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Neuroprotection can be defined as any therapeutic

paradigm designed to prevent or delay neuronal cell

death and maintain neural function. In glaucoma,

progressive death of the retinal ganglion cells (RGCs)

leads to optic nerve degeneration and, ultimately, vi-

sion loss. The aim of glaucoma therapy is, therefore,

to facilitate the survival of RGCs. Currently, glaucoma

treatment relies on pharmacologic or surgical reduc-

tion of intraocular pressure (IOP). Ample evidence

shows that reducing IOP provides effective neuro-

protection against the demise of RGCs in glaucoma

[1–3].

The development of animal models of glaucoma

has allowed investigation into the cellular and mo-

lecular mechanisms of this disease. Experimental ele-

vation of IOP animal models of glaucoma induces

structural, biochemical, and functional changes that

resemble those of the disease in humans, including

disorganization and compositional changes in the

optic nerve head (ONH), RGC apoptosis, and visual

deficits [4–10]. This article describes the cellular

mechanisms of RGC death in glaucoma and the

emerging neuroprotective strategies that are based on

these mechanisms.
Mechanisms of retinal ganglion cell death in

glaucoma

Glaucoma represents a group of diseases that

share certain clinical characteristics, including exca-
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vation of the optic disc and loss of the RGC with

resultant visual field loss, with or without elevated

IOP. Excavation, or cupping, of the ONH is the

clinical hallmark of glaucoma. Although it is unclear

whether changes to the ONH are the primary events

that precipitates RGC demise or whether glaucoma-

tous RGC death induces events that lead to ONH

changes, evidence indicates that increased IOP pre-

cipitates distinct compositional and structural changes

in the ONH. These include increased synthesis of

several extracellular matrix molecules such as

tenascin [11,12], matrix metalloproteinases [13,14],

NCAM-180, [15] collagen IV, and elastin [16].

Recent in vitro studies have shown that some of

the events can be attributed to reactive astrocytes

[11,15,16]. Various stimuli can initiate astrocyte acti-

vation, including demyelination of adjacent axons,

ischemia, mechanical trauma, and increased hydro-

static pressure [17–19]. Reactive astrocytes migrate

to the nerve bundles and may form large cavernous

spaces through the expression of matrix metallopro-

teinases [13,14]. It is possible that these changes

weaken the architecture of the ONH and facilitate the

collapse of the lamina cribrosa beams, eventually

leading to injury of the RGC axons that pass through

these structures.

Evidence also indicates that apoptosis may be the

final common pathway for RGC death in glaucoma.

Apoptosis is a programmed cell death pathway

designed to remove damaged cells through phagocy-

tosis, and it occurs without eliciting an inflammatory

response. The apoptotic process requires the expres-

sion of specific genes and can be identified using

histochemical and biochemical methods. Apoptotic

RGC death has been demonstrated in animal models
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of glaucoma [20,21]. Markers of apoptosis have also

been observed in the human glaucomatous retina

[22,23]. Several mechanisms that may initiate RGC

apoptosis in glaucoma have been proposed (Fig. 1).

These include neurotrophic factor deprivation, hypo-

perfusion/ischemia, glial cell activation, glutamate

excitotoxicity, and abnormal immune response. Each

of these mechanisms is described in detail below.
Neurotrophic factor deprivation

Axonal transport is vital to the normal functioning

of neurons, and retrograde transport of neurotrophic

molecules synthesized in the target organ (lateral

geniculate body) may be essential for RGC survival

[24,25]. In experimental models of glaucoma, ele-

vated IOP blocks the axonal transport at the level of

the lamina cribrosa [26–28]. Blocked transport of

radioactively labeled protein and cellular organelles

at the level of the lamina cribrosa has been observed

within hours of IOP elevation in a primate model of

glaucoma [29]. Similarly, restoration of normal IOP

after several hours allowed axonal transport to

resume. This effect on axonal transport precedes
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Fig. 1. Proposed mechanism leading to retinal ganglion cel
significant ONH disorganization and suggests a direct

effect of the elevated IOP on axonal transport. It is

likely, however, that ONH disorganization further

contributes to blocking axonal transport at later stages

of glaucoma.

Brain-derived neurotrophic factor (BDNF) is one

of the molecules delivered to the retina by way of

retrograde axonal transport. It has been suggested that

insufficient BDNF delivery to the retina may con-

tribute to RGC death in glaucoma. In animal models

of glaucoma, BDNF delivery to the retina is sub-

stantially reduced [30,31]. Injections of BDNF into

the vitreous cavity of rats with experimentally ele-

vated IOP increases the number of surviving RGCs

compared with untreated eyes [32]. Similar RGC

rescue was observed using viral vectors to achieve

continuous synthesis of BDNF in the retinas of rats

with experimental glaucoma [33]. Partial rescue of

RGCs was also reported after the application of

ciliary neurotrophic factor in axotomized adult rat

eyes [34,35]. These observations support the idea of

neurotrophic deprivation as a cause of RGC death. In

a recent study of a rat model of glaucoma, however,

RGC apoptosis was observed before axonal transport

obstruction and alterations in neurotrophin levels [7].
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Hypoperfusion/Ischemia of the anterior optic nerve

Glaucomatous optic neuropathy may be a con-

sequence of insufficient blood perfusion to the ONH

caused by increased IOP or other vascular risk fac-

tors. Blood flow to the anterior optic nerve depends

on the perfusion pressure—that is, arterial blood pres-

sure minus IOP—to the optic nerve. Thus, elevated

IOP is likely to stress the vascular supply to the optic

nerve by causing increased tissue pressure within the

optic nerve. Under normal circumstances, autoregu-

latory mechanisms exist in the ONH vasculature that

can maintain normal perfusion pressure, even with

moderate IOP elevation. In glaucoma, insufficient

autoregulation of optic nerve blood flow may lead to

optic nerve ischemia (for a review, see Flammer and

colleagues [36]). Although numerous studies suggest

impaired blood flow to the optic nerve in glaucoma,

accurate blood flow to the ONH in vivo has been

difficult to measure clinically [37].

The hypoperfusion theory of glaucoma is also

supported by the epidemiologic association between

low perfusion pressure and primary open-angle

glaucoma [38]. Vascular factors such as migraine

and Raynaud phenomenon have been clinically

associated with normal-tension glaucoma. Animal

studies have shown that reduction of optic nerve

blood flow through exogenous application of the

vasoactive peptide endothelin-1 can result in RGC

death in the absence of elevated IOP [39,40]. A
Fig. 2. Immunohistochemical localization of glial fibrillary acidic

retina. In the healthy retina, GFAP is restricted to retinal astrocy

synthesis of GFAP by Mueller cells (arrowheads). GCL, ganglion c

(Courtesy of Dr. Chan Y. Kim, University of Iowa, Iowa City, Iow
recent immunohistochemical study showed that the

expression of hypoxia-induced factor 1a (HIF-1a) is
elevated in the human glaucomatous retina and ONH

compared with expression in healthy controls [41].

The biosynthesis of this transcription factor is ini-

tiated in response to low-cellular oxygen tension and

induces transcription of genes whose functions are

related to oxygen delivery and metabolic adaptation

hypoxia. Although the precise cellular consequences

of chronically compromised ocular blood flow are

unclear, studies of other disease models suggest that

mild hypoxia and lack of metabolites can induce

cellular apoptosis.
Glial cell activation

Glial cell activation may be an important factor

contributing to RGC death in glaucoma. Under nor-

mal conditions, glial cells support neuronal function

through a variety of mechanisms, including removal

of extracellular glutamate and synthesis of growth

factors and metabolites. The mammalian retina con-

tains three types of glial cells: astrocytes, microglia,

and Mueller cells. Retinal glial cells appear to be-

come activated in the glaucoma. Glial fibrillary acidic

protein, a class 3 intermediate filament, is a cell-

specific marker that distinguishes astrocytes from

other glial cells (Fig. 2). It is expressed by retinal

astrocytes under normal conditions, but its synthesis
protein (GFAP) in the normal (A) and glaucomatous (B) rat

tes (arrow). IOP elevation induces glial cell activation and

ell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
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is significantly elevated in glaucoma by astrocytes

and Mueller cells [42]. Increased retinal expression of

glial fibrillary acidic protein appears to be an early

event in the pathogenesis of glaucoma; in animal

models, it can be observed as early as 4 days after the

induction of elevated IOP, before widespread RGC

apoptosis [43].

It is possible that RGC death caused by glial cell

activation results from decreased levels of glial sup-

port. For example, glial activation appears to result in

reduced biosynthesis of glutamate receptors that may

contribute to RGC death [44]. However, evidence is

increasing that the activation of retinal glia results in

the active synthesis of substances that are harmful to

RGCs. Reactive glial cells can exacerbate neuronal

damage through the release of cytokines, reactive

oxygen species, or nitric oxide. Cultures of mixed

retinal glia exposed to elevated hydrostatic pressure

secrete tumor necrosis factor alpha (TNF-a) [45].

TNF-a is a proinflammatory cytokine that, when

bound to its receptor, can induce apoptosis through a

caspase-mediated pathway. An immunohistochemical

study of human eyes with and without glaucoma

showed that TNF-a is synthesized by retinal glia in

glaucoma and that the TNF-a receptor is present on

RGCs [46].

Another glial cell–mediated apoptotic stimulus

may be the increased production of nitric oxide (NO).

NO serves a variety of physiologic functions, includ-

ing regulation of vascular tone, neurotransmitter re-

lease, and synaptic plasticity. Excessive levels of this

molecule can lead to cell death in a variety of cell

types, including RGCs [47,48]. NO can be generated

by three different enzymes: neuronal nitric oxide

synthase (NOS1), macrophage–or inducible–NO

synthase (NOS2), and endothelial NO synthase

(NOS3). In a rat model of glaucoma induced by

cauterization of the episcleral veins, increased ex-

pression levels for these molecules in the ONH have

been reported [49], and total NO is elevated in the

retina [50]. In particular, it has been suggested that

NOS2 plays an important role in glaucoma [51].

Inhibition of NO production appears to reduce RGC

damage in this rat model of glaucoma [52,53].

Increased NOS levels, however, were not detected,

and inhibition of NOS did not confer protection to

RGCs in a different rat model of glaucoma induced

by hypertonic saline injection into the episcleral veins

[54,55]. To date, conclusive evidence demonstrating

a significant role of elevated NO levels in the patho-

genesis of human glaucoma has not been reported,

though an immunohistochemical study suggests that

increased levels of NOS are present in the human

glaucomatous nerve head [56].
Glutamate excitotoxicity

Glutamate is a major excitatory neurotransmitter

in the retina. It is released by the presynaptic cells and

acts through various postsynaptic receptors, including

the N-methyl-D-aspartate (NMDA) receptor. If exces-

sive amounts of glutamate are released or if glutamate

clearance is insufficient, neuronal death can result in

a process known as excitotoxicity. Results obtained

from cultured RGCs suggest that these cells are

highly vulnerable to glutamate induced excitotoxicity

[57]. Elevated levels of extracellular glutamate have

been reported in a primate model of glaucoma and in

human patients with glaucoma [58]. More recent

investigations have failed to confirm these initial

findings of elevated glutamate levels both in human

patients with [59] and in animal models of glaucoma

[60–62]. The role of glutamate excitotoxicity in

glaucoma remains unclear. Interestingly, a recent

study showed that RGCs, in the presence of neuro-

trophic factors, are relatively resistant to glutamate

excitotoxicity [63], whereas retinal amacrine cells

were found to be highly sensitive to elevated glu-

tamate levels. These investigators suggest that the

decrease in the number of cells observed in vivo in

the ganglion cell layer after intravitreal glutamate

injections might have resulted from a loss of

amacrine cells and from a lack of trophic support

for RGCs.

Abnormal immune response

Numerous studies have suggested a role for

humoral immune response in the pathogenesis of

glaucoma [64,65]. These studies show the presence

of autoimmune antibodies directed against retinal

antigens in the sera of patients with glaucoma

[64,66–69]. Autoantibodies to ONH proteoglycans

in the sera of patients with glaucoma have also been

reported [70]. Proteoglycans perform various func-

tions, including the formation of a spatial framework

to support the optic nerve and blood vessels. An

immune response directed against these molecules

may weaken the extracellular matrix supporting the

lamina cribrosa and may induce or increase optic

nerve cupping. In addition, these proteoglycans are

present in the cell walls of blood vessels, and their

dysfunction may contribute to the development of

splinter optic disc hemorrhages or disturbances in

blood flow autoregulation in glaucoma.

Others have reported that enhanced T-cell activity

resulting from immunization with a synthetic poly-

mer (copolymer-1 [COP-1]) confers RGC neuro-

protection in animals subjected to optic nerve crush,
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glutamate excitotoxicity, and chronically elevated

IOP [65,71,72]. COP-1 is a synthetic amino acid

polymer originally designed to mimic myelin basic

protein (MBP) and to induce experimental autoim-

mune encephalomyelitis (EAE) [73]. Instead, injec-

tion of COP-1 was found to suppress MBP-induced

EAE [74]. Protective autoimmunity has been benefi-

cial in other diseases involving secondary degenera-

tion, such as spinal cord contusion and EAE [73,75].

The exact mechanism of T cell–mediated neuro-

protection is unknown. It is thought that an immune

response to the degeneration of optic nerve results in

secondary degeneration of additional RGCs. If T cells

accumulate at the site of injury and are presented with

specific antigen, however, they appear to secrete nu-

merous neurotrophic factors, including neurotrophins

3, 4, and 5, nerve growth factor, and BDNF [76].

Thus, it may be the presence of these neurotrophins at

the site of injury that facilitates the survival of neigh-

boring RGCs. A neuroprotective effect after optic

nerve crush or glutamate excitotoxicity was also ob-

served when T cells were activated using low-dosage

g-irradiation [77]. Finally, in a mouse model of

hereditary pigmentary glaucoma, neuroprotection

was observed after high-dose irradiation and bone

marrow transplantation [78]. It is conceivable that

T cell–mediated immune response contributed to the

observed neural rescue.
Neuroprotection

The therapeutic goal of preventing the death of

neural tissue is referred to as neuroprotection. Neuro-

protective treatment strategies have been developed

for neurologic conditions ranging from traumatic

central nervous system injuries to neurodegenera-

tive diseases such as Parkinson’s disease. A major

goal of glaucoma research has been to develop anal-

ogous treatment approaches to prevent the death

of ganglion cells of the retina. Risk factors such

as elevated IOP, decreased neurotrophin support,

glutamate-associated excitotoxicity, hypoperfusion,

and vasospasm have been implicated in ganglion cell

death in glaucoma. Neuroprotective strategies have

focused on mitigating these risk factors associated

with RGC loss in glaucoma.

Treatment of elevated intraocular pressure

A strong association exists between elevated IOP

and the development and progression of glaucoma.

Reduction in IOP halts or slows the progression of
primary open-angle glaucoma and normal-tension

glaucoma [1–3].

All standard medical and surgical treatments for

glaucoma are designed to lower IOP. A full dis-

cussion of these well-established treatment modalities

is available elsewhere [79,80].

Hypoperfusion/Vasospasm

Several nonocular features consistent with vaso-

spasm (eg, migraine, Raynaud phenomenon) re-

portedly occur at higher frequency in patients with

normal-tension glaucoma. These observations suggest

that patients with normal-tension glaucoma may de-

velop optic neuropathy, at least partly because of

vasospasm and decreased perfusion of the optic nerve.

Calcium channel blockers may improve the per-

fusion of the optic nerve by vasodilation of the

cerebral vasculature. This class of agents has been

evaluated as potential therapy for normal-tension

glaucoma. Prospective clinical studies have assessed

the effects of oral calcium channel blockers on the

progression of normal-tension glaucoma. Patients

treated with calcium channel blockers were noted to

experience fewer ONH and visual field changes than

those not taking this medication [81–83]. Nimodi-

pine, a calcium channel blocker, has been shown to

acutely improve contrast sensitivity in patients with

normal-tension glaucoma [84]. These beneficial

effects suggest that calcium channel blockers may

have a role in the treatment of normal-tension glau-

coma. The risk for serious adverse effects, however,

such as systemic hypotension, prohibits widespread

use of this class of drugs in glaucoma therapy. In fact,

nocturnal hypotension secondary to antihypertension

medications has been associated with visual field loss

in patients with normal-tension glaucoma [85].

Neurotrophic support

The development and maintenance of RGCs is

regulated in part by neurotrophins, including BDNF

and ciliary neurotrophic factor [34,86–89]. BDNF

has been studied intensively and may play an

important role in RGC death associated with glau-

coma. BDNF produced at the superior colliculus (in

rodents) or the lateral geniculate body (in primates)

binds to its receptor (TrkB) on the RGC axons and is

delivered to the cell bodies by retrograde axoplasmic

transport [90,91]. Animal studies suggest the retro-

grade axoplasmic supply of BDNF is an important

factor in the survival of RGCs [31]. Elevated IOP has

been shown to reduce BDNF axoplasmic delivery

to the RGCs [30], which suggests that optic nerve
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damage in patients with glaucoma may be mediated

by a decreased supply of BDNF (and potentially

other neurotrophins).

It is reasonable to assume that neurotrophin sup-

plementation can effectively treat RGC death asso-

ciated with reduced optic nerve levels of BDNF. The

neuroprotective effects of BDNF on ganglion cells

have been tested in several experimental animal

models of glaucoma. Intravitreal injection of BDNF

has been shown to promote ganglion cell survival

after transection of the optic nerve in the rat [92].

Similar effects were observed in a rat experimental

model of glaucoma [32].

More recently, transgenic techniques have been

used to deliver BDNF to the retina of the rat. Using

adenoviral vectors, transgenic expression of BDNF

has been shown to temporarily reduce ganglion cell

loss after optic nerve transection [93]. In subsequent

studies, prolonged expression of BDNF and extended

protective effects on ganglion cells has been achieved

with adeno-associated viral vectors [33]. As the

safety and stability of gene therapy continue to im-

prove, transgenic delivery of neutrophins may be-

come a therapeutic reality.

Treatment of glutamate-associated excitotoxicity

Glutamate is a central nervous system excitatory

neurotransmitter that has a central role in the normal

conduction of signals between neurons. However,

excessive extracellular levels of glutamate have been

shown to cause neuronal cell death in traumatic and

ischemic injury to the spinal cord and brain [94]. This

cell death pathway is mediated in part by over-

stimulation of the NMDA subtype of glutamate

receptors. When glutamate (and other factors) bind

to the NMDA receptor, the receptor opens and allows

calcium and sodium to enter the neuron. Pathologic

concentrations of glutamate may allow an abnormally

high intracellular influx of calcium, which is thought

to activate apoptotic pathways of cell death. This

mechanism of glutamate-induced toxicity has been

termed excitotoxicity.

Elevated extracellular glutamate levels and exci-

totoxicity have also been implicated in glaucoma

pathogenesis [95]. Several types of evidence have

been used to support the hypothesis that glutamate-

associated excitotoxicity may be involved in glau-

comatous optic neuropathy. First, Lucas and

coworkers [96] have demonstrated that high levels

of exogenous glutamate are toxic to the RGCs in an

animal model. Second, high concentrations of en-

dogenous glutamate have been measured in animal

models of glaucoma and in the vitreous humor of
a series of patients with glaucoma [97]. Finally,

numerous investigations have suggested that gluta-

mate is toxic to the RGCs at physiologically relevant

levels [98,99]. Although these initial studies support a

role for glutamate-associated excitotoxicity in glau-

coma pathogenesis, subsequent investigations have

not confirmed key findings. One recent study [59]

found no difference between the levels of glutamate

in vitreous humor obtained from patients with

glaucoma and from controls. Similarly, in two inde-

pendent investigations of experimental monkey mod-

els of glaucoma, no difference in vitreous glutamate

levels was identified between eyes with induced glau-

coma and control eyes [88,100].

Despite these controversies, drugs that inhibit

NMDA-gated channels have been explored for their

usefulness in treating glutamate-associated excito-

toxicity as potential neuroprotective agents. One

NMDA-channel antagonist, memantine, has been

approved in the United States for the treatment of

dementia associated with Alzheimer disease [100].

Memantine has also been tested as a treatment for

potential excitotoxic mechanisms in the pathogenesis

of glaucoma. Intravitreal injections of glutamate have

been used to create a rat model of excitotoxicity that

results in RGC death. Treatment of these rats with

intraperitoneal memantine has been shown to provide

some protection from the effects of intravitreal gluta-

mate [98]. Memantine has also had favorable effects

on the RGC loss that occurs in DBA/2J mice, which

have a pigmentary form of glaucoma [101]. More

recently, the efficacy and safety of memantine has

been examined with an induced model of glaucoma

in primates. Chronic elevation of IOP was induced in

macaque monkeys by laser cautery of the anterior

chamber angle, which resulted in a measurable

decrease in visual function (as determined with

electroretinography and visual evoked potentials).

The elevated IOP also caused changes in the ONH

appearance and loss of RGCs (as measured by

Heidelberg Retinal Tomography and histopathologic

examination). Oral memantine was shown to have a

protective effect on both the visual function and the

structural damage caused by elevated IOP, though the

effects shown on the electroretinogram were not per-

sistent [102,103]. The results of these animal studies

have paved the way for a phase 3 trial, which is under

way, of memantine in the treatment of glaucoma

in humans.

Inhibition of nitric oxide synthase

Nitric oxide is a vasoactive molecule that can

modulate vascular tone and is also a cytotoxic agent
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produced by the immune system. Prior studies have

suggested that local production of nitric oxide may

have a significant role in the development of multiple

neurodegenerative diseases, which has prompted in-

vestigations of potential neurotoxic effects of this

molecule in glaucoma.

Nitric oxide is produced by the enzyme nitric

oxide synthase. NOS-2 is not constitutively pro-

duced, and its expression can be induced in many cell

types (including neurons, endothelial cells, and astro-

cytes) by injury or cytokines [104–106]. The induc-

tion of NOS-2 expression generates high levels of

nitric oxide, [107,108] which have been associated

with toxicity to neural tissue [109].

Studies of NOS-2 expression have provided evi-

dence that nitric oxide production may be involved

in glaucomatous optic neuropathy. NOS-2 expression

in the optic nerve has been shown to correlate with

the presence of glaucoma. Histopathologic investiga-

tions have demonstrated that NOS-2 is expressed in

the ONH of patients with glaucoma but not in control

subjects [56]. The expression pattern of NOS-2 in cell

culture systems and animal models also support a

potential role for nitric oxide in glaucoma patho-

genesis. Astrocytes cultured from human optic

nerve tissue have been shown to produce NOS-2 in

response to elevated atmospheric pressure [110].

Finally, in an experimental rat model of glaucoma

generated by cautery of three episcleral vessels, the

expression of NOS-2 is induced by elevated IOP [49].

These observations suggest that the production of

nitric oxide at the ONH has a role in the pathogenesis

of glaucoma. The association between the production

of NOS-2 and glaucoma implies that pharmacologic

agents that inhibit NOS-2 may have therapeutic

value. Two drugs that inhibit NOS-2 have been tested

for their ability to treat experimental glaucoma in

animal models. Aminoguanidine has been shown to

reduce ganglion cell loss in a rat model of induced

glaucoma induced by cautery of three episcleral

vessels [52]. Similarly, L-N6-(1-iminoethyl)lysine

5-tetrazole amide, which is a prodrug of the NOS-2

inhibitor L-NIL, also prevents ganglion cell loss in

the same rat model [53]. However, a recent study

showed the inhibition of NOS did not confer pro-

tection for RGCs in a different rat model of glaucoma

induced by hypertonic saline injection into the

episcleral veins [54,55]. A clinical trial of amino-

guanidine for the treatment of diabetic nephropathy

is under way, [111] and L-N6-(1-iminoethyl)lysine

5-tetrazole amide has been safely used in human

clinical trials for other conditions [112]. The efficacy

of these or other inhibitors of NOS-2 in treating

glaucoma has not yet been assessed.
Radiation and bone marrow transplantation

Epidemiologic and animal studies have provided

evidence that exposure to radiation may confer pro-

tection from glaucomatous optic neuropathy. In one

study of atomic bomb survivors, those who were ex-

posed to radiation had a lower incidence of glaucoma

[113]. The effect of gamma radiation on RGC death

has been explored using experimental rat models

(optic nerve crush and NMDA toxicity). Radiation

was shown to provide only minimal beneficial effects

on RGC death in these model systems [77]. More

recently, the potential effects of high-dose gamma

radiation on glaucoma have been investigated with

studies of DBA/2J mice, which exhibit a pigmen-

tary form of glaucoma caused by mutations in the

Gpnmb and Tyrp1 genes [114]. In addition to classic

signs of glaucoma (optic neuropathy and elevated

IOP), DBA/2J mice also have defects in the normally

immunosuppressive environment of the eye [115].

High-dose gamma radiation and bone marrow trans-

plantation were later shown to mitigate the glaucoma

phenotype in DBA/2J mice, suggesting that cell-

mediated immunity makes a contribution to the dev-

elopment of glaucoma in these animals [78]. These

findings suggest that interventions targeted to the

cell-mediated immune system may have a role in

glaucoma therapy.
Immunologic vaccine

Animal studies of optic nerve injury and gluta-

mate toxicity have suggested that regulation of the

inflammatory response is important to promote injury

repair and to minimize secondary nerve damage. One

element of the immune response to injury is the

localization of T lymphocytes to damaged neural

tissue [116]. A subset of these T lymphocytes, which

have receptors specific to proteins of the myelin

sheath, such as MBP, have been shown to have pro-

tective effects on ganglion cell death in mouse

models of optic nerve injury [117]. Similarly, direct

immunization with proteins of the myelin sheath has

also been shown to have neuroprotective effects in

other animal model systems [118]. These experiments

suggest that a vaccine based on myelin sheath anti-

gens might have therapeutic value for treating optic

nerve damage and possibly glaucoma. However, the

potential benefits of these interventions were greatly

overshadowed by significant untoward side effects.

MBP immunization and T cells specific for MBP

induce a severe paralytic condition known as EAE,

which has some similarities to multiple sclerosis.
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Avaccine, known as COP-1, was developed based

on a synthetic peptide with similarities to MBP.

COP-1 has neuroprotective effects in animal models

of optic nerve damage and does not induce EAE.

Vaccination with COP-1 has been studied as potential

therapy for multiple sclerosis in numerous animal

models and in human trials, and it appears to have

clinical benefit and an excellent safety profile [119].

COP-1 immunization has also been explored as a

glaucoma therapy and has been shown to reduce

ganglion cell death in rat models of optic nerve

damage, including optic nerve crush and laser-

induced ocular hypertension [65,71]. The results of

these studies suggest that a COP-1 vaccine might

have a role in glaucoma therapy.

Antiapoptotic therapy

Most of the disease processes thought to cause

ganglion cell death in glaucoma converge into a

common pathway involving apoptosis of RGCs.

Apoptosis is tightly regulated by complex interac-

tions among many proapoptotic and antiapoptotic

factors [120,121]. The expression level of many

apoptotic factors can be modulated to promote gan-

glion cell survival in optic nerve transection animal

models. Overexpression of the antiapoptotic factor

bcl-2 in transgenic mice has been shown to decrease

RGC loss after optic nerve transection [122]. Simi-

larly, intravitreal injection of inhibitors of proapo-

ptotic caspases also reduces ganglion cell death in a

mouse optic nerve transection model [123]. Down-

regulation of proapoptotic factors (c-Jun and Apaf-1)

using short interfering RNAs has been shown to

reduce RGC death in the rat after optic nerve

transection [124]. Finally, intravitreal injection of

Bax-inhibiting peptide has been shown to limit RGC

death in a rat optic nerve transection model [125].

Modifications in the regulation of apoptosis clearly

promote RGC survival after optic nerve transection.

Future investigations of the effects of these anti-

apoptotic interventions in animal models of optic

nerve disease that more closely reflect glaucoma are

needed to prove their therapeutic usefulness.

b-2 Adrenergic agonist

The selective a-2-adrenergic class of topical

medications (including apraclonidine and brimoni-

dine) are effective IOP-lowering drugs that have

a major role in glaucoma treatment. These drugs

lower IOP primarily by decreasing the production of

aqueous humor [80]. In addition to its established

usefulness in reducing IOP, brimonidine has been
investigated for IOP-independent neuroprotec-

tive activity.

The mechanism of proposed brimonidine neuro-

protection is unclear. In one study of ischemic injury

to the retina in a rat model, brimonidine was shown to

lower glutamate concentrations in the vitreous humor.

Based on these results, it has been suggested that

brimonidine might be neuroprotective because it pre-

vents glutamate-associated excitotoxicity [126]. Al-

ternatively, it has been suggested that brimonidine

may directly inhibit apoptotic pathways [127].

Studies using rat models of ocular disease have

investigated the effects of brimonidine on RGC

death. The effects of continuously administered

subcutaneous brimonidine on ganglion cell loss were

tested in a rat model of glaucoma in which IOP was

elevated by laser photocoagulation of episcleral and

limbal veins. Brimonidine administered subcutane-

ously did not cause a measured decrease in IOP but

was found to reduce RGC death [128]. In other

studies using a rat model of transient ischemic retinal

injury, ganglion cell death appeared to be reduced by

pretreatment with topical brimonidine [129–131]. In

general it has been challenging to isolate the known

beneficial effects of brimonidine on IOP from any

other potential neuroprotective effects.

Ginkgo biloba extracts

Extracts from the leaves of the ginkgo biloba tree

(including flavinoid glycosides and terpenes) have

been sold as a dietary supplement for a range of

potential beneficial effects, including improved mem-

ory. Ginkgo biloba has also been investigated as a

drug to treat a wide variety of medical conditions,

including vascular insufficiency and Alzheimer dis-

ease [132]. Although, many of the claims of the

beneficial effects of ginkgo biloba have not been

supported by rigorous scientific studies, evidence in-

dicates that ginkgo biloba be useful for treating select

diseases. For example, findings from one clinical trial

have suggested that gingko biloba may be useful for

treating dementia associated with Alzheimer disease

[133,134]. The mechanism of action of the active

components of ginkgo biloba is unknown. Studies

have suggested, however, that ginkgo biloba influen-

ces several important biologic processes, including

intracellular signaling and neutralizing reactive oxy-

gen species [135].

Ginkgo biloba has been tested for potential

neuroprotective activity using a rat model of chronic

glaucoma. In this model, a moderate elevation of IOP

is generated by cautery of episcleral and scleral

vessels. Rats treated with ginkgo biloba were found
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to have reduced RGC loss compared with control

animals despite their having similar IOPs [136].

Ginkgo biloba extracts have also been evaluated

as a possible therapy for patients with glaucoma. In

one prospective clinical trial, ginkgo biloba extracts

were found to have a beneficial effect on preexisting

visual field defects in patients with normal tension

glaucoma. After 4 weeks of treatment with ginkgo

biloba, patients experienced significant improvement

in visual field testing [137]. Although the basis of

ginkgo biloba’s effects on the visual field are un-

known and possibly are related to improved cognitive

function, the results of this study are encouraging and

suggest that further studies are warranted.
Challenges ahead

Successful clinical application of one or more

neuroprotective strategies outlined above depends on

several factors: (1) the strategy has to have a rational

scientific basis; (2) the neuroprotective agent must be

delivered safely and efficiently to the site of damage;

and (3) the efficacy and safety profile of the neuro-

protective agent must be demonstrated in a random-

ized prospective clinical trial. For a chronic, slowly

progressive disease such as glaucoma, proving clini-

cal efficacy remains a challenge because it may take

many years to detect significant benefit. Nonetheless,

the goal of clinically significant optic nerve protec-

tion in glaucoma seems within reach.
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