U)⊕H1(V ) H1(U ∩ V )

H0(S1) H0(U)⊕H0(V ) H0(U ∩ V )

0

C B

A

δ

δ

δ

Now, by exactness, ker(δ) = Im(A) = H1(S1) since H1(U)⊕H1(V ) = 0 so δ is onto H1(S1).

Also by exactness (for α and β being the intersections of U and V ), ker(δ) = Im(B). But
B : R2 → R2 by

〈
1U , 1V

〉
so B(1U ) = 1α + 1β so Ker(B) =

〈
1U + 1V

〉 ∼= R and Ker(δ) =

Im(B) =
〈
1α + 1β

〉 ∼= R.

Therefore, H1(S1) ∼= R and ker(B) = im(C) = H0(S1) since C is injective. Hence H0(S1) ∼= R.

From this, we can conclude the following;

Hn(S1) =

{
R n = 1

R n = 0

Definition 6.1. The nth Betti number is defined as bn = dim(H(M)) ∈ Z≥0.

Note: bn determines Hn(M) up to isomorphism.

As an example, if M = S1, then b0 = 1 and b1 = 1.

This is called the reductionist.

The nonreductionist has the following view; Hn(M) is a space of solutions to equations. We
can build our solution using a Mayer Vietoris argument where H0(S1) is the collection of locally
constant functions on S1.

Now, we know δ : H0(U ∩ V )/Im(B) → H1(S1) is an isomorphism since Im(B) = Ker(δ) and
Im(B) is the collection of locally constant functions agreeing on α and β, i.e. Im(B) = Ker(δ)
consists of functions f : U ∩ V → R such that f |α = f |β so 1α /∈ Im(B) so 1α ∈ H0(U ∩ V ) so
δ(1α) generates H1(S1) as an R vector space.
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d(ρU1α + ρV 1β) 0

0 Ω1(S1) Ω1(U)⊕ Ω1(V ) Ω1(U ∩ V ) 0

0 Ω0(S1) Ω0(U)⊕ Ω0(V ) Ω0(U ∩ V ) 0

ρUα+ ρV β 1α

d d d

Therefore d(ρU1α)|U∩V = −d(ρV 1β)|U∩V . This gives ω ==

{
d(ρU1α) V

−d(ρV 1β) U

23
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Elise 6.2 Closed, Exact, and Boundary

Recall

H∗(R) =

{
R n = 0

0 n = 1
Hn
C(R) =

{
R n = 1

0 n = 0
Hn
C(S1) = Hn(S1) =

{
R n = 0, 1

0 otherwise

For a general manifold N of dimension n, this switch is cause because Ωk(N) ⊗ Ωn−k(N) →
ΩnC(N) → R for all 0 ≤ k ≤ n. Then for ω ∈ Ωk(N) and τ ∈ Ωn−k(N) (ω, τ) → ω ∧ τ . Then,
applying the integral, the bilinear form < ω, τ >∈ R.

Theorem 22. Suppose N is an n-dimensional orientable manifold with boundary. Then for
ω ∈ Ωn−1(N), ∫

N

dω =

∫
∂N

ω

Now, fix N and let ω ∈ Ωk(N). If M is a submanifold of N and dim(M) = k, we can always
integegrate ω over any submanifold M of dimension k where∫

M

ω =

∫
M

i∗ω ∈ R

.

For example, if ω ∈ Ω1(N), then we can integrate ω over M for dim(M) = 1.

Note, if ∂Z = M tM ′ for a subset Z of N and ω ∈ Ω1(N) and dω = 0, then because M and M ′

have opposite orientations,

0 =

∫
Z

dω =

∫
∂Z

ω =

∫
MtM ′

ω =

∫
M

ω −
∫
M ′

ω

.

The condition that dω = 0 gives, by Stoke’s theorem,∫
M

ω =

∫
M ′

ω

when there exists Z ⊂ N and ∂Z = M tM ′. Similarly, if M ′ = ∅, then∫
M

ω =

∫
∅
ω = 0

.

Now, recall that Hn(N) = Ker(d)/Im(d). Now if ω − ω′ = dτ ∈ Ωk(N) and Mk ⊂ N , then∫
M

ω −
∫ ′
M

ω =

∫
M

ω − ω′ =

∫
M

τ =

∫
∂M

τ.

Moreover, if ∂M = ∅ and ω − ω′ = dτ , then∫
M

ω =

∫ ′
M

ω

Definition 6.2. 1. If dω = 0, then ω is closed or a cycle.

2. If ω = dτ , then ω is exact or a boundary.

3. If Mk is a smooth manifold and ∂M = ∅, M is a closed manifold.

4. If there exists Z such that ∂Z = M , them M is a boundary

Definition 6.3. We can define the Cobordism groups of N by CkC(N) = Z{Mk ⊆ N : Mkis closed, compact,

and a k-manifold mapping into N}/M ∼M ′

24



This definitions tells us there is a canonical map CkC(N)→ H∗C(N)∗ defined by M 7→ (ω 7→
∫
M
ω

for [ω] ∈ H∗(N).

If our manifolds are not compact, we have Ck(N)→ H∗C(N)∗.

Having developed this background, if we again consider

Ωk(N)⊗ Ωn−k(N)→ ΩnC(N)→ R

, the pairing Ωk(N)⊗Ωn−k(N)→ R descends to a pairing on cohomologyHk(N)⊗Hn−k
C (N)→ R

(by Stoke’s theorem).

We can also prove that

1. dim(Hk(N)) <∞ and dim(Hk
C(N)) <∞ for any smooth manifold N

2. The pairing Hk(N)⊗Hn−k
C (N)→ R is non-degenerate.

Now 1) and 2) from above imply thatHk(N) ∼= Hn−k
C (N)∗. Therefore, dim(Hk(N)) = dim(Hn−k

C (N)).

If N is compact, Hn−k
C (N) = Hn−k(N) so Hk(N) ∼= Hn−k(N).
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Elise 7 Poincare Lemma

Let M be a manifold in the category of smooth manifolds, Man. Let f : M → N be a smooth
map. Then we obtain the sequence,

Man Ch gV ect

M f∗

Ω∗ H∗

where f∗ : Ω∗(N)→ Ω∗(M) and f∗ : ⊕kHk(N)→ ⊕kHk(M).

Thus, the Question then becomes; Is there a relation/ideal of maps I ⊆ Ch so that K(V ect) =
Ch/I which is the homotopy category of vector spaces.

[The obvious relation, O that we will not use, is the relations where if f : A→ B with f ∈ Ch
and H∗(f) : H∗(A)→ H∗(B) is an isomorphism, then we require f−1 ∈ Ch/O = D(V ect) which
we use to define a new category.

In this case, D(V ect) = Ch/O is the derived category of chain complexes and f is an inverting
quasi-isomorphism.]

On the other hand, there is a constructive relation on chain maps called homotopy equivalence.

Let f, g : A→ B be chain maps which gives the following diagram;

... Ai Ai+1 Ai+2 ...

... Bi Bi+1 Bi+2 ...

diA di+1
A

diB di+1
B

fi,gi fi+1,gi+1 fi+2,gi+2ki ki+1

Definition 7.1. Define the relation where f ' g if and only if there exists a map k : A∗+1 → B∗

such that f − g = (−1)∗−1(dk − kd).

Proposition. 1. f ' g by the above definition is an equivalence relation.

2. if f ' g, then f ◦ h ' g ◦ h and h ◦ f ' h ◦ g.

3. if f ' g, then H∗(f) = H∗(g).

Proof. 1. To show this is an equivalence relation, first we note that f − f = 0 so letting
k : A∗+1 → B∗ be the zero map, i.e. k ≡ 0, gives f − f ≡ 0 ≡ (−1)∗−1(dk − kd).

Next, suppose f ' g, then there exists a map k : A∗−1 → B∗ where f−g = (−1)∗−1(dk−kd).
Now notice that g − f = −(f − g) so if we let k̃ : A∗−1toB∗ be defined by −k, we find that
g − f = −(f − g) = −(dk − kd) = (kd− dk) = dk̃ − k̃d.

Finally, suppose f ' g and g ' h, then there exists a map k : A∗−1 → B∗ where f − g =
(−1)∗−1(dk − kd) and there exists a map k̃ : A∗−1 → B∗ where f − g = (−1)∗−1(dk̃ − k̃d).
Now, consider the following using that d is a linear operator f − h = (f − g) + (g −
h) = (−1)∗−1(dk − kd) + (−1)∗−1(dk̃ − k̃d) = (−1)∗−1(d(k + k̃) − (k − k̃)d). Therefore
k′ := k − k̃ : A∗−1 → B∗ satisfies the above conditions so f ' h.

This shows that the above definition is an equivalence relation.

2. Suppose f ' g and let h : A∗−1 → A∗−1 be another map mapping into A∗−1. Note that
because f ' g, then there exists a map k : A∗−1 → B∗ where f − g = (−1)∗−1(dk − kd).

Question First we consider f ◦ h and g ◦ h. Now notice that f ◦ h − g ◦ h = (f − g) ◦ h =
(−1)∗−1(dk − kd) ◦ h = (−1)∗−1(d(k ◦ h)− k ◦ h)d). But since k ◦ h : A∗−1 → B∗, then the
above relation holds so we can say f ◦ h ' g ◦ h.
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Question Similarly we consider h ◦ f and h ◦ g. Then h ◦ f − h ◦ g = h ◦ (f − g) =
h◦[(−1)∗−1(dk−kd)] = h◦[(−1)∗−1dk]−h◦[(−1)∗−1kd] = (−1)∗−1d(k◦h)−(−1)∗−1(k◦h)d =
(−1)∗−1(d(k ◦ h)− (k ◦ h)d). But since k ◦ h : A∗−1 → B∗, then the above relation holds so
h ◦ f ' h ◦ g.

3. Let c ∈ H∗(A), then d(c) = 0 so H∗(f)(c) = [f(c)] = [±dkc± kdc + g(c)] = [dkc+ g(c)] =
[0 + g(c)] = [g(c)] since we are modding out my the exact forms (the image of d since we
are in homology).

Now, if g, f : M → N are smooth maps, then they are smoothly homotopic if there exists a

homotopy K : M × R→ N with K(M, t) =

{
f(m) t > 1

g(m) t ≤ 0
.

Note M is locally Rn.

Lemma 23 (Poincaré Lemma:). H∗(Rn × R) ∼= H∗(Rn).

Proof. TO show this, we first define the following maps; π : Rn×R = Rn+1 → R where π(x, t) = x
and s : Rn → Rn × R by s(x0 = (x, 0). Now, π ◦ s = 1Rn since s is just a section. However,
notice that s ◦ π(x) = (x, 0) which is not the identity map. Hence, to prove our statement, we
need to show that there exists a chain homotpy equivalence

Ω∗(Rn × R) Ω(Rn)
s∗

π∗

where S∗ ◦ π∗ = (πs)∗ = 1Ω∗(Rn) and π∗ ◦ s∗ = (sπ)∗ ∼ 1Ω∗(Rn×R)

Recall ∼ if and only if there exists k : Ω∗+1(Rn×R)→ Ω∗(Rn×R) so that 1−π∗◦s∗ = ±dk±kd.

Observe if f ∈ C∞(Rn×R), either f = f(x, t) or f = f(x). Similarly, we observe that Ω∗(Rn×R)
is defined by where for ω ∈ Ω∗(Rn×R), either ω = π∗(φ)f(x, t) (TYPE I) or ω = π∗(φ)f(x, t)dt
(TYPE II) where φ ∈ Ω∗(Rn) and f ∈ C∞(Rn × R).

Now, define k =

{
kω = k(π∗(φ)f(x, t) = 0 ω is TYPE I

kω = π∗(φ) (
∫ t

0
f(x, t) dt ) and ω is TYPE II

.

Note that 1− s∗π∗ = ±dk ± kd since πs = 1 so s∗π∗ = 1 because 1− s8π∗ = ±dk ± 0 · d = 0.

Next we check 1− π∗s∗ = ±dk ± kd holds for our defined k.

For TYPE I, recall ω = π∗(φ)f(x, t) and by definition kω = 0. It follows from this definition
that dk(ω) = 0. Moreover,

kdω = k(d[π∗(φ)f(x, t)])

= k(dπ∗(φ)f(x, t) + (−1)|φ|π∗(φ)df(x, t))

= k(π∗(dφ)f(x, t)) + (−1|φ|k(π∗(φ)df(x, t))

= 0 + (−1)|φ|k(π∗(φ)(
∑
i

∂f

∂xi
dxi +

∂f

∂t
dt))

= (−1)|φ|[
∑
i

kπ∗(φ)
∂f

∂xi
dxi] + (−1)|φ|kπ∗(φ)

∂f

∂t
dt

= 0 + (−1)|φ|π∗(φ)

∫ t

0

∂f

∂t
, dt

= (−1)|φ|π∗(φ)[f(x, t)− f(x, 0)].

(3)
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On the other hand,

(1− π∗s∗)ω = ω − π∗s∗ω
= π∗(φ)f(x, t)− π∗ ◦ s∗(π∗(φ)f(x, t))

= π∗(φ)f(x, t)− π∗s∗π∗(φ) · π∗s∗f(x, t)

= π∗(φ)f(x, t)− π∗(φ) · π∗s∗f(x, t)

= π∗[f(x, t)− π∗s∗f(x, t)]

= π∗(φ)[f(x, t)− f(x, 0)]

(4)

since π∗s∗f(x, t) = f(s · π(x, t)) = f(s(x)) = f(x, 0).

Next, we do the same calculations for TYPE II where ω = π∗(φ)f(x, t)dt. Notice that π∗(d(s∗(t)) =
π∗(0) = 0. Therefore,

(1− π∗s∗)ω = ω − π∗s∗ω
= π∗(φ)f(x, t)dt− π∗ ◦ s∗(π∗(φ)f(x, t)dt)

= π∗(φ)f(x, t)dt− π∗s∗π∗(φ) · π∗s∗f(x, t) · π∗s∗dt
= π∗(φ)f(x, t)dt− π∗(φ) · π∗s∗f(x, t) · 0
= π∗(φ)f(x, t)dt

(5)

On the other hand

dkω = k(π∗(φ)

∫ t

0

f(x, t) dt

= d(π∗(φ))

∫ t

0

f(x, t) , dt+ (−1)|ω|−1π∗(φ)d(

∫ t

0

f(x, t) , dt)

= d(π∗(φ))

∫ t

0

f(x, t) , dt+ (−1)|ω|−1π∗(φ)(
∑
i

∂

∂xi
(

∫ t

0

f(x, t) , dt)dxi +
∂

∂t

∫ t

0

f(x, t) , dt

(6)

Moreover,

kdω = kd(π∗(φ)

∫ t

0

f(x, t) dt

= k(d(π∗(φ))f(x, t)dt) + k(π∗(φ)df(x, t)dt) + 0

= kπ∗(dφ)f(x, t)dt− k(π∗(φ)
∑
i

∂f

∂xi
dxidt)

= π∗(dφ)

∫ t

0

f(x, t) dt+
∑
i

(k(φ∗(φ)dxi)
∂f

∂xi
dt) +

∂f

∂t

∫ t

0

f(x, t) dt

(7)

But by these calculations, we can see that (1− π∗s∗)ω = π∗(φ)(f(x, t)dt = (dk − kd)ω.

This proves our statement so H∗(Rn × R) ∼= H∗(R)
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24 September 2021

Elise

Corollary 23.1. H∗(Rn) =

{
R ∗ = 0

0 ∗ 6= 0

Corollary 23.2. For any smooth manifold M , H∗(M × R) ∼= H∗(M).

sketch. There exists maps π∗ and s∗ such that

Ω∗(Rn × R) Ω(Rn)
s∗

π∗

We cover M with charts {Uα, φα : Uα → φα(Uα) ⊆ Rn} where M =
⋃
α Uα. The homotopy

operator kα : Ω∗(Uα × R) → Ω∗(Uα) where kα = φ∗α(k|φ(Uα) where k is the one defined in the
Poncaré lemma.

Then, by the sheaf property outlined on September 13th, there exists a unique k : Ω∗(M ×R)→
Ω∗(M) where k|Uα = kα. THe uniqueness implies that k must satisfy the same homotopy
relation.

Corollary 23.3. If f, g : M → N are smooth maps and f ' g, then f∗ = g∗ : H∗(N)→ H∗(M).

Proof. Suppose f ' g. This gives the following diagram where s0 is the zero section with
s0(x) = (x, 0) and s1 is the first sections where s1(x) = (x, 1).

M × R N

M

F

π s0s1
g=F◦s1

f=F◦s0

Then, by the chain rule f∗ = (F ◦ s0)∗ = s∗0 ◦ F ∗ and g∗ = (F ◦ s1)∗ = s∗1 ◦ F ∗. But notice that
by the Poincaré Lemma, s=

0 (π∗)−1 = s∗1. Hence f∗ = s∗0 ◦ F ∗ = s∗1 ◦ F ∗ = g∗.

(Notice that this proof is done at the level of homology.

Definition 7.2. Let M and N be smooth manifolds. We say M and N have the same homotopy
type or M is homotopic to N written M ' N if there exists maps f : M → N and g : N →M
such that 1M ' f ◦ g and 1N ' g ◦ f .

Corollary 23.4. If M ' N , then H∗(M) ∼= H∗(N) (as an isomorphism of vector spaces.)

Definition 7.3. (A special case of homotopy) Let A ⊆M . We say A is a deformation retract
of M if i : A ↪→M and there exists a map r : M → A such that r ◦ i = 1A and i ◦ r ' ∞M .

Example 24. (The Mobius Band) Consider the Mobius Band, M , whereM = (−1, 1)×[0, 1]/[(1, t) ∼
(−1, 1 − t)]. Define A = {(θ, 1

2 ) : −1 ≤ θ ≤ 1} is the circle around the middle of the band.
Therefore r : M → A where r(θ, t) = (θ, 1

2 ). Then clearly r ◦ i(θ, 1
2 ) = (θ, 1

2 ) sor r ◦ i ' 1A
and i ◦ r(θ, t) = i(θ, 1

2 ) = (θ, 1
2 ) so we see that i ◦ r ' 1M where the homotopy is defined as

F : M×R→M where F ((θ, t), s) = (θ, st+(1−s) 1
2 . Notice that if s = 0, then F ((θ, t), s) = 1M

and if s = 1, then F ((θ, t), s) = i ◦ r. Thus A is a deformation retract of M .

Observation: If A is a deformation retract of M , then A 'M and H∗(A) ∼= H∗(M).

Corollary 24.1. (To above example) H∗(M) =

{
R ∗ = 0, 1

0 ∗ 6= 0, 1

We can also prove using the Mayer Vietoris and induction that H(Sn) =

{
R ∗ = 0, n

0 ∗ 6= 0, n
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27 September 2021

Quanqi Hu

Proposition. The maps
H∗c (M × R1)�π∗

e∗ H
∗−1
c (M)

are isomorphisms.

Note that here, unlike the previous case, the dimension is shifted by one.

Lemma 25 (Poincaré Lemma for Compact Supports).

H∗c (Rn) =

{
R in dimension n

0 otherwise

Consider the projection map π : M × R → R. Since π is not proper, the pullback map π∗

does not send Ω∗c(M) to Ω∗c(M × R1). However, we can consider the integration over the fiber
π∗ : Ω∗c(M × R1) → Ω∗−1

c (M). Note that a compactly supported form on M × R1 is a linear
combination of two types of forms:

(I) π∗φ · f(x, t)

(II) π∗φ · f(x, t)dt,

where φ is a form on the base (not necessarily with compact support), and f(x, t) is a function
with compact support. We define π∗ by

(I) π∗(π
∗φ · f(x, t)) = 0

(II) π∗(π
∗φ · f(x, t)dt) = φ

∫ ∞
−∞

f(x, t)dt.

Let e(t) be a bump function. Let e = e(t)dt be a compactly supported 1-form on R with total
integral 1 and define

e∗ : Ω∗c(M × R1)→ Ω∗+1
c (M)

by
φ 7→ φ ∧ e.

By construction, π∗e∗ = 1Ω∗c(Rn).
Check: dπ∗ = π∗d and de∗ = e∗d.

Proof.

e∗(ω) = π∗(ω) ∧ e
= dπ∗ω ∧ e+ (−1)|ω|π∗ω ∧ de
= π∗(dω) ∧ e,

where the last equality is given by

de = d(e(t)dt) =
∑
i

∂

∂xi
e(t)dxidt+

∂

∂t
e(t)dtdt = 0.

Type I:

π∗d(π∗(φ)f(x, t)) = π∗(dπ
∗(φ)f(x, t) + (−1)|φ|π∗(φ)df)

= π∗(0 + (−1)|φ|(
∑
i

∂f

∂xi
dxi +

∂f

∂t
dt))

= (−1)|φ|φ

∫ ∞
−∞

∂f

∂t
(x, t)dt

= (−1)|φ|φ lim
N→∞

∫ N

−N

∂f

∂t
(x, t)dt

= (−1)|φ|φ lim
N→∞

(f(x,N)− f(x,−N))

= 0.
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The last equality is given by the assumption that f(x, t) is compactly supported. Moreover, by
the definition of π∗, we have

dπ∗(π
∗(φ)f(x, y)) = 0.

Type II:

dπ∗(π
∗(φ)f(x, y)dt) = d(φ

∫ ∞
−∞

f(x, t)dt)

= dφ

∫ ∞
−∞

f(x, t)dt+ (−1)|φ|φd

∫
R
f(x, t)dt.

π∗d(π∗(φ)f(x, y)dt) = π∗

[
[]dπ∗(φ)]f(x, t)dt+ (−1)|φ|π

∗(φ)d(f)dt
]

= dφ

∫
R
f(x, t)dt+ (−1)|φ|φ

∫
R
d(f).

Therefore, dπ∗ = π∗d.

Proposition. 1 − e∗π∗ = (−1)q−1(dK − Kd) on Hq
c (M × R), where the homotopy operator

K : Ω∗c(M × R)→ Ω∗−1
c (M × R) is defined by

(I) K(π∗(φ)f(x, t)) = 0

(II) K(π∗(φ)f(x, t)dt) = φ

∫ t

−∞
f(x, t)dt− φA(t)

∫ ∞
−∞

f(x, t),

where A(t) =
∫ t
−∞ e(t)dt.

29 September 2021

Quanqi Hu

Definition 7.4. An open cover U = {Uα} of Mm is called a good cover if all finite intersections
Uα0
∩ · · · ∩ Uαp are diffeomorphic to Rm. A manifold which has a finite good cover is said to be

of finite type.

Definition 7.5. A cover {Vβ}β∈Λ′ is a refinement of {Uα}α∈Λ if ∀α ∈ Λ, ∃β ∈ Λ′ such that
Vβ ⊂ Uα.

Fact: Every cover has a good refinement.

Theorem 26. Every manifold has a good cover. If the manifold is compact, then the cover may
be chosen to be finite.

Proof. A Riemannian metric on M is a positive definite symmetric bilinear form 〈·, ·〉x : TxM ×
TxM → R. Every smooth manifold has a Riemannian metric. Consider an atlas {Uα, φα}α∈Λ,
then a Reimannian metric onM can be defined as 〈v, w〉 :=

∑
α∈Λ ραφ

−1
α 〈v, w〉Rm , where {ρα}α∈Λ

is a partition of unity subordinate to {Uα}α∈Λ.
Every Riemannian metric can be used to produce a good cover. Consider expx : TxM → B(x, ε).
Take v ∈ TxM , then there is a unique geodesic curve γ : [0, δ)→M such that γ(0) = x, γ′(0) = v
and expx(v) = γ(1). expx is a local diffeomorphism from B(x, ε′) ⊂ TxM onto B(x, ε). im(expx)
is geodesically convex. This property implies that B(x, ε) ∼= Rm and the property holds for
intersections. By taking Uα = im(expα), we obtain a good cover of M .

1 October 2021

Nitesh If M has a finite good cover, then the cohomology is finite dimension.

Let {Uα}α∈Λ be a good cover and |Λ| <∞
If |Λ| = 1, then there is only finite nonempty intersection, i.e. Rn ∼= Uα = M. (implied by
Poincare Lemma)

If |Λ| = 2, U = Uα, V = Uβ , Uα ∼= Rn, VB ∼= Rn.
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? Vα ∩ Vβ ∼=

{
Rn

∅

Mayer-Vietoris ...← Hi(U ∩ V )← Hi(U)⊕Hi(V )Hi(U ∪ V )← Hi−1(U ∩ V )← Hi−1(U)⊕Hi−1(V )

Hi(U)⊕Hi(V ) Hi(U ∪ V ) Hi(U ∩ V )

im(res)

d∗res

Note this is finite dimensional.

im (res) ∼=
Hi(U ∪ V )

ker(res
(finite dimensional)

⇒ ker(res) = imd∗ (this is finite dimensional since Hi(U ∩ V ) is finite dimensional).

∴, Hi(U ∪ V ) is finite dimensional ⇒ dim(Hi(U ∪ V )) = dim( im (res)⊕ ker(res) <∞.

Proof. Assume this is true for |Λ| = p

Let {Uα0
, ..., Uαp−1

} be a good cover.

Consider (Uα0 , Uα1 , ... ∪ Uαp−1) ∩ Uαp . This is a subspace of M , a good cover with p-open sets.

Distributing this, we get (Uαi ∩ Uαp : i = 0, ..., p)

Let U = Uαp have finite dimensional cohomology.

Let V = Uα0
∪ Uα1

∪ ...Uαp−1
, which has fixed cover {Uα0

, Uα1
, ..., Uαp−1

.

Finally, we have U ∩V = (Vα0 ∪Vα1 ∪ ...∪Vαp−1)∩Vαp also has a finite dimensional cohomology.

By same argument as ?, we have finite dimensionality. Therefore, Hi(U∪V ) is finite dimensional.

Splitting

0 im(r) Hi(U ∪ V ) ker(V ) 0

α β

im(r)⊕ ker(r)

(α, β)

r i

π1 π2
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8 5-Lemma

(I) A B C D E exact sequence

(II) A′ B′ C ′ D′ E′ exact

a b c d e

All squares commute. If rows (I) and (II) are exact and a, b, d, e are homomorphisms, the squares
all commute (up to signs), then c is an isomorphism too.

8.1 How Do We Apply This?

0 A B C (ses ch ck)

A′ B′ C ′ 0

f h g

Hi−1(C) Hi(A) Hi(B) Hi(C) Hi+1(A) ...

Hi−1(C) Hi(A′) Hi(B′) Hi(C ′) Hi(A) ...

f∗ h∗ g∗

f∗, g∗ isomorphism ⇒ h∗i is an isomorphism by 5−Lemma.

A bilinear map < ·,− >: V ⊗W → R is nondegenerate.

• If < V,W >= 0 for all w ∈W, then V = 0.

• If < V,W >= 0 for all v ∈ V then W = 0.

Any bilinear map

V ⊗W → Rinduces a map

V
α−→W ∗

α(V )(w) =< v,w >

If V,W finite dimensional then <,> is nondegenerate ⇐⇒ α is an isomorphism.
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9 Poincare Duality

4 October 2021

6 October 2021

Steven Un

Theorem 27. The Poincare Duality Theorem. Let M be a compact oriented smooth manifold
of dimension n. Then for each q ∈ {0, 1, 2, . . . n}, the bilinear form Bq : Hq(M)⊗Hn−q

c (M) −→ R
defined by

Bq([ω], [τ ]) =

∫
M

ω ∧ τ (8)

for all [ω] ∈ Hq(M) and all [τ ] ∈ Hn−q
c (M) is nondegenerate; that is, Hq(M) and the dual space

(Hn−q
c (M))∗ of Hn−q

c (M) are isomorphic as real vector spaces:

Hq(M) ∼= (Hn−q
c (M))∗. (9)

We say that Poincare duality holds for a smooth manifold M ′ of dimension m′ if
Hq(M ′) ∼= (Hn−q

c (M ′))∗ for each q ∈ 0, 1, . . . ,m′. Therefore the conclusion of the theorem is
that Poincare duality holds for M .

�

Proof. Let q ∈ {0, 1, 2, . . . , n}. We want to establish a vector space isomorphism Hq(M) ∼=
(Hn−q

c (M))∗.

Step 1.

Claim. Suppose M = U ∪ V for two open subsets U, V of M . Then if Poincare duality holds for
U , V , and U ∩ V then Poincare duality holds for M = U ∪ V .

Proof. Assume Poincare duality holds for U , V , and U ∩ V (of course, as open subsets of M ,
all of these sets are smooth manifolds). Let {ρU , ρV } be a partition of unity for M subordinate
to the cover {U, V } (with Supp(ρU ) ⊂ U and Supp(ρV ) ⊂ V . We have the Meyer Vietoris long
exact sequence of cohomology groups for the decomposition M = U ∪ V and the dual of the
corresponding Mayer Vietoris sequence for compact supports. The below diagram shows the
portion of the sequence about the cohomology group Hq(U ∪ V ).

Hq−1(U)⊕Hq−1(V ) Hq−1(U ∩ V ) Hq(U ∪ V ) Hq(U)⊕Hq(V ) Hq(U ∩ V ) ...

Hn−q+1
c (U)∗ ⊕Hn−q+1

c (V )∗ Hn−q
c (U ∪ V )∗ Hn−q

c (U ∪ V )∗ Hn−q
c (U)∗ ⊕Hn−q

c (V )∗ Hn−q
c (U ∩ V )∗ ...

f∗ h∗ g∗

The objective is to deduce the isomorphism Hq(U ∪ V ) ∼= Hn−q
c (U ∪ V )∗ by applying the Short-

Five Lemma to this diagram. In turn, to apply the Short-Five Lemma we need isomorphisms
between the vector spaces in each column adjacent to the column containing Hq(U ∪ V ) and
Hn−q
c (U ∪ V )∗, two isomorphisms on each side. The commutativity of each square in the above

diagram is equivalent to the statement that the bilinear form Bq is sign-commutative. There are
three cases of sign-commutativity of Bq to prove, each corresponding to one of three types of
squares in the diagram. (Each type of square corresponds to one of the three combinations of the
the objects Hk(U) ∪Hk(V ), Hk(U) ∩H(V ), and Hk(U)⊕Hk(V ) taken two a time.) Explicity,
sign commutativity of Bq is given and proved by the following:

Type 1: ∫
U∩V

ω ∧ d∗τ = ±
∫
U∪V

(d∗ω) ∧ τ (10)

for each [ω] ∈ Hq(U ∩ V ), [τ ] ∈ Hn−q−1
c U ∪ V .
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Proof. ∫
U∪V

(d∗ω) ∧ τ =

∫
U∪V

(d(ρUω)− d(ρV ω)) ∧ τ

=

∫
U∪V

d(ρUω) ∧ τ −
∫
U∪V

d(ρV ω) ∧ τ (11)

=

∫
U∪V

(d(ρU )ω + ρUdω) ∧ τ −
∫
U∪V

(d(ρV )ω + ρV dω) ∧ τ (12)

=

∫
U∪V

(dρU )ω ∧ τ −
∫
U∪V

(dρV )ω ∧ τ (dω = 0) (13)

=

∫
U

(dρU )ω ∧ τ −
∫
V

(dρV )ω ∧ τ (14)

Where the last equality holds because the integrand (dρU )ω∧τ has support in U and the integrand
(dρV )ω∧τ has support in V . This is because the wedge product factors in each integrand involve
ρU and ρV , which are zero in particular outside of U and V respectively. Then, on the other
hand, ∫

U∩V
ω ∧ d∗τ =

∫
U∩V

ω ∧ (−d(ρUτ) + d(ρV τ))

=

∫
U∩V

ω∧(−(d(ρUτ))+

∫
U∩V

ω∧d(ρV τ) =

∫
U∩V

ω∧(−((dρU )τ))+ρUdτ))+

∫
U∩V

ω∧((dρV )τ+ρV dτ).

Because dτ = 0, we have∫
U∩V

ω ∧ d∗τ =

∫
U∩V

ω ∧ (−(dρU )τ) +

∫
U∩V

ω ∧ (dρV )τ

∫
U∩V

ω ∧ d∗τ =

∫
U∩V

(−1)|ω|(−dρU )ω ∧ τ +

∫
U∩V

(−1)|ω|(dρV )ω ∧ τ))

= (−1)|ω|
(
−
∫
U∩V

(dρU )ω ∧ τ + (−1)|ω|
∫
U∩V

(dρV )ω ∧ τ))

)
(15)

= (−1)|ω|
(
−
∫
U∩V

(dρU )ω ∧ τ +

∫
U∩V

(dρV )ω ∧ τ)

)
(16)

= (−1)|ω|
(
−
∫
U

(dρU )ω ∧ τ +

∫
V

(dρV )ω ∧ τ)

)
(17)

The last equality, holds because of the appearance of the functions ρU and ρV in the integrands.
From equations (14) and (17) we conclude that∫

U∩V
ω ∧ d∗τ = ±

∫
U∪V

(d∗ω) ∧ τ

as claimed. We used the anticommutativity of the wedge product with the fact that dρU and
d rhoV are forms of degree one. �

Type 2: ∫
U∩V

δq((ω, τ)) ∧ θ = ±
(∫

U

ω ∧ jU ∗(θ) +

∫
V

τ ∧ jV ∗(θ)
)

(18)

for each ([ω], [τ ]) ∈ Hq(U) ⊕Hq(V ), [θ] ∈ Hn−q
c (U ∩ V ) where δq is the usual difference map in the

construction of the Mayer-Vietoris sequence, at the joint q, and ι : Hn−q
c (U∩V ) −→ Hn−q

c (U)⊕Hn−q
c (V )

is signed inclusion, that is, ι(θ) = (−jU ∗(θ), jV ∗(θ)), where jU ∗ and jV ∗ extend q-forms on U ∩ V by
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zero to q-forms on U and V , respectively. (Remark. Only the components jU ∗ and jV ∗ enter into this
sign-commutativity equation, but the important concept is the map ι.)

Proof. This case is much easier. Recall the definition of the difference map δq(ω, τ) = ω|U∩V − τ |U∩V .
Then ∫

U∩V
δq((ω, τ)) ∧ θ =

∫
U∩V

(ω|U∩V − τ |U∩V ) ∧ θ =

∫
U∩V

ω|U∩V ∧ θ −
∫
U∩V

τ |U∩V ∧ θ

=

∫
U∩V

ω|U∩V ∧ jU ∗(θ) +

∫
U∩V

τ |U∩V ∧ jV ∗(θ) =

∫
U

ω ∧ jU ∗(θ) +

∫
V

τ ∧ jV ∗(θ).

The proof for this type is complete.

Type 3: ∫
U∪V

ω ∧ s((τ1, τ2)) = ±
(∫

U

ω|U ∧ τ1 +

∫
V

ω|V ∧ τ2
)

(19)

for each [ω] ∈ Hq(U ∪ V ), ([τ1], [τ2]) ∈ Hn−q
c (U)⊕Hn−q

c (V ),where i∗(ω) = (ω|U , ω|V ) is as usual the
image of ω under the restriction map in cohomology, and s is the sum map, sending (τ1, τ2) to the sum
τ1 + τ2 after extending each by zero to a form on U ∪ V .

Proof. Calculate∫
U∪V

ω ∧ s((τ1, τ2)) =

∫
U∪V

ω ∧ (τ1 + τ2) =

∫
U∪V

ω ∧ τ1 +

∫
U∪V

ω ∧ τ2.

Then ∫
U∪V

ω ∧ s((τ1, τ2)) =

∫
U∪V

ω ∧ τ1 +

∫
U∪V

ω ∧ τ2 =

(∫
U

ω|U ∧ τ1 +

∫
V

ω|V ∧ τ2
)
.

This is because τ1 is extended by zero to U ∪ V , so that ω ∧ τ1 is zero on V , and we have that the
integral of this form on U ∪V is equal to its integral on U . Likewise for the integral of ω∧ τ2 by virtue
of extension of τ2 by zero to U ∪ V . This completes the proof for Type 3.

Therefore the bilinear form Bq : Hq(M)⊗Hn−q
c (M) −→ R is sign-commutative.

Returning to the above diagram, we have by the hypothesis that Poincare duality holds for U , V , and
U ∩ V the vector space isomorphisms

Hk(U) ∼= (Hn−k
c (U))∗,

Hk(V ) ∼= (Hn−k
c (V ))∗,

and
Hk(U ∩ V ) ∼= (Hn−k

c (U ∩ V ))∗,

for each k ∈ {0, 1, . . . , n}, and in particular for k = q and k = q − 1 as in the above diagram. The
sign-commutativity of the bilinear form Bq : Hq(M)⊗Hn−q

c (M) −→ R implies that each square in the
above diagram commutes.

We conclude by the Short-Five Lemma that Hq(U ∪V ) ∼= Hn−q
c (U ∪V )∗, so we have Poincare duality

for M = U ∪ V . The proof of the claim is complete.

Step 2. Choose a finite good cover C = {U1, U2, . . . , Up} of M . We may do so because M is compact.
We complete the proof by induction on the cardinality p of C.
If p = 1, then, because C is a good cover of M , we have that M = U1 is diffeomorphic to Rn We use
the Poincare Lemmas for the cohomology and compactly supported cohomology of Euclidean spaces.
If q = 0, then

Hq(M) ∼= Hq(Rn) = H0(Rn) ∼= R ∼= Hn
c (Rn) ∼= Hn

c (M) = Hn−q
c (M) ∼= (Hn−q

c (M))∗,

so Poincare duality holds if q = 0. If q ∈ {1, . . . , n}, then by the Poincare Lemmas,

Hq(M) ∼= Hq(Rn) = {0} = Hn−q
c (Rn) ∼= Hn−q

c (M) ∼= Hn−q
c (M)∗.
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We conclude that Poincare duality holds for M if p = 1.

Now suppose that Poincare duality holds for each compact smooth manifold with a finite good cover of
cardinality less than or equal to p. Let {U1, U2, . . . , Up+1} be a finite good cover of M with cardinality
p+ 1. Then M = (U1 ∪ · · · ∪ Up) ∪ Up+1, and {U1, . . . , Up} is a finite good cover of U1 ∪ · · · ∪ Up, and
of (U1 ∪ · · · ∪Up)∩Up+1. {Up+1} is a finite good cover of Up+1. By the induction hypothesis, we have
that Poincare duality holds for U1 ∪ · · · ∪ Up,Up+1, and (U1 ∪ · · · ∪ Up) ∩ Up+1.

By Step 1 of the proof, we conclude that Poincare duality holds for M = (U1 ∪ · · · ∪ Up) ∪ Up+1. We
conclude by mathematical induction that Poincare duality holds for all compact smooth manifolds.

10 Künneth Theorem

8 October 2021

Juan Felipe We now want to get a formula for the cohomology of a product manifold, for this we will use
again a Mayer Vietoris argument and proceed by induction.

Theorem 28. Suppose M is a smooth manifold that admits a finite good cover, and let F be
smooth manifold. Consider the product manifold M × F and denote the projections by p :
M × F −→ F and π : M × F −→ M . Then the map ψ : (Ω∗(M)

⊗
Ω∗(F ))n −→ Ωn(M × F )

given by ω ⊗ τ 7→ π∗ω ∧ p∗τ induces an isomorphism

H∗(M)
⊗

H∗(F ) ∼= H∗(M × F ).

Let’s clarify the expression H∗(M)
⊗
H∗(F ) ∼= H∗(M × F ) before moving on to the proof. If

we have V =
⊕

n∈Z Vn and W =
⊕

n∈ZWn two Z-graded vector spaces, then the tensor product
V
⊗
W has a Z-grading that is compatible with the grading of V and W . Namely, we have

V ⊗ W =
⊕

n∈Z(V
⊗
W )n where (V

⊗
W )n =

⊕
i+j=n Vi

⊗
Wj . Thus Künneth’s theorem

provides a collection of isomorphisms

Hn(M × F ) ∼=
⊕
i+j=n

Hi(M)
⊗

Hj(F ).

Notice that we can give H∗(M)
⊗
H∗(F ) a chain complex structure by operating on simple

tensors with d(ω ⊗ τ) = dω ⊗ τ + (−1)|ω|ω ∧ dτ .

Exercise. Verify that the map ψ : H∗(M)
⊗
H∗(F ) −→ H∗(M × F ) above is a chain map.

Proof. Let {Up : p ∈ Λ} be a finite good cover for M and let’s proceed by induction on the
cardinality of Λ. Suppose |Λ| = 1, then M ∼= Rm for some m and so

Hi(M) ∼=

{
R if i = 0

0 if i 6= 0
.

Now, for any i 6= 0 and any j we have Hi(M)
⊗
Hj(F ) = 0 so⊕

i+j=n

Hi(M)
⊗

Hj(F ) ∼= R⊗Hn(F ) ∼= Hn(F ) ∼= Hn(M × F )

since R is contractible and M × F is homotopic to F .

Now assume the statement of the theorem is true for |Λ| < q and let |Λ| = q. Define U =
U1 ∪ ...∪Uq1 and V = Uq, then U ∩ V = (U1 ∩Uq)∪ ...∪ (Uq1 ∩Uq) and all of U, V, U ∩ V admit
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a good cover of at most q − 1 open sets. By Mayer Vietoris we have the following long exact
sequence.

... Hi(U ∩ V ) Hi(U)⊕Hi(V ) Hi(M) Hi−1(U ∩ V ) ...d∗

If we take tensor product with Hj(F ) at each step of the sequence, we obtain the following exact
sequence.

... Hi(U ∩ V )
⊗

Hj(F ) (Hi(U)⊕Hi(V ))
⊗

Hj(F ) Hi(M)
⊗

Hj(F ) Hi−1(U ∩ V )
⊗

Hj(F ) ...d∗

Exercise. Prove that for any vector space W , the functor
⊗
W preserves exactness.

Exercise. Find an example of an exact sequence of abelian groups where exactness is not preserved
by taking a tensor product.

Taking direct sums we obtain again an exact sequence as follows.

...
⊕

i+j=n
Hi(U ∩ V )

⊗
Hj(F )

⊕
i+j=n

(Hi(U) ⊕Hi(V ))
⊗
Hj(F )

⊕
i+j=n

Hi(M)
⊗
Hj(F )

⊕
i+j=n

Hi−1(U ∩ V )
⊗
Hj(F ) ...

By the induction hypothesis we have isomorphisms ψ|U∩V and ψ|U ⊗ ψ|V at each degree n, so
we obtain the following diagram with exact rows (by Mayer Vietoris).

...
⊕

i+j=n
Hi(U ∩ V )

⊗
Hj(F )

⊕
i+j=n

(Hi(U) ⊕Hi(V ))
⊗
Hj(F )

⊕
i+j=n

Hi(M)
⊗
Hj(F )

⊕
i+j=n

Hi−1(U ∩ V )
⊗
Hj(F ) ...

... Hn((U ∩ V ) × F ) Hn(U × F ) ⊕Hn(V × F ) Hn(M × F ) Hn−1((U ∩ V ) × F ) ...

ψU∩VψMψU⊕ψVψU∩V 3○ 1○ 2○

In order to obtain the isomorphism ψ|M we will apply the 5–lemma, so we need to verify that
each of the squares 1○, 2○ and 3○ commute. Let’s look at them more closely.

⊕
i+j=n

Hi(U ∩ V )
⊗
Hj(F ) (

⊕
i+j=n

Hi(U)
⊗
Hj(F ))⊕ (

⊕
i+j=n

Hi(V )
⊗
Hj(F ))

Hn((U ∩ V )× F ) Hn(U × F )⊕Hn(V × F )

ψU⊕ψVψU∩V

resV −resU

resV×F−resU×F

3○

(
⊕

i+j=n

Hi(U)
⊗
Hj(F ))⊕ (

⊕
i+j=n

Hi(V )
⊗
Hj(F ))

⊕
i+j=n

Hi(M)
⊗
Hj(F )

Hn(U × F )⊕Hn(V × F ) Hn(M × F )

ψMψU⊕ψV

(resU ,resV )

(resV×F ,resU×F )

1○

⊕
i+j=n

Hi(M)
⊗
Hj(F )

⊕
i+j=n

Hi−1(U ∩ V )
⊗
Hj(F )

Hn(M × F ) Hn−1((U ∩ V )× F )

ψU∩VψM

d∗

d∗

2○
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Notice that restriction commutes with pullback, thus the squares 1○ and 3○ commute. Let
{ρU , ρV } be a partition of unity on M subordinate to {U, V }, then we obtain a partition of
unity {π∗ρU , π∗ρV } on M × F subordinate to {U × F, V × F}. With this we may describe the
connecting homomorphism

d∗ω =

{
−d(ρV ω) on U

d(ρUω) on V
.

Let [ω] ∈ Hi−1(U ∩V ) and [τ ] ∈ Hj(F ) (we will omit the [ ] in the computations for simplicity),
then

ψd∗(ω ⊗ τ) = ψ(−d(ρUw)⊗ τ) = −π∗(d(ρUw)) ∧ p∗τ
d∗ψ(ω ⊗ τ) = d∗(π∗ω ∧ p∗τ) = −d(π∗ρU (π∗ω ∧ p∗τ) = −d(π∗(ρUω) ∧ p∗τ)

= −d(π∗(ρUω)) ∧ p∗τ − (−1)|π
∗ω|π∗(ρuω) ∧ d(p∗τ)

= −π∗(d(ρUω)) ∧ p∗τ.

Thus, the square 2○ also commutes.

11 Cech-deRham Cohomology

18 October 2021

Elise Askelsen Suppose U = {Uα}α∈λ is an open cover of a manifold, M where λ is countable and ordered. Let
Ω be a deRham sheaf. Then C(U ,Ω) is a bicomplex.

Recall: In our proof that the sequence∏
α0∈λ Ω∗(Uα0

)
∏
α0<α1

Ω∗(Uα0α1
)

∏
α0<α1<α2

Ω∗(Uα0α1α2
) · · ·δ δ

is exact, we obtain the below diagram where Uα0α1...αn =
⋂n
k=0 Uα0...αk , d is the deRham differ-

ential, and (δω)α0...αn :=
∑n
i=0(−1)iωα0...α̂i...αn |Uα0...αn

∏
α0∈λ Ωi(Uα0

)
∏
α0<α1

Ωi(Uα0α1
)

∏
α0<α1<α2

Ωi(Uα0α1α2
) · · ·

∏
α0∈λ Ωi−1(Uα0

)
∏
α0<α1

Ωi−1(Uα0α1
)

∏
α0<α1<α2

Ωi−1(Uα0α1α2
) · · ·

δ δ

d (−1)id d

δ δ

Theorem 29. r : H∗(M)→ H∗(C(U ,Ω), D) is an isomorphism.

Note that our r is the map given in the following diagram from the map Ω∗(M)→ C∗(U ,Ω)
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Ωi+1(M)
∏

Ωi+1(Uα) · · ·

Ωi(M)
∏

Ωi(Uα) · · ·

Ωi−1(M)
∏

Ωi−1(Uα) · · ·

δr

δ

δr

r

First, we discuss an element in the collection C(U ,Ω). Visually, we have a collection

•

α1 • • • •

• α2 • • •

• • α3 • •

• • • α4 •

d

δ

d

δ

d

δ

d

δ

Note α1 ∈
∏
α Ωi(Uα), α2 ∈

∏
α0<α1

Ωi(Uα0α1
).

Definition 11.1. The element αi is a cocycle if δαi+1 = 0

Definition 11.2. The element αi is a coboundary of there exists a βi such that dβi = αi.

Next, we return to the proof of our statement.

Proof. Claim 1: r is a chain mapFirst, we can note that by a prior lecture r is a chain
map. This is specifically due to the fact that r(dω) = {dω|Uα}α∈λ and δ(rω)) = 0. This gives
Dr(ω) = dr(ω) = d({ωα}α∈λ).

Claim 2: If φ ∈ C(U , |Omega) is a D-cocycle, then [φ] = [φ”] where φ” consists of ele-
ments in

∏
α Ω(Uα) ⊂ (U ,Ω)Next, suppose α ∈ Ci(U ,Ω∗) is a cocycle where α = {α1,2 , ..., αn}.

This gives that Dα = 0 so δαn = 0. (Visually this is represented in the grid as αn has nothing
to the right of it and hence must map to zero.)

In a formal argument, since δ is exact, there is some γn such that δγn = αn. Consider α− dγn.
First notice that in C(U ,Ω), [α −Dγn] = [α]. Now α −Dγn = {α1,2 , ..., αn−1 ± dγn}. This is
once again a cocycle since implies that D(α−Dγn) = Dα−D2γn = 0−0 = 0 so D(α−Dγn) = 0.
Hence δ(α1

n−1 + dγn) = 0. From this, we can conclude that there exists some γ1
n−1 such that

δγ1
n−1 = αn−1 +Dγn.

Then, continuing this process inductively, we obtain α−Dn −Dγ1
n−1 −Dγ2

n−2 − ...−Dγ0. But
this is in the same class as α and is an element in

∏
α Ω(Uα).

r is bijective For surjectivity : Let φ = φ1 + ...+ φn. Then Dφ = 0 so δφ1
1 = 0. Hence dφ1

1 = 0
and δφ1

1 = 0. Therefore, φ1
1 ∈ Ker(δ) = Im(r) by the exactness of the rows. This shows that

r : H(M)→ H(C∗(U ,Ω), D) is onto.

For injectivity : Suppose r([ω]) = 0 with [ω] ∈ H(M). Hence r(ω) = Dφ where for this φ =
φ1 + ... + φn with δφn = 0. Thus there exists α with δα = φn giving D(φ −Dα) = Dφ = r(ω)
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and φ2 := φ − Dα = φ2
1 + ... + φ2

n−1. Continuing this process inductively, we find φn = φn1
so r(ω) = Dφn = ±φn + δφn = r(ω) = 0 since δφn = 0. But δφn1 = 0 gives that there exists
β ∈ Ω|ω|−1 with r(β) = φn1 . Hence dβ = ω since r(dβ − ω) = 0 and r is injective on forms so
dβ − ω = 0. This gives [ω] = 0 so r is injective.

This proves that H(M) ∼= H(C(U ,Ω), D) via the map r.

11.1 A New Take on Homology

Now we reconsider the diagram with the following

Ω2(M)
∏

Ω2(Uα)
∏

Ω2(Uα0α1) · · ·

Ω1(M)
∏

Ω1(Uα)
∏

Ω1(Uα0α1
) · · ·

Ω0(M)
∏

Ω0(Uα)
∏

Ω0(Uα0α1
) · · ·

Ker(d) Ker(d) · · ·

∏
F (Uα0

)
∏
F (Uα0α1

)

δr

d

d

δ

δr

r

d

d

δ

S S

Note Ker(d)
∏

(Ω0(Uα) =
∏
C∞(Uα)→ where F (Uα) are constant forms on Uα. Hence given a

good cover, UαRn so M is connected, then F (Uα)R.

We observe that a sequence is exact if its homology is zero.

Corollary 29.1. The vertical sequences (columns) are exact when U is a good cover.

Notice that this result follows from the Poincaré Lemma. This is because if U is a good cover,

Uα0....αn

{
∅
R

. Then, by the Poincaré Lemma, Hi(Uα0...αn) =

{
R i = 0

0 i 6= 0
.

Therefore we have Hi(
∏

Ωi(Uα0...αn)) =
∏
Hi(Uα0...αn) = 0 for i > 0. Note if i = 0, then the

sequence is exact. Then, via the map δ,

C1(U , F ) =
∏

F (Uα)→
∏

F (Uα0α1
→ ...

Then H(U) := H(C(U , F ), δ) is Cech Cohomology. Moreover, if U is a good cover, we have
H(U)H(C(U ,Ω), D)HdR(M) where H(U) is the Cech Cohomology, H(C(U ,Ω), D) is the Cech-
deRham Cohomology, and HdR(M) is the deRham Cohomology with the first isomorphism being
from the map S while the second isomorphism is under the map r. Therefore, the cohomology
theories agree.

Notice though that H(U is combiniatorial and if U is finite, C(U , F ) is finite dimensional which
implies that H(U) and HdR(M) are also finite dimensional.

Moreover, if U and U ′ are good covers (even of homotopically equivalent manifolds), then
H∗(U)HdR(M)H∗(U ′).
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12 Computations:

Next, we begin the practice of computations of the Cohomology of different spaces.

1. First, we compute H∗(Sn).

Recall from previously in class, we have found Hn(S1) =

{
R n = 0, 1

0 otherwise

Then, as a base case, consider when n = 2. Let {U, V } be a good open cover of S2 where
U is an open set containing the north pole, V is an open set containing the south pole,
and U ∩ V 6= ∅. From this knowledge and by the Mayer Vietoris, we obtain the long exact
sequence

H2(S2) H2(U)⊕H2(V ) H2(U ∩ V ) 0

H1(S2) H1(U)⊕H1(V ) H1(U ∩ V )

0 H0(S2) H0(U)⊕H0(V ) H0(U ∩ V )

Notice the following; U ∩ V S1 × (0, 1) so by the Poincaré Lemma, we can conclude that
H∗(U) = H∗(S1 × (0, 1))H∗(S1) which we have computed earlier. Moreover, U ∼= R2 and
V ∼= R2. This gives that H∗(U)⊕H∗(V ) = H∗(R2)⊕H∗(R2).

But we note that H∗(R2) ⊕ H∗(R2) =

{
R⊕ R n = 0

0 otherwise
. Hence H∗(U) ⊕ H∗(V ) ={

R⊕ R n = 0

0 otherwise
.

Having gathered this information, we adapt our original long exact sequence to the following.

H2(S2) 0 0 0

H1(S2) 0 R

0 H0(S2) R2 R
f1 f2

g1
g2

h1

δ0

δ1

Now, by the exactness of the sequence, we know Ker(f1) = Im(f2) = R. Therefore,
H0(S2) = R. Similarly, Ker(0) = Im(f1) = Ker(f2) = Im(δ0) = Ker(g1) = H1(S2) = 0.
Finally, R = Im(δ1) = Ker(h1) = H2(S2) by the Short Five Lemma.

Therefore, from this, we conclude that for n = 2,

H∗(S2) =

{
R n = 0, 2

0 otherwise

R 0 0 0

0 0 R

0 R R2 R
f1 f2

g1
g2

h1

δ0

δ1
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Now, suppose for the sake of induction that for all 1 ≤ k ≤ n,

H∗(Sk) =

{
R n = 0, k

0 otherwise

.

Let {U, V } be a good open cover of Sn+1 where U is an open set containing the north pole,
V is an open set containing the south pole, and U ∩ V 6= ∅. From this knowledge and by
the Mayer Vietoris, we obtain the long exact sequence

Hn(Sn) Hn(U)⊕Hn(V ) Hn(U ∩ V ) 0

· · ·

· · ·

H1(Sn) H1(U)⊕H1(V ) H1(U ∩ V )

0 H0(Sn) H0(U)⊕H0(V ) H0(U ∩ V )

· · · · ··

Notice the following; U ∩ V Sn−1 × (0, 1) so by the Poincaré Lemma, we can conclude that
H∗(U) = H∗(Sn−1 × (0, 1))H∗(Sn−1) which we have computed earlier. Moreover, U ∼= R2

and V ∼= R2. This gives that H∗(U)⊕H∗(V ) = H∗(R2)⊕H∗(R2).

But we note that H∗(R2) ⊕ H∗(R2) =

{
R⊕ R n = 0

0 otherwise
. Hence H∗(U) ⊕ H∗(V ) ={

R⊕ R n = 0

0 otherwise
.

Having gathered this information, we adapt our original long exact sequence to the following.

Hn(Sn) 0 0 0

· · ·

· · ·

H1(Sn) 0 0

0 H0(Sn) R2 R

· · · · ··

Now, by the same argument as when n = 2, we can conclude that H0(Sn) = R and
H1(Sn) = 0. Furthermore, for all 1 ≤ j ≤ n − 1, Hj(Sn) = 0 by the exactness of the
sequence. Finally, R = Im(δn−1) = Ker(fn1) = Hn(Sn) by the Short Five Lemma.

Therefore, from this, we conclude that for n = 2,

H∗(S2) =

{
R ∗ = 0, n

0 otherwise
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25 October 13 Cech Cohomology for S1

27 October

Attempt 1 Let U be the open set covering the left half of the circle and V be the open set covering the
right half of the circle.

We have the U ∼= R, V ∼= R, and U ∩ V ∼= R⊕ R.
Note that this cover from the Mayer-Vietoris argument is not a good cover.

Attempt 2 Now try covering S1 with 3 open sets, U, V, and W . Since U ∩ V ∩W = ∅ and u ∩ V ∼=
R, V ∩W ∼= R,W ∩ U ∼= R, we can conclude that {U, V,W} is a good cover.

By MV H∗dR(S1) =

{
R, ∗ = 0, 1

0, ∗ 6= 0, 1

Now consider the Cech Complex.

Cech Complex (?)

Πα∈ΛC
const(Uα)

δ−→ Πα<βC
const(Uα β)

δ−→ Πα<β<δC
const(Uαβδ)

Here we define Cconst as follows:

Definition 13.1. Cconst = {f ∈ C∞(U) and
∂f

∂xi
= 0 ∀i}.

This is just a vector space. (Note that a constant function on a connected topological space
is just a number).

For U ⊂ Rn

Cconst(U)→ R
f 7→ f(x)for any x ∈ R

Since U = {U, V,W}, (?) becomes

Cconst(U)⊕ Cconst(V )⊕ Cconst(W ) (deg 0)

↓ δ
Cconst(U ∩ V )⊕ Cconst(U ∩ V )⊕ Cconst(V ∩W ) (deg0)

↓ δ
0

Let φU , φV , φW be basis constant functions on open cover U, V, and W respectively i.e.
φU (x) = 1, ... (or any constant value).

From the chain above, we have that R3 ∼= R < φUW , φUV , φVW >

13.1 Computation

Definition 13.2. Let (δω)α0,...,αn =
∑∞
k=0(−1)∗ωα0,...,α̂k,...αn

Here (α0, ..., αn) is the restriction.

ω ∈ ΠΩ∗(Uα0,..,αn−1)

δω ∈ ΠΩ∗(Uα0,..,αn−1)

Let φ = (φU , φV , φW ). Then, we have the following equations:

(δφ)uV = φU |UV − φV |UV (20)

(δφ)UW = φU |W − φW |UW (21)

(δφ)VW = φV |UW = φW |VW (22)

44



Then, we have the following:

~φU = (1 · φU , 0 · φV , 0 · φW )

~φV = (0 · φU , 1 · φV , 0 · φW )

~φW = (0 · φU , 0 · φV , 1 · φW )

~φU , ~φv, ~φW = C∨ 0(U). Then, we have

δ ~φU = 1 · φUV + 1 · φUW + 0 · φW
δ ~φV = −1 0 1

δ ~φW = 0 − 1 − 1

Turning rows into columns, we have the following matrix for δ.

δ =

1 −1 0
1 0 −1
0 1 −1


Now we do row-reduction to get rank of the δ-matrix.

0
δ−→ C∨ 0 (U)︸︷︷︸

R< ~φU , ~φV , ~φW>

δ−→ C∨ 1(U)
δ=0−−→︸︷︷︸

ker(δ)= everything

0

Set Up

H0(U) =
ker δ

im δ
=

ker

0
− ker(δ) ⊂ C∨0(U) = nullspace(δ)

.

H1(U) =
ker(δ)

im (δ)
=
C∨1(U)

(δ)
, rkH1(U) = rk(C∨ 1(U))−rk (im(δ)) = 3−rk(im(δ)) = dim(nullspaceδ))

(The last equality follows by Poincare Duality).

Row Reduce 1 −1 0
1 0 −1
0 1 −1

→
1 −1 0

0 1 −1
0 1 −1

→
1 −1 0

0 1 −1
0 0 0


⇒ nullspace (δ)) = 1. Note that φU + φV − φW generates the kernel.

Conclusion

H∗Cech =

{
R, ∗ = 0, 1

0, ∗ 6= 0, 1

14 Simplicial Homology

29 October

Definition 14.1. An abstract simplicial complex X is a collection of subsets of set S
which satisfies:

If Y ∈ X(⇒ Y ⊂ S) and Z ⊂ Y , then Z ⊂ X too.
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Example 30. S = {0, 1}, X = {{0, 1}, {0}, {1}, ∅}

{0} {1}

• •

{0, 1}︸ ︷︷ ︸
S = {0, 1, 2}, X = P (S) = 2S . ”2-simplex”

Example 31.

{2}

•

{1, 2} {0, 1, 2} {0, 2}

• •

{1} {0, 1} 0

Example 32 (Simplicial Circle P ({0, 1, 2} − {0, 1, 2})).

∂42 = {{1, 2}, {1}, {2}, {0, 2}, {0}, {2}, {0, 1}, {0}, {1}, ∅}

•

{1, 2} {0, 1, 2} {0, 2}

• •

{0, 1}

Example 33 (CounterExample).
• •

• •

This does NOT come from an abstract simplicial complex.

Definition 14.2 (Geometric Realization). |X| geometric realization is defined as follwos:

|X| = tY ∈XY ×4#|Y |−1/ ∼

,

where Y is a point, 4 is a toplological space, and ∼= {ifA ∈ Xand A ⊂ Y,A ⊂ Y ′thenY ×
dA4#Y−1 ∼ Y ′ × dX4#Y−1}
(In other words, we glue them along faces).
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Definition 14.3.

4n = {(x0, x1, ..., xn) ∈ Rn : nxi ≥ 0,
∑
i=0

xi = 1}

Example 34. 41 is just a right triangle in 2D plane and 2 is a similar object in 3D plane
with normal vector < 1, 1, 1 > .

Let vi = 4n ∩ ith axis. These have subspace topology.

Example 35. If A ⊂ {v0, ..., vn} then there is a unique 4#n−1 simplex corresponding to A
inside 4n.

4#n−1 = dA4n ⊂ 4n

Example 36.

|∂ 42 | = 41
{1,2} t4

1
{0,1} t4

1
{0,2}

= t40
{1} t4

0
{1} t4

0
{2} / ∼ subset contained in 2 different sets

• •

• • •

• • • • • •

• A = {1} •

A ⊂ Y,A ⊂ Y ′

Y={1,2}

Y ′={0,1}

If U = {Uα}α∈Λ is a good cover of M , then we can constant an abstract simplicial complex
N(U).

Definition 14.4 (The Nerve). N(U) called the nerve of U consists of the subsets of the
indexing set Λ such that

Y ∈ N(U) ⇐⇒ ∩α∈Y Uα 6= ∅,

wherre Y ⊂ Λ.

Check That this is in fact an abstract simplicial complex.

If z ⊂ Y and Y ∈ N(U), then ∩α∈Y Vα ⊂ ∩α∈zUα and ∩α∈Y Vα 6= ∅ ⇒ ∩α∈zUα 6= 0 ⇒ z ∈
N(U).

Definition 14.5 (Paracompact). A topological space M is paracompact if every cover
admits a locally, finite subcover.

A cover is locally finite if ∀x ∈ M, ∃ a {Uin{U} : B ⊂ U} < ∞ (this can be proven with
partition of unity).

Theorem 37. If M paracompact and {U}α∈Λ is a good dover then |N(U)| ∼= M (homotopy
equivalent).

Theorem 38 (Folk Theorem). If X is an abstract simplicial space then there is a good cover
of |x| so N(U) = X.

47



1 November K abstract simplicial complex. K ⊂ 2Λ for some Λ.

For any simplicial complex, K  |K| topological space.

|K| = {α ∈ Map(KR≥0 : 1, 2}, where 1, 2 are defined as follows:

1 If α ∈ |K| then {v|α(v) 6= 0} ∈ K
2 If α ∈ |K| then

∑
v∈Kq α(v) = 1.

Definition 14.6. If σ ∈ K abstract simplicial complex. An orientation on σ ∈ K,σ =
{v0, ..., vn} is a choice of order v0 < v1 < ... < vn.

Two such orientations are considered to be equivalent if they differ by an even permutation
(permuation are either even or odd).

Let K be an abstract simplicial complex.

The set of oriented q-simplices is given by OKq = {(σ, f) : r → {0, 1, .., q} : σ ∈ Kq}/ ∼,
where the equivalence classes are given by

(σ, f) ∼ (σ, g) if ∃ τ ∈ Aq+1 ⊂ Symq+1 (Alternating group ⊂ Symmetric Group).

So τf = g.

Definition 14.7. If K abstract simplicial complex, OKq, q = 0, 1, 2, .., then we have the
free-module

Cq(K,Z) = Z < (r, f) ∈ OKq >?(σ, f) = −σ(f))

Cq(K) = Cq(K,Z)

Cq(K)
∂q−→ cq−1(K)

Definition 14.8. The boundary map (defined on generators) is given as follows:

((r, f)) = ([v0, v1, .., vn]) if f(vi) = i, σ = {v0, ..., vn}. Then,

∂q([v0, v1, ..., vn]) =

n∑
i=0

(−1)i[v0, v1, ..., v̂i, ..., vn]

(Remove the ith vertex)

Cq(K)
∂q−→ Cq−1(K)

∂q−1−−−→ Cq−2(K) with Cq(K)
0−→ Cq−2(K).

Note we still have ∂q−1∂q = 0 ∀Z≥1

So for every abstract simplicial complex K there is a chain complex:

Hi(K) :=
ker ∂i : Ci(K)→ Ci−1(K)

im∂i+1 : Ci+1(K)→ Ci(K)

Variation C0(K,R) := C(K;Z)⊗Z R

Cq(K;R) = R < OKq/ ∼

Hi(K,R) =
ker(∂Ri )

im(∂Ri+1)

This the “ith-homology of K with coefficients in the ring R).

Comment Different R can lead to different answers (this isn’t obvious).

Remark R = Z/2 has no signs!

3 November X abstract simplicial complex, |X| topological space, C∗(X,R) chain complex, HR(X,R)
homology of spaces.

Theorem 39. U = {Uα}α⊂Λ is a good cover ⇒ |N(U) ∼= X.

Definition 14.9. If Y is a space and X as above, then |X| ∼= Y . Furture,

C∗(Y,R) = C∗(X,R) and H∗(Y,R) = H∗(X,R). Next, recall

Cq(X) := Cq(X,C)
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...→ Cq(X)
∂q−→ Cq−1(X)

∂q−1−−−→ Cq−2(X)→ ...

The Hom Functor comes into play.

dq−1 = Hom(∂q, A) = ∂∗q

Cq(X,A) = Hom(Cq(X,Z, A) = Maps(Xq, A)

f ∈ Cq−1(X,A), dq(f) ∈ Cq(X,A), σ ∈ Xq. Then, we have

dq(f)(σ) = f(∂q)

= f(

q∑
i=1

(−1)idiσ)

=

q∑
i=0

(−1)if(diσ)

If σ ∈ Xq, σ = [v0, .., vq], then diσ = [v0, v1, ..., v̂i, ..., vq]. Note the di = ith face of σ.

Observe dqdq−1 = ∂∗q+1∂
∗
q = (∂q∂q+1)∗ = 0∗ = 0.

So the dual of a chain complex (with decreasing differential) is the homology and the chain
complex (with increasing differential) is the cohomology.
H∗(X;A) = H∗(C

∗(X;A), d∗) homology of the cochain complex is called the cohomology
of X.

Hq(X,A) =
ker dq+1 : Cq(X;A)→ Cq+1(X;A)

imdq : Cq−1(X;A)→ Cq(X;A)

If Y is a space, |X| ∼= Y , then H∗(Y ;A) := H∗(X;A)
If Y is a manifold, U = {Uα}α∈Λ is a good cover of Y,N(U) = {X ⊂ Λ : ∩α∈XU|alpha 6= ∅}

Claim H∗simplicial(N(U),R) ∼= H∗Cech(U)

Know H∨ ∗ ∼= H∗dR(Y ). We also know that if Y paracompact, |N(U)| ∼= Y (geometric realization).

If cohomology is homotopy invariant, then H∗(|N(U)| ∼= H∗(Y ).

Cech Complex

C∨ q(U) = ΠF constant(Uα0,...,αq )

Cq(N(U),R) = Hom(Cq(N(U)) < R)

= Hom(⊕σ∈N(U)Zσ,R)

= Πσ∈N(U)qHom(Zσ,R)

= Πσ∈N(U)qZ < Hom(σ,R) >

= Πα0<...<αqZ < Hom(σ,R) >

∩qi=0 Uα 6= 0

5 November

8 November
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10 November

Tor Z Zn
Z 0 0
Zm 0 Z(m,n)

Ext Z 0
Z 0 0
Zm 0 Z(m,n)

15 Summary of Homology Theories

Summary Here are the different types of homology theories we have studied.

1. de Rham (H∗dR(M) - Smooth Manifold

2. Compactly Supported H∗C(M)

3. Cech Cohomology H∨ ∗(M) (makes sense for any sheaf)

4. Simplicial homology

5. Cohomology

If F is a presheaf (U → F (U)) ∈ Abelian Groups) and U = {Uα}α∈Λ any cover. Then ∃ a
chain complex:

ΠαF (Uα)
s−→ Πα0<α1F (Uα0α1

s−→

We have δ2 = 0 here as well.

Homology is called Cech cohomology of U with coefficients in F for H∨ ∗(U,F ) if M is a
space, F presheaf on M , then

H∨ ∗ = lim
U
H∨ ∗(U ;F )

If U is a cover, V is a cover refining M ;V < U, ∃ a map H∨ ∗ → H∗(U,F ).

FACT Good covers are final (otherwise, cofinal).

For any good cover, H∨ ∗

If F is a constant presheaf, then U 7→ F (U) = R.
H∨ ∗(M,R) is the 1st version of Cech cohomology.

Relationship (1) Poincare Duality: When M is compact, dimM = m, then

Hi
dR(M) ∼= Hm−i

c (M)

(2) If U is a good cover, H∨ ∗(U,F ) ∼= H∨ ∗(M ;F )

If F = R constant sheaf,

(combinatorial) Hi
dR(M) ∼= H∨ ∗(M ;R) ∼= H∨ ∗(U ;R).

Then,n H∗(N(U),R) ∼= H∨ ∗(U,R) if U is a good cover of M and |N(U)| = M.
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16 Universal Coefficients

Hi(C;G) ∼= Hom(Hi(C), G)⊕ Ext(Hi−1(C), G), where G is a free, Abelian group.

(This is NOT a natural map). This is a splitting of the short exact sequence i.e.

...→ Ci+1
d−→ Ci

d−→ Ci−1
d−→ ....

Ci ∼= Zm

Now let us look at the dual.

← Hom(Ci+1, G)← Hom(Ci, G)← Hom(Ci−1, G)

↓

H∗(C,G)

Universal Coefficient H∗(C,G) ⇐⇒ Hom(Hi(C), G)

(Want both to be co or contravariant).
Ext(−,−): Input 2 Abelian groups → Get Abelian group:

Ext(H ⊕H,G) = Ext(H,G)⊕ Ext(H,G)

Aside 0→ A
α−→ B

β−→ C → 0 SES and

0← Hom(A,G)
α∗←−− Hom(B,G)

β∗←− Hom(C,G)← 0

Question Is this an Exact Functor? NO. Hence we need the Ext. It is exactly that canonically
defined functor that preserves exactness on the left.

Ext(C,G)x→ β∗Ext(B,G)
α∗−−→ Ext(A,G)→ 0

Ext1(C,A) = {0→ A→ B → C → 0}/ ∼
If 0→ A→ B → C → 0 then

Ext1(C,A) Hom(A,A) Hom(B,A) Hom(C,A) 0

Ext(B,A)

δ

∃1A ∈ Hom(A,A) and ∃Ψ such that

Ψ(0→ A→ B → C → 0) := δ(1A ∈ Ext(C,A)).

”Measures extension”

Abelian Groups: fg ∼= Zm ⊕ Zm1 ⊕ ...
Ext(Zm,Z) ∼= Z/2
Example 40. 0→ Z 2−→ Z→ Z/2→ 0

0→ Z→ Z⊕ Z/2→ Z/2→ 0

↓ Ψ

Z/2 = {Ψ(1),Ψ(0))}
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12 November

Ci Ci−1 Ci−2

Hom(Ci, G) Hom(Ci+1, G) G

Ci Ci+1

di di−1

di+1 di

==

didi+1

Ci → Hi(C(G)) =
ker di+1

imd
→ Hom(Hi(C), G)

f ∈ Ci = Hom(Ci;G)

f : Ci → G if f ∈ Hi(C,G), then f ∈ ker(di+1)

di+1f = 0⇒ di+1f(c) = 0⇒ f(di+1)(c) = 0

We want to use f : Ci → G to define a map:

φ(f) : Hi(C)→ G

ker(di)

im(di)
→ G

c ∈ ker di ⊂ ci ⇐⇒ φ(f) = f(c).

If c = di+1(ci) then

φ(f)(c) = φ(f)(di+1(c)) = f(di+1(ci)) = 0. So we have φ(f) : Hi(c)→ G.

Exercise 1 Prove φ onto.

Exercise 2 Prove φ natural.

Exercise 3 Using Smith and our example below will give us a proofe of Universal Coefficient Theorem
for cohomology.

Example 41.
Z→ 0Z m−→ Z→ 0

Hi(C) =


Z, i = 0

Z/mZ, i = 1

0, i = 2Z, ,
i = 3

C3 ← C2 ← C1 ← C0 ← 0

0← Hom(Z,Z)
0←− Z m←− Z 0←− Z← 0

Hi(C) =


Z, i = 0

0, i = 1

Z/mZ, i = 2

Z, i = 3

Cohomology is basically same as homology.

Torsion (Z/mZ) is shifted up by one from homology to cohomoloy.

Any chain complex of finite rank free abelian groups C ∼= ⊕Z,⊕i∈ZZ
m−→ Z

Example 42. ∼= Z⊕ Z⊕ (Z m−→ Z)

This follows from Smith Normal Form: A : Zn →→ Zm is a m×n matrix with a1, ..., ak
among the first k diagonals and 0 everywhere else such that ai ∈ Z and ai|ai+1.
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16.1 Universal Coefficients Theorem For Cohomology

15 November
0→ Ext(Hi−1(X,G))

k−→ Hi(X,G)→ Hom(Hi(X), G)→ 0

It i s natural.

If f : X → Y is a map of chain complexes, then there is a commutative diagram:

0 Ext(Hi−1(X), G) Hi(X;G) Hom(Hi(X), G) 0

0 Ext(Hi−1(Y ), G) Hi(Y ;G) Hom(Hi(Y ), G) 0

This SES is always split.

Hi(X,G) ∼= Hom(Hi(X), G)⊕ Ext(Hi−1(X), G)

This isomorphism is NOT natural. i.e. the square consisting of Hi(X,G),Hom(Hi(X), G)⊕
Ext(Hi−1(X))(G), Hi(Y,G),Hom(Hi(Y ), G)⊕Ext(Hi−1(Y ))(G) is NOT going to commute.

Sometimes this behavior is called non-canoncially split short exact sequences.

Example 43. 0→ Z 2−→ Z→ Z/2→ 0 (Not Split)

Z 6∼= Z⊕ Z/2

16.2 Universal Coefficients For Homology

There is a non-canonically split SES:

0→ Hn(X)⊗G→ Hn(X;G)→ Tor(Hn(X,G)→ 0

1.

Tor(X,Y ) Z Z/m
Z 0 0
Zn 0 Z(m,n)

2. Distributes over sums i.e. Tor (⊕Xi,⊕Yj) ∼= ⊕Tor(Xi, Yj)

Summarize Earlier, we had discussed Universal Coefficients for Cohomology: Hn(X;G)← Hom(Hn(X;ZZ, G))

Now, Hn(X;Z)⊗G→ Hn(X;G)

If we know Hn(X;Z) for n 6= n− 1 then we can compute Hn(X;G) and Hn(X;G).
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17 Poincare Duality Simplicial Homology

From Bott’s proof of Poincare Duality, we had

Hn
c (X) ∼= Hm−n(X)∗

for Xm smooth, closed manifold where

< ω, τ >: Hn
C(X)⊗Hm−n(X)→ R. We looked at

∫
X
ω ∧ τ for the proof earlier.

(We have discussed Combinatorial cohomology ⇐⇒ Cech cohomology. JNow let’s add
simplicial homology).

Definition 17.1. For X a closed simplicial manifold (equipped with a triangulation) i.e.
equipped with a simplicial decomposition T , we have |T | ∼= X.

There is a direct construction. If S is a simplex of T , then there is an (m− i) simplex called
DS of the dual triangulation:

DS = ∪S≤4mDS ∩4m,

where m is the top dimensional simplex.

By DS ∩ 4m, we denoted the complex hull of the barycenters of the subsets of
vertices of that contain S. (This is an important statement).

Definition 17.2. Recall an abstract simplicial complex is given by: Given (S,Λ) a collection
T ⊂ Λ (indexing set) such that if T ′ ⊂ T ≤ S, then T ′ ∈ S.

(BS, S)

0-simplex BS0 = S

1-simplex BS1 = {S1, S2} ∈ (BS0)2|S1 ⊂ S2}
2-simplex BS2 = {(S1, S2, S3} ∈ (BS0)3|S1 ⊂ S2 ⊂ S3}
(This is the flag/filtration).

Proposition. If (S,Λ) is an abstract simplicial complex, then (BS, S) is an abstract simplicial
complex.

Proof. If T ⊂ BSn for some n ⇐⇒ S1 ⊂ S2 ⊂ .... ⊂ Sn;Si ∈ S, i = 1, ..., n

Note that T ′ ⊂ T. Pick 1 ≤ i1 ≤ i2 ≤ ...ik for 1 ≤ k ≤ n.
T ′ is Si1 ⊂ Si2 ⊂ ...Sik .

By construction, T ′ ∈ BSk.
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17.1 Barycentric Subdivision

We will show this via images.
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19 November Nitesh - Example on board - Poincare Duality Motivation via dual cell structures on Cube
and Tetrahedron. You can watch the Youtube links below here for better description:

https://www.youtube.com/watch?v=aVHeWAJHRa0

https://www.youtube.com/watch?v=s_SIFNpOFcg

18 COMPUTATION Week 2

Recall that Poincare duality for abstract simplicial complexes states;

Theorem 44. Let M be an n-dimensional closed manifold equipped with a simplicial de-
composition which we’ll also call M . Then Hi(M) ∼= Hn−i(M) for all 0 ≤ i ≤ n.

Notice that in order to prove this statement, we need to follow the given steps:

(a) Show that the intersection gives a chain map ∩ : C∗(M ;R) ⊗ C∗(M ;R) → R. Note
here d(x⊗ y) == d(x)⊗ y + (−1)|x|x⊗ d(y).

(b) Show that is s ∈ Ci(M : R) then there is a canonical representative for s, S ∈
Ci(BM ;R) in the barycentric subdivision. This defines an isomorphism of chain com-
plexes

· : C8(M ;R)→ C∗(BM ;R).

(c) Show that if s ∈ Ci(M ;R), then Ds ∈ Cn−i(M ;R) intersects s non-trivially: s∩Ds 6= 0.

(d) Show that this implies the intersection is non-degenerate, and therefore induces an
isomorphism D : C∗(M)→ Cn−∗(BM).

(e) Conclude, by combining the maps 2 and 4 to show that Hi(M)Hn−i(M) for all 0 ≤ i ≤
n.

In class together, we focused mainly on the second item and will do so here. For simplicity,
we will take R = Z/2.

Let s ∈ Ci(M ;R) of degree n where we denote the vertices as {v1, ..., vn}. Now, consider
the barycentric subdivision of M , BM . Let Si denote the simplices in the barycentric
subdivision. Intuitively, by considering a union of certain simplices in the barycentric
subdivisions (the sum of flags in the barycentric subdivision), we can obtain our orig-
inal simplex in M . Formally, we define that map · : C∗(M ;R) → C∗(BM ;R) where
ss =

∑
T=S

∑
S0 ⊂ · · ·Sn ⊂ TS0 ⊂ ···Sn−1 ⊂ T where |Si| = |Si+1|−1 for all 0 ≤ i ≤ n−1.

Then, we have to show that this is a chain map. To do this, recall that we have to show
that · ◦ δ = δ · · where δ is the boundary map Ci(M ;R)æCi−1(M ;R). In order to show that
· is a chain map, we must show that the following diagram commutes:

Ci(M ;R) Ci(BM ;R)

Ci−1(M ;R) Ci−1(BM ;R)

s

δ

s

δ

To show this, we notice that for s ∈ Ci(M ;R), δ ◦ s = δ(
∑
T=S

∑
S0 ⊂ · · ·Sn ⊂ TS0 ⊂

· · ·Sn−1 ⊂ T ) =
∑n
j=1(

∑
T=S

∑
S0 ⊂ · · ·Sn ⊂ TS0 ⊂ · · · ⊂ Ŝj ⊂ · · · ⊂ Sn−1 ⊂ T ). On the

other hand, s◦δ(
∑n
j=1{v1, ..., vn}) =

∑
S0⊂···Sn({v1, ..., v̂j , ....vn}) =

∑n
j=1(

∑
T=S

∑
S0 ⊂ · · ·Sn ⊂ TS0 ⊂

· · · ⊂ Ŝj ⊂ · · · ⊂ Sn−1 ⊂ T ).

For the sake of understanding, we will do an example of making the diagram commute.
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• •

• +

• •

• •

• •

{v1,v2}
s

{v1}⊂{v1,v2}

{v2}⊂{v1,v2}

δ

{v1}−{v2}

δ

{v1}−{v1,v2}−({v2}−{v−1,v2})={v1}−{v2}
s

As a class, we also considered how to define the intersection of two simplicies towards the
goal of finding a proof for d). In order to do so, consider the following example;

•v3

•v1 •v4

•v2

Taking the barycentric subdivision gives the following diagram;

•v3

•v1 • • • •v4

•v2

Now, let S = {v2, v3}, i.e. the edge created by connecting v2 and v3. Then s = {v2} ⊆
{v2, v3} + {v3} ⊆ {v2, v3}. Similarly, Ds = {v2, v3} ⊆ {v2, v3, v4} + {v2, v3} ⊆ {v2, v3, v1}.
Pictorially, when we take the intersection, Ds∩ s, we see that we in fact just get the vertex
{v2, v3} in the barycentric subdivision.

Next, consider the intersection of the following two flags which we can compute pictorially

{v2} ⊂ {v2, v3} ⊂ {v2, v3, v4} ∩ {v3} ⊂ {v2, v3} ⊂ {v2, v3, v4} = {v2, v3} ⊂ {v2, v3, v4}.

Another example, this time where the intersection is not the end of the flags can be

{v1} ⊂ {v1, v2} ⊂ {v1, v2, v3} ∩ {v1} ⊂ {v2, v3} ⊂ {v1, v2, v3} = {v1} ⊂ {v1, v2, v3}.

Using this intuition, we can look at this intersection in more generality. First recall the
following definitions;

s =
∑
T=S

∑
S0⊂···Sn−1⊂T

S0 ⊂ · · ·Sn−1T where |Si| = |Si+1| − 1
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Ds =
∑

S⊂∆,∆is max. dim.

∑
S⊆···⊂∆

S ⊆ · · · ⊂ ∆

Now we define the intersection of two flags in the following way;

Definition 18.1. Given two flags, S0 ⊆ · · · ⊂ Sn and T0 ⊆ · · ·Tm, their intersection is
given by

(S0 ⊂ · · · ⊂ Sn) ∩ (T0 ⊂ · · ·Tm) = Si ⊂ · · · ⊂ Sj
where for all i ≤ r ≤ j, there exists some Tk ∈ {T0, ..., Tm} such that Sr = Tk.

We did note in class that this may work for the intersection of two chains, however in the case
that we are taking the intersection of chains of flags, we may need to adapt this convention
as when we let our ring R = Z/2, then by how we have defined the intersection above,
we find that the intersection, s ∩ Ds = ({v2} ⊆ {v2, v3} + {v3} ⊆ {v2, v3}) ∩ ({v2, v3} ⊆
{v2, v3, v4} + {v2, v3} ⊆ {v2, v3, v1}) = {0} i.e. is trivial. This would contradict both our
conjecture that the intersection, s ∩ Ds = S and the statement (which we know is true)
that s ∩Ds 6= ∅.

60



6 December 2021 19 Singular Homology/Cohomology

The are functions from Top x→ H∗, H
∗ Graded Abelian Groups.

Let f : X → Y be ANY continuous map (may not be smooth), X,Y any topological space.
Then, H∗ is a covariant functor defined from:

H∗ : H∗(X)→ H∗(Y )

H∗, on the other hand, is a contravariant functor defined from:

H∗ : H∗(Y )→ H∗(X)

These are big constructions because any continuous map or topological space is allowed.

Q. What is S∗(X), the singular chain complex of X.

Definition 19.1.

S∗(X) = ⊕∞q=0Sq(X)

Sq(X) = Z < σ : 4q → X : σ continuous >

Recall, the topological space 4q = {(t1, ..., tq+1} ∈ Rn+1, ti ≥ 0,
∑
ti = 1}.

For example, 42 inherits the subspace topology from R3.

If i = 1, ..., q + 1, ith face map, then

partialqi : 4q−1 →4q

where ∂qi(t1, ..., tq) = (t1, ..., ti−1, 0, ti, ..., tq.

Definition 19.2. Given σ : 4q → X ∈ Sq(X), then

∂qσ =

q+1∑
i=1

(−1)i+1σ ◦ ∂qi

(In general,
∑
i∈I niσi ∈ Sq(X), ∂(

∑
niσi) =

∑
ni∂q(σi)

Proposition. ∂2 = 0

∂q−1∂q = 0 ∀q > 0

Definition 19.3 (Singular Homology).

Hq(X) =
ker(∂q)

im(∂q+1

abelian group (may not be free)

Exercise Prove the set {σ : 4q → X|σ continuous} is a simplicial complex.

Example 45. Sq(X) is the simplicial chain complex.

If f : X → Y is a continuous map. Then,

f∗ : Sq∗(X)→ Sq∗(Y )

f∗(σ) = f ◦ σ ∈ Sq∗(Y )

We can check that f∗ is a chain map.

Observation 1 What is H0(X)?

S1(X)
∂−→ S−→0 (X)

∂−→ 0

given by

H0(X) =
ker(∂0)

im∂1
=
S0(X)

im∂1
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Now we look at the elements of S0.

S0(X) = Z < σ : 40 → X > (Z linear combinations of points of X).

= Z < x >

= ⊕x∈XZx

Hence, H0(X) = Z < x > /im∂1

Let τ −41
interval → X. Then, ∂τ = τ ◦ ∂1 − τ0∂2.

For example in a torus, ∂τ is the endpoints of interval. (”Any two points are equal if they
are connected by a path”)

Hence, we have

H0(X) = Z < X > /x0 ∼ x1if ∃ an interval 41 τ−→ X and τ∂1 = x0, τ∂
2 = x1

i.e. rank H0(X) = number of path components of X.

? If a space X is path connected, then H0(X) = Z < X >

Observation 2 Let X = pt. Then,

0

S0(pt) : S0(pt) = Z

S1(pt) = Z

S2(pt) = Z

S3(pt) = Z

because ther e is a unique continuous map

σq :q→pt.

σq(t1, ..., tqn = pt.

∂qσ =

n+1∑
i=1

(−1)i+1σq∂
i
q

=
∑

(−1)i+1σq+1

=

{
0, q even (everything cancels)

σq−1, q odd (only get one of them)

Chain Complex
0−→ Z 1−→ Z 0−→ Z 1−→ Z 0−→ Z→ 0

Then,

Hq pt =

{
Z, q = 0

0, q > 0

In general,

(1) Z 0−→ Z 1−→ Z, we have
ker 1

im0
= 0.

(2) Z 1−→ Z 0−→ Z, we have
ker(0)

im1
=

Z
Z

= 0.
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Poincare Lemma

Hq(Rn) =

{
Z, q = 0

0, q > 0

Sq(Rn → Sq−1(Rn)→ ...

The first one is T = Lσ and the second one is 0.

Next, we find a homotopy operator where ∂Lσ = σ and the boundary faces are
−L∂σ
σ

8 December 2021 Let us sketch proof the Poincare Lemma from last time.

Let σ : 4q → X ∈ Sq(X). Then, define kσ : 4q+1 → X ∈ Sq+1(X).

Then, (∂iq+1kσ)(t1, ..., tq) = (1− tq+1)σ(
t1
x
...,

ti−1

x
, 0,

ti+1

x
, ...,

tq
x

). Here x = 1− tq+1.

Then,

(k∂iqσ)(t1, ..., tq) = (1− tq)σ(
t1
x
, ..,

ti−1

q
, ...,

tq
x

)

⇒ ∂kσ = ∂1
q+1kσ − ∂2

q+1kσ + ...+ ∂qq+1kσ + σ

⇒ k∂σ = k∂q1σ − k∂q2σ + ...+ ∂qqσ + σ

⇒ “ k is a homotopy.” So ∂k − k∂1Sq(Rn) − 0

If the space is path connected, H0(Rn) = Z.
If [σ] ∈ Hq(Rn)

Pick σ such that ∂σ = 0.

(∂K −K∂)σ = (1− 0)σ.

∂kσ = σ.

∃ an element kσ ∈ Sq+1(Rk)

So, ∂(kσ) = σ.

So σ ≡ 0 in Hq(Rn), Hq(Rn) = 0, q > 0.

Corollary 45.1. If f, g : X → Y are homotopy equivalent maps of topological spaces then

f∗ = g∗ : Hq(X)→ Hq(Y ) ∀q ≥ 0.

M-V Let U = {Uα}α∈Λ open cover.

There is refinement SU∗ (X) in terms of U . Then,

SU∗ (X) = ⊕q≥0S
U
q (X) = Z < σ : 4q → X im σ ⊂ Uα for some α ∈ Λ¿.

FACT (1)i : SU∗ (X)→ S∗(X) is a chain map.

(2)i is a chain map.

Proof of (2) is tedious subdivision argument (via barycentric subdivision, estimate size,
inverse image of open sets, repeat if not possible, get a linear bound).

Proposition. There is a chain complex:

0← SUq (X)
ε←− ⊕αSq(Ualpha)

δ←− ⊕α0<α1(Uα0α1

δ←− Sq(Uα0α1α2α0<α1<α2

δ2 = 0 and this is exact.

(δσ)α0,...,αp−1
=
∑
α∈Λ σα0...αp−1

Exactness is proven by constructing a homotopy operator for δ.

If |Λ| = 2, then U = {U, V }, X = U ∪ V
Then the chain complex becomes

0← SU∗ (X)← S∗(U)⊕ S∗(V )← S∗(U ∩ V )← 0 is a short exact sequence.

This gives us the M-V LES.

Hi(U ∩ V )→ Hi(U)⊕Hi(V )→ Hi(X)→ Hi−1(U ∩ V )→ Hi−1(U)⊕Hi−1(V )→ ...

10 December Let us look at another LES.

If A ⊂ X is a subspace (i : A→ X is continuous), denote this pair A ⊂ X as (X,A).

Define SES as follows: 0→ S∗(A)
i∗−→ S∗(X)

π−→→ S∗(X)/S(A) = S∗(X,A)→ 0
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There is a LES: Hq(A)
i∗−→ Hq(X)

π∗−→ Hq(X,A)→ Hq−1(A)→ ...

Hq(X,A) = H∗(S∗(X,A)) is a homotopy of quotient complex called “relative homology”
(of pair (X,A)).

Ordinarily, [α] 6= 0 ∈ Hq(X)

⇒ ∂α = 0 and 6 ∃B such that ∂B = α.

Example 46. Consider a torus with a path from α to β. Then,

α = α1 + α+ 2

∂α = ∂α1 + ∂α2

= b− a+ a− b
= 0

⇒ ∂B = α

For [α] ∈ Hq(X,A), α ∈ S∗(X), ∂α ∈ S∗(A).

6 ∃β ∈ S∗(X)/Sn(X) such that ∂B = α.

This is an idea relating to relative boundary and relative cycle.

FACTS (1) If AsubsetX is good or (X,A) is a good pair i.e. ∃U ⊂ X open, A ⊂ U open such that

(i) A ⊂ U
(ii) U is a deformation retract to A with r : U → A, r2 = r, ri ≡ 1A.

Then, Hq(X,A) =

{
Hq(X/A), q > 0

0, q = 0

(2) If Z ⊂ A, then (X/Z)/(A/Z) = X/A (third isomorphism theorem)

Analogue Excision

Hq(X,A) = Hq(X|Z,A|Z) (remove Z) when Z ⊂ A is good.
There are analogues for everything here fo cohomology.

Sq(X) = Hom(Sq(X),Z

Sq−1(X)

∂∗

(Homology of this homology is cohomology)

∂k∂k = (∂2)∗ = 9

Hq(x) = H(S∗(X), ∂∗) (Universal Coefficients Theorem still holds).
There is more structure to cohomology. There is a product.

de Rham: wedge product (H∗dR(X) ring)

Singular homology: Cup Product

X
4−→ X ×X given by (x) = (x, x).

4∗ : H∗(X ×X) H∗(X)

H∗(X)⊗H∗(X)

∼=(via Kunneth)
U
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19.1 Eilenberg-Steenrod

H∗ : Top→ gr(Ab) (graded Abelian groups)

(X,A) 7→ H∗(X,A), ∗ > 0

uniquely characterized by

(1) ∃ ∂ : Hq(X,A)→ Hq−1(A) giving a LES

Hq(A)→ Hq(X)→ Hq(X,A)
∂−→ Hq−1(A)→ ...

(2) f ∼= g ⇒ f∗ = g∗

(3) Excision Axiom.

Z ⊂ A ⊂ X ⇒ Hq(X,A) ∼= Hq(X|Z,A|Z)

(4) Dimension Axiom.

Hq(pt, ∅) =

{
Z, q∗ = 0

0, q∗ 6= 0

What happens if we remove (4)? Complex K-Theory replaces (4).

K(pt) = Z[B,B−1] (Laurent Polynomials ∼= ⊕Z
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20 Algebra Appendix

20.1 Chain Complexes

(Steven Un (started on 27 September 2021))

Definition 20.1 (Chain Complex). A chain complex (E, d) of real vector spaces is a sequence
(E, d) = (Ei, di)i∈Z, where for each integer index i ∈ Z, Ei is vector space over R and di : Ei −→
Ei+1 is an R-linear map. such that di+1 ◦ di = 0 (that is, the composition of two successive
maps is the zero map). We depict the chain complex (E, d) = (Ei, di)i∈Z by the diagram:

... Ai Ai+1 Ai+2 ...

Remark 1. In Definition 6.1, the mathematical object in question is the sequence (Ei, di)i∈Z of
vector spaces and linear maps from each vector space into the next. The notation (E, d) is a
shorthand notation, with the former sequence understood.

Remark 2. We choose the index set to be the set Z of all integers, to have the chain complex
extend in both directions.

Remark 3. In the notation of Definition 6.1, the chain complex (E, d) is bounded, or finite if
Ei = {0} (that is, Ei is the zero vector space) for each i ∈ Z− {1, 2 . . . , n} for some n ∈ N. Of
course this makes di the zero map for all i < 1 and all i > n.

Definition 20.2. Let (E, d) = (Ei, di)i∈Z be a chain complex. For each i ∈ Z, we have ker(di) =
{x ∈ Ei|di(x) = 0Ei+1} is a vector subspace of Ei. Also, im(di−1)={di−1(x) ∈ Ei|x ∈ Ei−1} is a
vector subspace of Ei.

The ith cohomology group of (E, d) is the quotient vector space

Hi(E) =
ker(di)

im(di−1)
.

Definition 20.3. Let
(A, dA) = (Ai, diA)i∈Z

and
(A, dA) = (Ei, diB)i∈Z

be chain complexes. A homomorphism from (A, dA) into (B, dB) is a sequence of R-linear
maps (fi)i∈Z, with fi : Ai −→ Bi for each i ∈ Z.

Definition 20.4. A homomorphism (fi)i∈Z from a chain complex (A, dA) into a chain complex
(B, dB) is a chain map if for each i ∈ Z, we have

diB ◦ fi = diA ◦ fi+1
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