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Memory failure predicted by attention 
lapsing and media multitasking

Kevin P. Madore1 ✉, Anna M. Khazenzon1, Cameron W. Backes2, Jiefeng Jiang1,  
Melina R. Uncapher3,4, Anthony M. Norcia1,5 & Anthony D. Wagner1,5 ✉

With the explosion of digital media and technologies, scholars, educators and the 
public have become increasingly vocal about the role that an ‘attention economy’ has 
in our lives1. The rise of the current digital culture coincides with longstanding 
scientific questions about why humans sometimes remember and sometimes forget, 
and why some individuals remember better than others2–6. Here we examine whether 
spontaneous attention lapses—in the moment7–12, across individuals13–15 and as a 
function of everyday media multitasking16–19—negatively correlate with remembering. 
Electroencephalography and pupillometry measures of attention20,21 were recorded 
as eighty young adults (mean age, 21.7 years) performed a goal-directed episodic 
encoding and retrieval task22. Trait-level sustained attention was further quantified 
using task-based23 and questionnaire measures24,25. Using trial-to-trial retrieval data, 
we show that tonic lapses in attention in the moment before remembering, assayed by 
posterior alpha power and pupil diameter, were correlated with reductions in neural 
signals of goal coding and memory, along with behavioural forgetting. Independent 
measures of trait-level attention lapsing mediated the relationship between neural 
assays of lapsing and memory performance, and between media multitasking and 
memory. Attention lapses partially account for why we remember or forget in the 
moment, and why some individuals remember better than others. Heavier media 
multitasking is associated with a propensity to have attention lapses and forget.

Fluctuations in spontaneous states of preparatory attention might help 
to account for fundamental puzzles in neuroscience and behavioural 
science regarding why humans sometimes remember and sometimes 
forget, why some cognitively healthy individuals remember better than 
others and why memory varies as a function of engagement with the 
modern media landscape. To examine links between attention, goal 
coding and episodic remembering within individuals, and how they 
correlate with individual differences and media multitasking (MMT), 
participants completed a goal-directed episodic memory task during 
which electroencephalography (EEG) and pupillometry measurements 
were obtained (Extended Data Fig. 1). Participants also completed sepa-
rate trait-level questionnaires and a sustained attention task.

We first leveraged retrieval data to investigate whether and how 
lapses of attention in the moment before remembering correlate 
with neural signals of goal coding and memory, and behavioural for-
getting. Pre-stimulus tonic increases in posterior alpha power from 
EEG, an expression of release from top-down inhibitory control, and 
pre-stimulus tonic decreases in pupil diameter from pupillometry, 
an expression of hypoarousal linked to a locus coeruleus circuit of 
noradrenaline, are associated with attention lapsing and reduced accu-
racy on working memory, perceptual discrimination and vigilance 
tasks, and thus could extend to episodic remembering7–12,20,21. Little 
is known about the roles that spontaneous fluctuations in attention 

have in the representation of retrieval goals and cues, when engaged 
post-encoding5, that govern attempts to remember the past. To 
assay spontaneous attention lapses, tonic posterior alpha power and 
pupillometry were extracted from the 1 s preceding the onset of the 
retrieval goal cue (pre-goal) and object probe (pre-probe) of each trial. 
To measure the strength of goal coding on three retrieval tasks (con-
ceptual source recognition, perceptual source recognition and nov-
elty detection), goal-cue-locked event-related potentials (ERPs) were 
extracted from an a priori midfrontal cluster that has been shown26,27 
to track goal processing. To measure neural signals of recollection- and 
familiarity-based memory, object-probe-locked ERPs were extracted 
from a priori left posterior and left midfrontal clusters, which are 
canonical sites of parietal old versus new (hereafter Parietal Old/New) 
and early midfrontal old versus new (hereafter FN400) mnemonic 
components28 (Extended Data Fig. 1b). All assays were z-scored within 
each run to account for potential time-on-task effects across runs.

Spontaneous changes in attention, just before retrieval goal-cue 
onset, were correlated with subsequent remembering of studied items 
(Fig. 1). Specifically, attention lapses early in a trial—marked by pre-goal 
increases in posterior alpha power and decreases in pupil diameter—
were correlated with a greater likelihood of memory failure (misses) 
compared with success (hits) across the three goal-state conditions 
(alpha: b = −0.46, z6,822 = −3.61, P < 0.001; pupil: b = 0.36, z7,197 = 2.18, 
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P = 0.03). By contrast, later in a trial, pre-retrieval probe alpha and pupil 
did not correlate with misses or hits (correct rejections and false alarms 
were also unaffected; Supplementary Information).

We therefore explored how pre-goal lapses of attention relate to 
forgetting or remembering. One possibility is that an attention lapse 
immediately before processing a retrieval goal results in a reduction in 
the strength of subsequent goal coding, which then influences retrieval. 
Consistent with this hypothesis, attention lapsing just before goal 
cuing was significantly correlated with a reduction in the subsequent 
goal-cue-elicited midfrontal ERP signal (alpha: b = −0.11, t6,819 = −2.29, 
P = 0.02; pupil: b = 0.11, t7,194 = 2.09, P = 0.04). Notably, this reduction 
in goal-state coding in turn significantly correlated with misses or hits 
across the three goal-state conditions (alpha: b = 0.28, z6,823 = 2.23, 

P = 0.03; pupil: b = 0.36, z7,197 = 2.11, P = 0.04; note: effect sizes (b val-
ues) between goal coding and memory are not identical by modality 
owing to trial-level modality-specific artefacts) (Methods). Trial-wise 
mediation analyses revealed that the relationship between pre-goal 
attention lapsing and later forgetting was partially explained by the 
strength of goal coding, and this was the case both when attention was 
assayed using pre-goal alpha power (Fig. 1a; indirect effect b = −0.03 
(95% confidence interval = −0.05, −0.01), direct effect b = −0.43, total 
effect b = −0.46) and pupil diameter (Fig. 1b; indirect effect b = 0.04 
(95% confidence interval = 0.02, 0.07), direct effect b = 0.32, total effect 
b = 0.36). The total, indirect and direct effects were significant in each 
mediation (P values of P < 0.05; Methods). These outcomes indicate 
that moment-to-moment attention lapses before goal cuing correlate 
with concomitant reductions in goal coding that influence source recol-
lection and novelty detection, and also have significant direct effects 
on memory.

Beyond memory behaviour, we used EEG to measure neural mark-
ers of retrieval and their relation to attention lapsing. Consistent with 
previously published studies6,28, we first confirmed that, irrespective 
of attentional state, canonical Parietal Old/New (Extended Data Fig. 2a) 
and FN400 (Extended Data Fig. 2c) neural signals were observed (see 
also Extended Data Figs. 3, 4 and Supplementary Information). We next 
examined whether pre-goal lapses correlated with the magnitude of 
the Parietal Old/New and FN400 neural signals elicited by the retrieval 
probe. Focusing on the source-recollection signals in the conceptual- 
and perceptual-retrieval tasks, we observed a significant interaction 
between trial-level pre-goal attention lapsing and the magnitude of 
the Parietal Old/New effect (500–600 ms post-probe) when remem-
bering (hits) versus forgetting (misses) (alpha: b = −0.14, t4,041 = −2.16, 
P = 0.03; pupil: b = 0.17, t4,341 = 2.26, P = 0.02) (Extended Data Fig. 2b). 
Pre-goal lapses were significantly correlated with the strength of the 
parietal signal on miss trials (alpha: b = −0.14, t1,521 = −2.52, P = 0.01; 
pupil: b = 0.15, t1,721 = 2.41, P = 0.02) but not hit trials (alpha: b < 0.001, 
t2,470 = −0.09, P = 0.93; pupil: b = −0.01, t2,620 = −0.37, P = 0.71). That is, 
moment-to-moment increases in alpha power and decreases in pupil 
diameter correlated with reductions in the Parietal Old/New signal for 
source-recollection failures (misses), which suggests that fluctuations 
in attention correlate with sub-threshold recollection responses, which 
drive forgetting.

Focusing on neural memory signals in the novelty-detection task, 
a significant interaction was also found between trial-level pre-goal 
lapsing and the magnitude of the FN400 component (400–500 ms 
post-probe) when correctly endorsing new items (hits) compared with 
misses (alpha: b = 0.17, t2,771 = 2.18, P = 0.03; pupil: b = −0.23, t2,846 = −2.17, 
P = 0.03) (Extended Data Fig. 2d). Pre-goal lapses were significantly 
correlated with the strength of FN400 signal for misses (alpha: b = 0.11, 
t974 = 2.03, P = 0.04; pupil: b = −0.22, t896 = −2.51, P = 0.01) but for not 
hits (alpha: b = −0.07, t1,797 = −1.41, P = 0.16; pupil: b = 0.02, t1,947 = 0.45, 
P = 0.65). That is, moment-to-moment increases in alpha power and 
decreases in pupil diameter correlated with increasing positivity in 
FN400 signal for misses, which drove the signal to appear more like 
that of an incorrect old rather than a correct new item. These results 
indicate that attentional fluctuations correlate with neural responses 
that underpin familiarity-based memory.

Along with the relationship between moment-to-moment lapses 
and subsequent multimodal signals of memory failures, we assessed 
whether trait-level differences in the propensity of a lapse in attention 
could help to explain why some individuals are more likely to forget 
than others (Fig. 2). Emerging evidence indicates that trait-level differ-
ences in sustained attention relate to differences in working memory13 
and these could therefore extend to long-term memory processes. 
We first examined how trait-level task-based metrics of preparatory 
lapsing relate to memory, computing participant-level lapse mark-
ers—mean alpha power and pupil diameter variability averaged over all 
pre-goal retrieval epochs—and behavioural markers of retrieval success 
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Fig. 1 | Attention, goals and memory in the moment. Pre-goal attention 
lapses relate to forgetting (misses) versus remembering (hits) across three 
retrieval goal conditions, and this relationship is partially mediated by 
goal-coding strength through a midfrontal ERP cluster. a, b, Attention lapses 
from alpha (a) and pupil (b) assays. Bar graphs show mean unweighted 
standardized betas (data are mean + s.e.m.) for the relationships between 
attention lapses and memory (top left) and midfrontal goal coding and 
memory (top right), and line graphs (bottom left) show quintiles for mean 
unweighted standardized betas (data are mean ± s.e.m.) for the relationships 
between lapsing and goal coding. Statistical analyses included an interaction 
term for retrieval goal, and treated lapsing and goal coding continuously in 
trial-level mixed models. Axis units with decimals show z-scores. The trial-wise 
mediation models reflect mean weighted standardized betas, with two-sided  
P values (alpha indirect effect: P = 0.042 and direct effect: P = 0.017; pupil 
indirect effect: P = 0.041 and direct effect: P = 0.008). Statistical analysis was 
performed using Z- and t-tests, where applicable, without multiple comparison 
adjustments. n = 75 human participants from a single independent experiment.
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(memory discriminability (d′) for each goal-state condition). Higher 
trait-level alpha power in the absence of external distraction has been 
associated with release from inhibition, higher pupil variability has been 
associated with more off-task thoughts and higher d′ denotes higher 
memory accuracy7,10. We found that increases in trait-level mean alpha 
power and pupil variability were significantly negatively correlated with 
individual differences in d′ (Fig. 2a and Supplementary Information). 
In addition, we found that individual differences in pre-goal lapses 
of attention at encoding, assayed from mean alpha power and pupil 
variability, were significantly correlated with individual differences 
in pre-goal lapses at retrieval and with memory ability (Extended Data 
Fig. 5 and Supplementary Information). Notably, when controlling for 
differences in attention at encoding, a significant relationship remains 
between individual differences in pre-goal attention at retrieval and 
remembering (Supplementary Information).

After the experiment, participants also completed an independent 
task-based assessment of sustained attention (the gradual-onset con-
tinuous performance task (gradCPT)23). Two of its metrics—commission 
error rate (CER; responses to ‘no-go’ trials) and reaction time variability 
(RTV; a coefficient of variation on correct responses to ‘go’ trials)—
are reliable indicators of trait-level attention lapsing23. In our sample, 
trait-level attention lapsing, as assayed by mean alpha power and pupil 
variability during the memory task, significantly correlated with CER 
in the gradCPT (alpha: r = 0.48, P < 0.001; pupil: r = 0.26, P = 0.009), 
but not RTV (alpha: r = 0.18, P = 0.065; pupil: r = 0.12, P = 0.14) (Fig. 2b). 
Notably, CER and RTV in the gradCPT were negatively correlated with 

d′ in the conceptual-retrieval (CER: r = −0.36, P < 0.001; RTV: r = −0.21, 
P = 0.03), perceptual-retrieval (CER: r = −0.39, P < 0.001; RTV: r = −0.26, 
P = 0.009), and novelty-detection (CER: r = −0.42, P < 0.001; RTV: 
r = −0.30, P = 0.003) tasks (Fig. 2c). Thus, trait-level differences in sus-
tained attention are correlated with individual differences in forgetting.

Trait-level mediation analyses further revealed that the relation-
ship between individual differences in lapsing and memory was 
explained by differences in sustained attention as indexed by CER in 
the gradCPT (indirect effect with alpha b = −0.18 (95% confidence inter-
val = −0.33, −0.05), direct effect b = −0.13, total effect b = −0.31; indirect 
effect with pupil b = −0.10 (95% confidence interval = −0.22, −0.02), 
direct effect b = −0.19, total effect b = −0.29) (Fig. 2d). The total and 
indirect effects were significant in each mediation (P values of P < 0.02; 
Methods). These results indicate that trait differences in sustained 
attention may explain pre-goal lapsing and memory ability. Confirma-
tory factor analysis with a trait-level ‘attention’ factor (pupil variability 
and mean alpha power from the memory task, and CER and RTV from 
the gradCPT) and a ‘memory’ factor (d′ from each retrieval task) also 
indicated a significant model fit (χ2

21 = 185.68, P < 0.001) and a signifi-
cant negative relationship between inattention and memory (covari-
ance = −0.52, z = −4.99, P < 0.001).

Given observations that everyday MMT is negatively associated 
with episodic memory performance18, we used the current multi-
modal approach to also test whether increased forgetting in heavier 
media multitaskers is correlated with a higher propensity to suffer 
lapses in attention before goal-directed behaviour. Data on the rela-
tionship between laboratory-based assays of cognition (specifically, 
attention and memory) and real-world MMT behaviour16—that is, the 
degree to which an individual engages with multiple media types in 
a given media consumption hour (for example, watching television 
while texting)24—are provocative, in part because heavier MMT is 
associated with reduced working memory and episodic memory 
even when performing a single task, possibly because of its positive 
relationship with failures of sustained attention17 and increased mind 
wandering16,25. Given that engagement with concurrent streams of 
media is pervasive in everyday life, there is a need to pinpoint the 
mechanism or mechanisms that underlie trait-level relationships 
between MMT and memory. Participants completed an individual 
differences battery that consisted of several self-report question-
naires, including a modified Media Multitasking Inventory, for which 
a higher score indicates heavier MMT and a lower score lighter MMT. 
We first observed that participants who self-reported heavier MMT 
showed a significantly lower d′ during the conceptual-retrieval 
(r = −0.32, P = 0.002), perceptual-retrieval (r = −0.28, P = 0.007) and 
novelty-detection (r = −0.32, P = 0.002) tasks (Fig. 3a). Second, heavier 
MMT was significantly correlated with higher CER (r = 0.31, P = 0.003) 
and RTV (r = 0.30, P = 0.003) in the gradCPT (Fig. 3c), and higher 
mean pre-goal alpha power (r = 0.21, P = 0.036) and pupil variability 
(r = 0.23, P = 0.019) during the memory tasks (Fig. 3b). The same pat-
terns of findings were exhibited with an extreme-groups approach 
(Supplementary Information). Finally, a test of trait-level mediation 
revealed that the relationship between MMT and memory was par-
tially explained by differences in sustained attention as assayed by 
CER in the gradCPT (indirect effect b = −0.11 (95% confidence inter-
val = −0.23, −0.02), direct effect b = −0.24, total effect b = −0.35) 
(Fig. 3d), with the total, indirect and direct effects all showing sig-
nificance (P values of P < 0.03; Methods).

Exploratory factor analysis (that is, a principal component analysis) 
further revealed that MMT loaded on a ‘sustained attention’ factor 
extracted from other relevant questionnaires—including measures of 
spontaneous mind wandering, attention-deficit/hyperactivity disorder 
(ADHD) and attentional impulsivity. Moreover, we note that MMT was 
the only self-reported measure that was significantly correlated with 
all memory and attention metrics (Supplementary Information). Our 
task-based and self-reported measures indicate that attention lapsing 
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Fig. 2 | Trait-level differences in sustained attention help to explain why 
individuals are more prone to remembering or forgetting. a, b, Greater 
lapsing is correlated with worse d′ on the memory tasks (a) and attention on  
the gradCPT (b). c, Worse attention on the gradCPT is correlated with worse 
memory d′. a–c, Raw scores are shown. Statistical analyses were performed 
using z-scores with Pearson correlations. d, Formal mediation models with 
mean standardized betas, and two-sided P values (alpha indirect effect: 
P = 0.003; pupil indirect effect: P = 0.018). n = 75 participants for alpha data and 
n = 80 participants for all other data from a single independent experiment; the 
effect sizes between the commission error and d′ are therefore not identical for 
alpha and pupil models (Methods). Statistical analysis was performed using  
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is one plausible explanation for why heavier MMT is correlated with 
poorer episodic memory.

To retrieve a memory, a number of neurocognitive processes 
dynamically interact. Various sources of forgetting at retrieval have 
been studied, including cue availability, mnemonic interference and 
memory weakening4. Here, we document that when pre-goal lapses 
of attention occur during retrieval, the strength of goal coding is 
reduced and forgetting is the price paid. The trial-level relation-
ships were observed between attention lapsing, goal cuing, and 
hit or miss memory decisions but not correct rejection or false 
alarm memory decisions in the three retrieval tasks. This novel 
observation suggests that effects of attention interact with the 
congruency between one’s mnemonic goal and the retrieval cue, 
perhaps modulating mnemonic evidence as it begins to emerge. 
Furthermore, the trial-wise mediations and ERP analyses indicate 
that pre-goal lapses of attention at retrieval have robust direct 
effects on mnemonic behaviour and neural signals in addition to 
those attributed to goal cue processing. An interesting possibility 
is that attention modulates the processing of a contextual cue, or 
one’s retrieval mode, that is leveraged in the moment to remember, 
which should be explored further by direct assessment. Translating 
basic science findings to real-world behaviours, we further show 
that heavier MMT is associated with worse episodic memory, in 
part, because of a greater propensity to suffer more-frequent or 
disruptive lapses of attention.

These results highlight how multimodal approaches can advance 
our understanding of the role of attention in memory at both the trial 
and trait levels. The independent biological and behavioural metrics 
converge on the role of attention in partially accounting for mnemonic 
and MMT differences (for consideration of the relationship to working 
memory, see Supplementary Information). Another strength is that 
effects of attention at retrieval are not due to effects of attention at 
encoding, nor to variable perceptual encoding of goal cues at retrieval 
(see Supplementary Information).

Future work focused on longitudinal assays that can inform causal-
ity29 in terms of whether differences in MMT produce differences in 
attention (or vice versa) will be important. Adopting complementary 
multimodal approaches to quantify attention and goal-state coding30 
also holds promise for building models of how interactions between 
attention, goal states, contextual cue processing and memory explain 
why we sometimes remember and sometimes forget, and why some 
individuals remember better than others.
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Methods

Data reporting
There was randomization of cues within all task-based assessments, 
but participants by definition could not be randomized for individual 
difference assays. The investigators were blinded to allocation during 
experiments but not during outcome assessment. A sample size of 
80 participants was chosen based on previous studies, which showed 
that this number was adequate for a reliable individual differences 
approach. For further information, see the ‘Reporting Summary’.

Participants
Eighty participants were enrolled in the study (49 female participants; 
mean age = 21.7 years, s.d. = 1.48, range = 18–26 years). Participants 
were recruited from online advertisements at Stanford University and 
the surrounding community, were right-handed, and had normal or 
corrected-to-normal vision, no history of neurological or psychologi-
cal impairment and no current medication. All participants provided 
written informed consent and were compensated US$60 (US$15 per 
hour), in accordance with procedures approved by Stanford’s Institu-
tional Review Board. Data from five participants were excluded from 
trial-level analyses owing to insufficient trial numbers (fewer than 
10 hits or fewer than 10 misses in each retrieval goal condition) stem-
ming from technical artefacts and/or task performance. Data from 
five participants were excluded from trait-level analyses involving 
alpha power owing to technical artefacts. Thus, 75 participants were 
retained for all trial-level analytics and trait-level alpha analytics, and 
80 participants were retained for all other trait-level analytics.

Experimental design
Participants completed a 4-h session: set-up and instructions (30 min), 
goal-directed encoding (1 h), goal-directed retrieval (1.5 h) and the 
separate individual differences assessment (1 h). Only the memory 
tasks included EEG and pupillometry measurements. The memory 
tasks—design, goal states and common object pictures—were adapted 
from previous research22 in which the behavioural and neural impacts 
of goal-state cuing on encoding and retrieval were described. The indi-
vidual differences assessment included questionnaires and a task-based 
sustained attention assay that were also adapted for present pur-
poses23,24,31–35. The present set of hypotheses relate to attention, goal 
states and episodic retrieval; encoding-related hypotheses and data 
will be reported elsewhere.

Goal-directed encoding and retrieval task
All tasks were run using the Psychophysics Toolbox in MATLAB36. For 
each trial, the background screen was white, and the fixation, goal cue 
or object appeared centrally. All fixations, goal cues and objects were 
luminance- and chrominance-controlled and matched using the SHINE 
toolbox in MATLAB to ensure that low-level visual properties did not 
affect oscillatory or pupillary assays37.

Encoding. Participants viewed 168 objects twice across 6 incidental 
encoding runs (8 min 11 s per run) of 56 trials each (once in runs 1–3 
and once in runs 4–6). On each trial, a goal cue (that is, pleasant or 
unpleasant; bigger or smaller) appeared for 1.60 s, followed by a 0.10-s 
interstimulus interval, followed by an object for 2.80 s, followed by a 
4-s intertrial interval. Participants performed object classification, 
based on a conceptual goal (is the object semantically pleasant or un-
pleasant) or a perceptual goal (is the object bigger or smaller in size 
on the screen, irrespective of real-world size), responding as quickly 
and as accurately as possible. Participants made each judgment with 
one of two button presses (pleasant or unpleasant; bigger or smaller) 
using their right index or middle finger (button-press mappings were 
counterbalanced across participants). There were eight practice trials 
to ensure comprehension.

In each encoding run, 28 objects were classified on the conceptual 
goal dimension (pleasant or unpleasant) and 28 on the perceptual 
dimension (bigger or smaller), yielding 84 conceptual object trials and 
84 perceptual trials across runs. Before the experiment, each object was 
rated by 100 Amazon Mechanical Turk employees as being either more 
semantically pleasant or unpleasant; in the experiment, each object 
appeared either bigger (450 × 450 pixels) or smaller (150 × 150 pixels) 
in size on the screen (counterbalanced across participants). Thus, 
objects were crossed in a 2 × 2 design, with 14 objects from each goal 
crossing (pleasant and bigger, pleasant and smaller, unpleasant and 
bigger, and unpleasant and smaller) appearing in a random order per 
run (with the constraint that a particular goal—for example, pleasant 
or unpleasant—could not appear more than four times consecutively). 
Each participant received a random assignment of goal–object pairings.

Retrieval. After a 10 min delay, participants performed the critical re-
trieval phase. At retrieval, they viewed 252 objects—168 studied and 84 
new—across 12 goal-directed retrieval runs (7 min 15 s per run) of 21 trials 
each. On each trial, participants made a yes or no memory judgment 
on an individual medium-sized object (300 × 300 pixels) after viewing 
one of three retrieval goal cues (pleasant or unpleasant before, bigger 
or smaller before, or new item). Participants were instructed that some 
of the objects would be old and some new. The retrieval goal cue was 
preceded by an 8-s intertrial interval and then appeared for 2 s, followed 
by an 8-s interstimulus interval, followed by an object for 2 s. An epoch 
of 8 s was adopted for each intertrial interval and interstimulus interval 
based on previous work that showed that attention lapses are more 
likely to be induced through 8-s than 2-s fixed intervals38. Participants 
made each retrieval judgment as quickly and as accurately as possible, 
making one of two button presses (yes or no) with their right index or 
middle finger (button-press mapping was counterbalanced). There 
were eight practice trials to ensure comprehension.

In each retrieval run, 7 objects were tested for the conceptual goal 
(pleasant or unpleasant before), 7 for the perceptual goal (bigger or 
smaller before) and 7 for novelty-detection (new item) analyses, yield-
ing 84 unique conceptual-judgment trials, 84 unique perceptual tri-
als and 84 unique novelty trials across runs. To ensure adequate trial 
numbers: (1) for each of the source retrieval goals (conceptual and 
perceptual), 32 objects had been encoded for pleasant or unpleasant 
orienting, 32 had been encoded for bigger or smaller orienting and 20 
were new; and (2) for novelty detection, 20 objects had been encoded 
for pleasant or unpleasant, 20 for bigger or smaller and 44 were new. 
Assignment of old and new objects to the three retrieval conditions was 
random for each participant. The goal–object pairings were presented 
in a random order per run (with the additional constraint that a particu-
lar retrieval goal could not appear more than three times consecutively). 
Each participant received a random assortment of goal–object pairings.

Behaviourally, accuracy on the two source memory judgments 
requires object recognition and recollection of how the object was 
processed at encoding—so as to differentiate conceptually versus per-
ceptually encoded objects, and to respond ‘yes’ or ‘no’ as a function of 
the cued goal; accurate novelty detection can be based on weak item 
memory strength and/or the absence of recollection.

Individual differences battery
After the encoding and retrieval task, participants filled out nine 
self-report questionnaires (self-paced) with paper-and-pencil assess-
ment and the Qualtrics Survey platform and performed the gradCPT 
in the following order.

Media multitasking inventory. The Media Multitasking Inventory 
(MMI) was modified from a previous study24 and yields an estimate of 
the number of media with which the individual engaged in a typical 
media consumption hour; a higher score denotes heavier MMT. Part 
1 assesses the number of hours per week typically spent doing each 



of nine activities: reading, homework (other than reading), watching 
videos, movies or TV, listening to music, radio, audiobooks or other 
audio, playing video games, browsing the internet, texting or using 
social media or instant messaging, talking on the phone or video chat-
ting and other computer activities. In part 2, participants indicate for 
each activity how often they simultaneously engage in each of the other 
activities on a four-point Likert scale. In this modified MMI, participants 
rate each media pairing once.

Adult ADHD self-report scale. A six-item questionnaire31 (part A) was 
used to assess ADHD symptoms.

Barratt Impulsiveness Scale-11. The Barratt Impulsiveness Scale-11 
(BIS-11)32 is a questionnaire with three 11-item subcomponents that 
assessed non-planning, motor impulsivity and attentional impulsivity.

Video-game usage. Video-game usage was analysed using a question-
naire33 that assessed the extent of playing five types of video games in 
the past 12 months.

Attentional control distractibility and shifting. An assay of everyday 
attentional control (or inattention)34, with two four-item subsections 
that assessed distractibility and shifting.

Deliberate and spontaneous mind wandering. A four-item ques-
tionnaire for each subtype34 that assessed everyday mind wandering.

Attention-related cognitive error scale. A 12-item questionnaire35 
that assessed the frequency of cognitive errors in everyday situations 
that are attributed to attention lapsing.

Memory failure scale. A 12-item questionnaire35 that assessed the 
frequency of minor memory lapses in everyday situations.

Mindful attention awareness scale-lapses only. A 12-item question-
naire35 that assessed everyday attention lapsing.

gradCPT. In this 10-min task-based assay of sustained attention23, par-
ticipants viewed a stream of city (90% of trials) and mountain (10% 
of trials) scene images (497 trials total), and were asked to press the 
space bar when viewing a city and withhold responding when viewing 
a mountain. The scenes were round, greyscale images of 10 cities and 
10 mountains that repeated across the task. Images appeared individu-
ally and centrally on a computer screen, gradually onset over 0.80 s, 
paused for 0.40 s when fully cohered (thus, each trial was 1.20 s) and 
then offset. The task used linear pixel-by-pixel interpolation with a 
non-repeating scene rule (that is, the same scene could not succes-
sively repeat). Participants were instructed to respond as accurately as 
possible; a response deadline was implicit in the task but not explicitly 
referenced.

EEG and pupillometry data acquisition
During encoding and retrieval, EEG and pupillary data were recorded 
concurrently in an electric- and sound-proof chamber to minimize arte-
facts. Real-time EEG, eye-tracking and behavioural data, and stimulus 
display were monitored from an outside bay. EEG data were recorded 
with a 128-channel HydroCell Sensor Net (Electrical Geodesics) at a 
sampling rate of 1,000 Hz through a Netstation 300 amplifier with 24-bit 
resolution per sample and Netstation 5.4 software. Impedance was set 
to <50 kV and checked approximately every 20 min. Pupillary data from 
the right eye were recorded using an Eyelink 1000 Eye Tracker system 
(SR Research) at a sampling rate of 1,000 Hz. Participants were seated 
60 cm from the eye-tracking and stimulus monitor with a chin mount in 
the chamber. Eye-tracking calibration and validation steps were com-
pleted every approximately 20 min with impedance checks. Trial-level 

EEG, pupillary and behavioural data (response and response time) were 
synced using a custom MATLAB code with event message tags.

Data analyses
The R environment (v.3.3.3) and SPSS (v.26) were used for data pre-
processing, statistics and visualization. The following R packages were 
primarily used with in-house scripts: openxlsx, tidyverse, dplyr, lme4, 
lmerTest, multilevel, mediation, lavaan, ggplot2, ggpubr and eyetrack-
ingR. The exception was EEG data preprocessing, for which MATLAB 
with an EEGLAB interface39 was used with in-house scripts.

Memory behavioural data analyses. Behavioural analyses focused 
on metrics of memory retrieval accuracy at the trial and trait levels. 
For trial-level retrieval, each ‘yes’ or ‘no’ response was classified as a 
hit, miss, correct rejection to old or new item, or false alarm to old or 
new item, depending on the retrieval goal condition. In conceptual 
goal cuing, responding ‘yes’ to an old pleasant- or unpleasant-encoded 
object was classified as a hit (‘no’ was a miss), whereas responding 
‘no’ to an old bigger- or smaller-encoded object was classified as a 
correct rejection to old item (‘yes’ was a false alarm to old item), and 
responding ‘no’ to a new object was classified as a correct rejection to 
new item (‘yes’ was false alarm to new item). The same logic applies 
for perceptual goal cuing. In novelty detection, responding ‘yes’ to a 
new object was classified as a hit (‘no’ was a miss), whereas responding 
‘no’ to an old pleasant or unpleasant or bigger or smaller object was 
classified as a correct rejection to old item (‘yes’ was a false alarm to 
old item). For trait-level retrieval, we adopted classic signal-detection 
functions40 to compute the d′ statistic (Zhit − Zfalsealarm) for each goal-state 
condition; source false alarms and novelty false alarms were included 
when computing the conceptual- and perceptual-condition d′ sta-
tistics (see Extended Data Table 1 for false alarm rates by memory 
type), and novelty false alarms were included when computing the 
novelty-detection condition d′.

A repeated-measures ANOVA was run to examine differences in 
memory performance as a function of retrieval goal condition with 
the dependent variable being d′. Significance was set to P < 0.05.

Trial-level EEG and pupillometry data analyses. A number of preproc-
essing steps were implemented on raw EEG and pupillary data for the 
analyses targeting moment-to-moment lapsing. For EEG, the 1,000-Hz 
data were decimated to 100 Hz, and band-pass-filtered to 0.1–30 Hz 
using zero-phase Hanning windows. We then used the BLINKER auto-
mated method41 to identify blink artefacts, and visually inspected each 
trial of each participant’s data to identify bad electrode channels also 
due to artefacts (for example, ocular). Data were average referenced 
and filtered for alpha power (8–12 Hz) using Hilbert transform. To as-
say trial-level spontaneous tonic lapses pre-goal and pre-retrieval, 
epochs were a priori set at 1 s pre-goal to 0 s goal, and 1 s pre-retrieval 
probe to 0 s probe. Mean alpha power from each epoch was extracted 
and computed from an a priori posterior cluster of electrodes (chan-
nels 62, 67, 71, 72 and 75–77; Extended Data Fig. 1b) that has previously 
been associated7 with lapsing. For pupil diameter, the 1,000-Hz data 
were decimated to 100 Hz. Note that real-time Eye Linker functions 
during acquisition remove blinks, off-centre fixations and eye-tracker 
malfunctions from the data output, minimizing preprocessing. Ad-
ditional preprocessing was done for saccades over 10 degrees. Again, 
to assay trial-level spontaneous tonic lapses pre-goal and pre-retrieval, 
epochs were a priori set at 1 s pre-goal to 0 s goal, and 1 s pre-retrieval 
probe to 0 s probe. Mean pupil diameter was computed from each 
epoch, given previous evidence that this metric captures tonic lapsing 
trial-to-trial10,11,21. Rather than applying linear interpolation, we removed 
from analyses those epochs that did not have full data (for example, 
data missing from blinks) to ensure perceptual encoding of stimuli 
on a trial-to-trial basis. Noisy trial-level epochs were then removed 
within run (±3.5 s.d. from mean alpha power or pupil diameter), and 
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the remaining trial-level epochs were z-scored within a run, rather than 
across runs, to account for time-on-task effects.

A number of preprocessing steps were also implemented on raw EEG 
data to assay goal coding at the trial level. After implementing the above 
described sampling rate, band-pass-filterand artefact-identification 
and -rejection methods, we average referenced and filtered the data for 
ERP signal. Epochs were set at −0.20 s pre-goal to 2 s post-goal onset to 
assay goal coding during the goal cuing window. Mean ERPs from these 
epochs were extracted from an a priori midfrontal cluster of electrodes 
(numbered 5–7, 11–13, 106 and 112; Extended Data Fig. 1b) that has previ-
ously been associated with goal processing26,27. Only epochs with full 
data were analysed to ensure perceptual encoding of stimuli. Baseline 
correction was implemented at the trial level by subtracting the 0.20-s 
tonic mean from the 2-s phasic-goal cue-locked mean. Noisy trial-level 
epochs were removed within each run (± 3.5 s.d. from the mean ERP), 
and the remaining trial-level epochs were z-scored within each run.

After preprocessing, trial-wise logistic mixed-effects models, with a 
restricted maximum likelihood (REML) approach, quantified the rela-
tionship between moment-to-moment lapsing and memory accuracy. 
Two main logistic models quantified pre-goal lapsing on hits versus 
misses: one model with a continuous fixed effect of pre-goal alpha 
power and a categorical fixed effect of hit (1) or miss (0), and another 
model with a continuous fixed effect of pre-goal pupil diameter. In 
addition, two linear mixed-effects models quantified the relation-
ship between pre-goal lapsing and the ERP goal coding metric at the 
trial level: one model with a continuous fixed effect of pre-goal alpha 
power and a continuous fixed effect of goal coding, and another with 
a continuous fixed effect of pre-goal pupil diameter. Finally, logistic 
mixed-effects models quantified the relationship between goal coding 
and memory accuracy at the trial level: one model with a continuous 
fixed effect of goal coding and a categorical fixed effect of hit (1) or miss 
(0) for the alpha analysis and another for the pupil analysis. In all cases, 
each model included a random effect for participant, and an interaction 
term with retrieval goal (conceptual, perceptual or novelty goal cuing); 
the linear mixed-effects models were restricted to hit and miss trials to 
match the other models. Significance was tested using the P value of 
each individual beta for each effect in the respective model (P < 0.05).

Given significant paths between pre-goal lapsing and memory accu-
racy, pre-goal lapsing and goal coding, and goal coding and memory, 
two formal trial-wise mediation models were implemented, one with 
the alpha power assay of lapsing and one with the pupil diameter assay 
of lapsing. The indirect path from pre-goal lapsing to goal coding (a) 
and goal coding to memory (b) was computed, as was the direct path 
from pre-goal lapsing to memory (c′). The indirect path or mediation 
was computed as the product of a × b, with a resulting 95% confidence 
interval for each indirect path from 10,000 bootstrapped samples. 
The total, direct and indirect effects were also tested for significance 
at P < 0.05.

Although these primary analyses addressed our first core ques-
tion, we repeated the same approach but replaced pre-goal lapsing 
with pre-retrieval probe lapsing, and hit or miss memory with correct 
rejection or false alarm memory. As reported in the Supplementary 
Information, there were no significant results that stemmed from these 
analyses.

Trial-level Parietal Old/New and FN400 ERP data analyses. A num-
ber of preprocessing steps were implemented on raw EEG data for the 
analyses targeting trial-level canonical neural signals of recollection- 
(Parietal Old/New) and familiarity-based (FN400) memory. After imple-
menting the sampling rate, band-pass-filter and artefact-identification 
and -removal steps (see ‘Trial-level EEG and pupillometry data analy-
ses’), we average referenced and filtered the data for ERP signal. Ep-
ochs were set to −0.20 s pre-retrieval probe to 1 s post-probe onset. 
For the Parietal Old/New component, mean ERPs from these epochs 
were extracted and computed from an a priori left posterior cluster 

of electrodes (numbered 42, 47, 52–54 and 61; note that 52 is P3; Ex-
tended Data Fig. 1b) that canonically demonstrates a recollection-based 
memory signal28. For the FN400 component, mean ERPs from these 
epochs were extracted and computed from an a priori left midfrontal 
cluster of electrodes (numbered 19, 20, 23, 24, 27, 28, 33 and 34; note 
that 24 is F3; Extended Data Fig. 1b) that canonically demonstrates 
familiarity-based memory signal28. Only epochs with full data were ana-
lysed to ensure perceptual encoding of stimuli. Data were segmented 
into 0.10 s (100-ms) bins based on previously published research28 
noting that a Parietal Old/New component typically onsets at around 
400 ms, peaks at about 500 ms, and offsets at approximately 800 ms 
(all post-probe), and a FN400 component typically onsets at around 
300 ms, peaks at about 400 ms, and offsets at approximately 500 ms 
(all post-probe). Baseline correction was implemented at the trial level 
by subtracting the 0.20-s tonic mean from each of the ten 0.10-s mean 
phasic-stimulus-locked bins. Noisy trial-level epochs were removed 
within run (±3.5 s.d. from the mean ERP for Parietal Old/New or FN400), 
and the remaining trial-level epochs were z-scored within a run (by 
component).

Analyses first focused on replicating canonical signals of recollection- 
and familiarity-based memory in the three goal-state conditions, irre-
spective of lapsing. For Parietal Old/New in the left posterior cluster, we 
contrasted ERP signal on (1) source hits to old pleasant or unpleasant, 
or bigger or smaller objects relative to (2) correct rejections to new 
objects in conceptual- and perceptual-retrieval tasks, respectively. 
For FN400 in the left midfrontal cluster, we contrasted ERP signal 
on (1) correct rejections to old pleasant or unpleasant, or bigger or 
smaller objects relative to (2) hits to new objects in novelty detection 
(note: the terminology here is in relation to the retrieval task goal, 
such that new items called ‘new’ are termed hits). Following previous 
research28, a series of repeated-measures ANOVAs and post hoc F-tests 
were adopted. For Parietal Old/New, a 2 (retrieval type: source hit versus 
correct rejection to new object) by 2 (retrieval goal: conceptual versus 
perceptual goal cuing) by 10 (time bin: for example, 0–0.10 s) model 
was used for which the dependent variable was the ERP signal. For 
FN400, a 2 (retrieval type: correct rejection to old object versus hit to 
new object) by 10 (time bin: for example, 0–0.10 s) model was used in 
the novelty-detection task in which the dependent variable was the 
ERP signal. Significance was set to P < 0.05 for the ANOVAs and post 
hoc tests. Because z-scoring the ERP signal within run and time-binning 
in 100-ms intervals can smooth the data, reducing smaller temporal 
effects often observed in grand-average ERPs, for completeness we also 
plot these ERPs using 10-ms time-bin intervals (Extended Data Fig. 4). 
As a complementary analysis to ensure the specificity of our findings28, 
we extracted the ERP signal from right posterior (numbered 78, 79, 86, 
92, 93 and 98; Extended Data Fig. 1b) and right midfrontal (numbered 3, 
4, 116–118 and 122–124; Extended Data Fig. 1b) clusters using the same 
preprocessing and analytic steps. We then included lateralization (left 
versus right) as an additional factor in the repeated-measures ANOVAs 
for Parietal Old/New and FN400. Significance was set to P < 0.05 for the 
ANOVAs and post hoc tests, and the interaction results by lateralization 
are reported in the Supplementary Information.

Next, trial-wise linear mixed-effects models, with an REML approach, 
quantified the relationship between moment-to-moment lapsing and 
these canonical neural memory signals. We focused on hit versus miss 
memory in conceptual and perceptual goal cuing and novelty detection 
given the relationships observed between trial-to-trial lapsing, goal 
coding and memory accuracy in response to these types of trials. For 
Parietal Old/New, two main models assessed the relationship between 
pre-goal lapsing and ERP signal during the 500–600-ms post-probe 
window for remembered compared with forgotten trials in conceptual- 
and perceptual-retrieval tasks: one model with a continuous fixed effect 
of pre-goal alpha power and a continuous fixed effect of ERP signal, and 
another model with a continuous fixed effect of pre-goal pupil diam-
eter. For FN400, two main models assessed the relationship between 



pre-goal lapsing and ERP signal during the 400–500-ms post-probe 
window for correctly endorsed new items (hits) compared with miss 
trials in novelty detection: one model with a continuous fixed effect 
of pre-goal alpha power and a continuous fixed effect of ERP signal, 
and another model with a continuous fixed effect of pre-goal pupil 
diameter. Each model included a random effect for participant, and an 
interaction term with retrieval accuracy (hit versus miss). The Parietal 
Old/New models included an additional interaction term with retrieval 
goal (conceptual versus perceptual cuing). The post-probe windows 
were selected based on previously reported signal peaks for the Parietal 
Old/New and FN400 effects28. Significance was tested using the P value 
of each individual beta for each effect in the respective model (P < 0.05). 
As a complementary analysis28, we also included an interaction term 
for lateralization (left versus right) in each model, and the interaction 
results by lateralization are reported in the Supplementary Information.

Trial-level phasic pupil old/new analysis. Although we addressed 
our second core question regarding relationships between trial-to-trial 
lapsing and neural signals of remembering from canonical ERP com-
ponents, we also leveraged previously published findings42–44 that 
have documented differences in phasic pupillary signal post-retrieval 
probe as a function of memory to provide a secondary internal check 
on memory performance. Akin to an FN400 effect, higher peak pu-
pil diameter is typically exhibited for correctly identified old versus 
new items post-retrieval probe in old/new recognition memory, a 
phenomenon referred to as a ‘pupil old/new effect’42–44. We focused 
on phasic pupillary signal post-retrieval probe in correctly rejected 
old objects versus hits to new objects (that is, old versus new) in the 
novelty-detection retrieval condition to examine evidence of a pupil 
old/new effect. We did not examine tonic lapses on phasic pupil diam-
eter post-retrieval probe given research that demonstrated strong 
anti-correlations between tonic and phasic pupil diameter that could 
lead to the over-interpretation of findings45.

After implementing the eye-tracking preprocessing steps (see 
‘Trial-level EEG and pupillometry data analyses’), phasic pupil diam-
eter was extracted for each trial using a −0.2-s pre-retrieval probe to 1 s 
post- probe epoch. Only epochs with full data were analysed, and data 
were segmented into 0.10-s time bins. As is typical in phasic pupillary 
work42–45, we then extracted a peak (that is, maximum) pupil diameter 
value from each of the 10 post-probe time bins for each trial. Baseline 
correction was implemented at the trial level by subtracting the 0.20-s 
tonic mean from each of the ten 0.10-s peak phasic-stimulus-locked 
bins. Noisy trial-level epochs were then removed within each run 
(±3.5 s.d. from phasic pupil), and the remaining trial-level epochs were 
z-scored within each run to account for time-on-task effects.

To examine evidence of a pupil old/new effect (Extended Data Fig. 6), 
we ran a repeated-measures ANOVA with a 2 (retrieval type: correct 
rejection to old object versus hit to new object) by 10 (time bin: for 
example, 0–0.10 s) model within novelty-detection cuing, in which 
the dependent variable was phasic pupillary signal. Significance was 
set to P < 0.05 for the ANOVAs and post hoc tests.

Trait-level analyses. To answer our third core question, we first exam-
ined the relationship between trait-level lapsing and d′ on the memory 
tasks. Previous research7,10 suggests that trait-level increases in tonic 
alpha power and variability in tonic pupil diameter are correlated with 
trait-level inattention. An increase in mean alpha power in the absence 
of external distraction is thought to reflect reduced suppression (that 
is, release from inhibition), and an increase in pupil variability is cor-
related with increases in mind wandering and decrements in psycho-
motor vigilance7,10. To quantify these trait-level metrics, we computed 
each participant’s mean alpha power and pupil diameter variability 
across the 1-s pre-goal epochs during memory retrieval. Only full ep-
ochs were used. For pupil variability, we computed a coefficient of 
variation: s.d. across each participant’s pre-goal epochs divided by 

the mean across the epochs, multiplied by 100. To standardize the key 
metrics, we z-scored the mean alpha power, pupil variability and d′ in 
each retrieval goal condition across participants. We then ran one-tailed 
Pearson correlations between mean alpha power and each d′, as well as 
pupil variability and each d′, setting significance to P < 0.05. One-tailed 
correlations were used for all trait-level analytics given our a priori 
hypotheses about directionality between lapsing and memory, and 
lapsing, MMT and memory.

To more directly assess relationships between trait-level lapsing and 
memory, we also used assays of lapsing from a canonical sustained 
attention task, the gradCPT23,46. We computed two assays of lapsing 
from the task: (1) CER, the proportion of responses to ‘no-go’ mountain 
trials over the total number of ‘no-go’ mountain trials; and (2) RTV, for 
responses to ‘go’ city trials, using a coefficient of variation metric (s.d. 
of the reaction time on city trials divided by the mean reaction time, 
multiplied by 100). Following previous work with the gradCPT23,46, 
we also computed canonical assays of vigilance (mean reaction time 
over five 2 min windows) and omission error rate (proportion of no 
responses on ‘go’ city trials divided by the total number of ‘go’ trials), 
which we report in the Supplementary Information. We z-scored all 
gradCPT metrics across participants and ran one-tailed Pearson cor-
relations: (1) between mean alpha power or pupil variability from the 
memory task and CER or RTV from the gradCPT, and (2) between the 
d′ from each retrieval task and CER or RTV from the gradCPT.

Given significant paths between lapsing and memory, lapsing and 
CER on the gradCPT and CER on the gradCPT and memory, two for-
mal participant-level mediation models were implemented on the 
z-scored metrics to examine whether the relationship between lapsing 
and memory on the memory task was partially explained by trait-level 
differences in sustained attention, as indexed by the gradCPT. Note that 
we computed a common metric of memory by averaging across the d′ 
values from the three retrieval goal conditions; the same findings were 
obtained with each d′ metric separately. One mediation model exam-
ined the indirect path from lapsing (mean alpha power) to gradCPT (a) 
and gradCPT to memory (b), as well as the direct path from lapsing to 
memory (c′). The other model examined the same paths but replaced 
mean alpha power with pupil variability. Each indirect path or mediation 
was computed as the product of a × b, with a resulting 95% confidence 
interval for each indirect path from 10,000 bootstrapped samples. 
The total, direct and indirect effects were also tested for significance 
at P < 0.05 (Fig. 2d).

As a final step, a confirmatory factor analysis tested for a trait-level 
relationship between sustained attention and memory. The ‘attention’ 
latent variable consisted of z-scored pre-goal lapsing from the memory 
task (mean alpha power and pupil variability) along with z-scored laps-
ing from the gradCPT (CER and RTV). The ‘memory’ latent variable con-
sisted of z-scored d′ for each retrieval goal condition from the memory 
task (conceptual, perceptual and novelty detection). Model fit and 
the covariance between components were tested for significance at 
P < 0.05. We treat this result as preliminary given that a higher sample 
size is sometimes recommended for confirmatory factor analysis.

To answer our fourth core question about trait-level cognitive 
differences correlated with MMT, we first assessed the relationship 
between MMT and memory. We computed a MMI score for each 
participant, using the standard formula24, and then z-scored across 
participants for standardization. For the main continuous approach, 
Pearson correlations quantified the relationship between MMT and 
each d′ from the memory tasks. Given previous research18, we also 
incorporated an extreme groups approach in which participants with 
the lowest 25% of MMI scores were treated as light media multitask-
ers and those with the top 25% of MMI scores were treated as heavy 
media multitaskers (Extended Data Fig. 7); we note that this analysis 
was treated as secondary given the sample size (20 per group). A 
2 (MMT: light versus heavy) by 3 (retrieval goal: conceptual versus 
perceptual versus novelty) mixed-factorial ANOVA was run with d′ as 
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the dependent variable, and significance was set to P < 0.05 (Extended 
Data Fig. 7a).

We then adopted the same continuous and extreme groups 
approaches to assess the relationship between MMT and attention 
(Extended Data Fig. 7b, c). In terms of attention, we examined z-scored 
gradCPT performance (CER and RTV) and lapsing on the memory task 
(mean alpha power and pupil variability).

On the basis of significant paths between MMT and memory, MMT and 
lapsing and lapsing and memory, we leveraged four participant-level 
mediation models to examine whether the relationship between MMT 
and memory is partially explained by trait-level differences in sustained 
attention. An average d′ across the three retrieval measures was used; 
again, the same findings were found when examining each d′ sepa-
rately. The mediation models tested the indirect path from MMT to each 
gradCPT and attention lapsing metric (CER, RTV, mean alpha power 
or pupil variability (a)), and from each gradCPT and lapsing metric to 
memory (b), as well as the direct path from MMT to memory (c′). Each 
indirect path or mediation was computed as the product of a × b, with 
a resulting 95% confidence interval for each indirect path from 10,000 
bootstrapped samples. The total, direct and indirect effects were also 
tested for significance at P < 0.05.

The primary analyses described above addressed our fourth core 
question. We also took three additional steps for completeness. First, 
we used canonical formulas to compute a trait-level score for each 
self-report questionnaire and implemented an exploratory factor 
analysis to quantify how MMT relates to these other constructs. The 
mean across items was used for ADHD, attentional control distractibility 
and shifting and deliberate and spontaneous mind wandering, and the 
sum across items was used for BIS-11 subcomponents (which included 
reverse-scoring of appropriate items), the attention-related cogni-
tive error scale, memory failure scale and mindful attention awareness 
scale-lapses only questionnaires. Each questionnaire was z-scored across 
participants. A categorical frequency of video game playing (more than 
5 h per week of action video games) was used for video-game usage; 
note that we did not perform further analyses on this questionnaire 
because under 10% of the sample endorsed video-game playing. For the 
exploratory factor analysis, we implemented a principal component 
analysis that extracted latent factors from the questionnaire scores and 
maximized the loading of each score on one factor and minimized its 
loading on the other factors. To account for collinearity and sampling 
distribution adequacy, we qualitatively examined correlations among 
questionnaire scores and quantitatively assessed the determinant, 
Kaiser–Meyer–Olkin value and Bartlett test statistics and the commu-
nality of each questionnaire score. We then examined factor output 
with a Scree plot before and after extraction, and after varimax rota-
tion, and selected a three-factor model given that three factors showed 
eigenvalues of >1.0. We then assessed which questionnaire scores with 
a communality above 0.5 loaded on each of the three extracted factors. 
Although we adopted typical steps and parameters for the exploratory 
factor analysis (that is, the principal component analysis), our analysis 
should be treated as preliminary given the sample size. Subsequently, 
Pearson correlations between the other questionnaire scores and the 
gradCPT and memory metrics were examined to assess whether addi-
tional variance not captured by MMT could explain task-based attention 
and memory assays. Significance was set to P < 0.05. As a final step, we 
verified that the same findings for trait-level analytics were found when 
we computed lapsing assays from our memory task that incorporated 
mean alpha power and pupil variability across (1) pre-retrieval probe 
epochs alone, and (2) both pre-goal and pre-retrieval probe epochs.

Data and analytic code are publicly available47,48.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data that support the findings of this study are publicly available via 
the Open Science Framework47 with identifier zj7tb (https://osf.io/
zj7tb). Data used in the preparation of this manuscript are also publicly 
available from the National Institute of Mental Health (NIMH) Data 
Archive (NDA) (https://doi.org/10.15154/1519022)48. The source data 
underlying all figures are provided as a Source Data file. Source data 
are provided with this paper.

Code availability
Analytic code that support the findings of this study are publicly avail-
able via Open Science Framework47 with identifier zj7tb (https://osf.
io/zj7tb).
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Extended Data Fig. 1 | Experimental design. a, Schematic of the goal-directed 
memory task with EEG and pupillometry measurements. b, Schematic of 
electrode clusters from which alpha or ERP signals were extracted for the 

respective analyses; electrode clusters are illustrated on a 128-channel net. 
Pupil diameter from the right eye (top right) was recorded concurrently using 
an eye-tracking system. L, left; R, right.
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Extended Data Fig. 2 | Pre-goal attention lapses relate to canonical neural 
signals of recollection- and familiarity-based memory as assayed by 
grand-average left-lateralized Parietal Old/New and FN400 ERP effects, 
respectively. a, Evidence of a peak Parietal Old/New signal (indicated by the 
black arrow) in the 500–600-ms post-probe window as a function of memory 
outcome in conceptual and perceptual source-retrieval trials. b, Trial-level 
interaction between pre-goal attention lapses and the Parietal Old/New signal 
during remembered (source hit) and forgotten (miss) trials. c, Evidence of a 
peak FN400 signal (indicated by the black arrow) in the 400–500-ms 
post-probe window as a function of memory outcome in novelty-detection 
trials. d, Trial-level interaction between pre-goal attention lapses and FN400 
signal on correctly endorsed new items (hits) compared with misses. For 

visualization, quintiles are shown for the relationship between pre-goal lapsing 
and ERP signal; statistics included an interaction term for retrieval goal state 
(for Parietal Old/New) and treated pre-goal lapsing and the ERP signals 
continuously in trial-level mixed models. y-axis units are z-scores. Data are 
mean ± s.e.m. Note that z-scoring within run and time-binning in 0.1-s (100-ms) 
intervals reduces smaller temporal effects that are sometimes exhibited in 
grand-average ERP plots (for visualization of grand-average ERP plots 
downsampled to 0.01-s intervals (10-ms), see Extended Data Fig. 4). CRold, 
correct rejection of old item; CRnew, correct rejection of new item; FAold, false 
alarm to old item; FAnew, false alarm to new item. n = 75 participants from a 
single independent experiment.



Extended Data Fig. 3 | Evidence of mean peak Parietal Old/New signal in the 
500–600-ms post-probe window as a function of memory outcome in 
source retrieval trials. The mean peak Parietal Old/New signal is indicated by 
the black arrow. a, b, Data are split by conceptual (a) and perceptual (b) source 
trials. CRold, correct rejection of old item; FAold, false alarm to old item. For 
conceptual cuing, hits and misses are for conceptually studied items, and 
correct rejections and false alarms are for perceptually studied items. For 
perceptual cuing, hits and misses are for perceptually studied items, and 
correct rejections and false alarms are for conceptually studied items. n = 75 
participants from a single independent experiment.
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Extended Data Fig. 4 | Grand-average left-lateralized ERPs revealing 
recollection-based Parietal Old/New and familiarity-based FN400 
memory effects. Data were down-sampled to 10-ms time-bin intervals.  
a, b, The same profile of findings is observed as with the 100-ms time-bins (see 
main text), such that evidence of a peak Parietal Old/New signal (indicated by 
the black arrow) is exhibited 500–600-ms post-probe onset as a function of 
memory outcome in conceptual and perceptual source-retrieval trials (a) and 
evidence of a peak FN400 signal (indicated by the black arrow) is exhibited 
400–500-ms post-probe onset as a function of memory outcome in 
novelty-detection trials (b). y-axis units are within-run z-scores. n = 75 
participants from a single independent experiment.



Extended Data Fig. 5 | Trait-level differences in sustained attention at 
encoding help to explain why individuals are more prone to remembering 
or forgetting. a, b, Greater pre-goal attention lapsing at encoding is correlated 
with greater pre-goal attention lapsing at retrieval (a) and lower d′ on the 
memory task (b). For visualization, raw scores are plotted; statistics included 

z-scored assays with Pearson correlations. n = 75 participants for alpha retrieval 
data and n = 80 participants for all other data from a single independent 
experiment. These trait differences in attention at encoding do not fully 
explain the relationship between the trait differences in attention at retrieval 
and memory ability (Supplementary Information).
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Extended Data Fig. 6 | Phasic pupil and memory effects. Evidence of a phasic 
pupil old/new effect in novelty-detection trials 300–500 ms post-probe, 
particularly between correctly rejected old objects versus hits to new objects. 
The mean peak difference is at 400 ms post-probe (indicated by the black 
arrow). x-axis units are 100-ms time-bin intervals; y-axis units are within-run 
z-scores. n = 75 participants from a single independent experiment.



Extended Data Fig. 7 | Key results from extreme group analyses of 
multitasking, memory and sustained attention for light and heavy media 
multitaskers. a–c, Heavy media multitaskers exhibited lower d′ on the 
memory tasks (a), more attention lapses on the gradCPT (b) and more evidence 
of attention lapsing (assayed by mean alpha power and pupil variability) on the 
memory task (c), relative to light media multitaskers. Data are mean ± s.e.m. 

from a single independent experiment. n = 18 light and n = 18 heavy media 
multitaskers for alpha data; n = 20 light and n = 20 heavy media multitaskers for 
all other data. d, Histogram of scores (n = 80) on the MMI, illustrated by the 
bottom 25% of scores (light media multitaskers), the middle 50% of scores 
(intermediate media multitaskers) and the top 25% of scores (heavy media 
multitaskers). LMM, light media multitasker; HMM, heavy media multitasker.
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Extended Data Table 1 | Mnemonic rates as a function of retrieval goal

Data are mean ± s.e.m. for each type (that is, rate) of memory outcome for each goal cue condition at retrieval. Note that the miss rate for 
each condition is the complement of hit rate (1 − hit rate); and the false alarm rate to old items or new items is the complement of the respec-
tive correct rejection rate (1 − correct rejection rate). All analyses in the manuscript were computed over d′ values (main text and Supplemen-
tary Information), rather than mnemonic outcome rates, because the d′ metric accounts for response bias.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection All tasks were run using the Psychophysics Toolbox (version 3; Brainard, 1997) in MATLAB (version 2019a 9.6). In-house code was 
implemented to tag metrics related to EEG, pupil, memory, and sustained attention with Netstation software (version 5.4). Self-report 
questionnaires were completed paper-and-pencil and on the Qualtrics Survey platform (Qualtrics, Provo, Utah, USA) with in-house 
design.

Data analysis The R environment (version 3.3.3) and SPSS (version 26) were leveraged for data preprocessing, statistics, and visualization. The following 
R packages were primarily utilized with in-house scripts: openxlsx, tidyverse, dplyr, lme4, lmerTest, mediation, lavaan, ggplot2, ggpubr, 
and eyetrackingR. Various toolboxes in MATLAB were also leveraged with in-house scripts for various reasons: the SHINE toolbox (version 
1; Willenbockel et al., 2010) to luminance- and chrominance-control stimuli, the BLINKER toolbox (version 1.1.1; Kleifges et al., 2017) to 
identify blink artifacts in EEG data, and the EEGLAB toolbox (version 14.1.1b; Delorme & Makeig, 2004) to preprocess EEG data. Analytic 
code is publicly available and archived via Open Science Framework: https://osf.io/zj7tb. Identifier is zj7tb.
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- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data are publicly available and archived via Open Science Framework: https://osf.io/zj7tb. Identifier is zj7tb. Data used in the preparation of this manuscript are also 
publicly available from the National institute of Mental Health (NIMH) Data Archive (NDA). DOI is 10.15154/1519022. The source data underlying all figures are 
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Study description Data are quantitative from EEG, pupil, behavioral, and questionnaire-based measures. We tracked and measured spontaneous 
fluctuations in attention and relationships to goal coding strength, as well as behavioral and neural signals of different types of 
remembering. A within-subject experimental manipulation of goal coding was included at encoding and at retrieval, so that we could 
assess how spontaneous fluctuations in attention predicted coding of goals and different types of memory.

Research sample Eighty young adults enrolled in the study (49 female; Mean age = 21.70 years, SD = 1.48, range = 18-26). They were members of Stanford 
University or from the surrounding community. The sample was representative of demographics at Stanford University. This sample was 
chosen because our research questions involved interactions between attention, memory, and media multitasking in young adults.

Sampling strategy Random sampling was implemented. A sample size of 80 participants was chosen based on prior work documenting this number was 
adequate for a reliable individual differences approach (Gignac & Szodorai, 2016). Because trial-level analyses were completed within 
subject, the sample size was focused on trait-level robustness. Data saturation was not applicable.

Data collection During encoding and retrieval, EEG and pupillary data were recorded concurrently in an electric- and sound-proof chamber to minimize 
artifacts. The participant completed encoding and retrieval in the chamber alone, and real-time EEG, eyetracking, behavioral data, and 
stimulus display were monitored from an outside bay by the experimenter. EEG data were recorded with a 128-channel HydroCell Sensor 
Net (Electrical Geodesics, Eugene, Oregon, USA) at a sampling rate of 1000Hz through a Netstation 300 amplifier with 24-bit resolution/
sample and Netstation 5.4 software. Impedance was set at <50 kV and checked approximately every 20m. Pupillary data from the right 
eye were recorded via an Eyelink 1000 Eye Tracker System (SR Research, Ottawa, Canada) at a sampling rate of 1000Hz. Participants 
were seated 60cm from the eyetracker and stimulus monitor with a chin mount in the chamber. Eyetracking calibration and validation 
steps were completed every ~20m with impedance checks. Participants made task responses with a keyboard. After the memory tasks, 
participants completed 9 self-report questionnaires by hand and on the computer, and the sustained attention task (gradCPT) on the 
computer, in the chamber. Only the participant and experimenter were present. Each participant completed the study alone in a sound- 
and electric-proof chamber, so experimenter was not blind to study hypothesis during data collection.

Timing April 9, 2018 (start) - November 12, 2018 (stop)

Data exclusions Exclusion criteria were pre-established. <10 hits or <10 misses in each retrieval condition for trial-level analyses, blinking/other visual 
artifacts from EEG and pupillometry for trial-level and trait-level analyses, and failing to complete all tasks and questionnaires in the study 
for trial-level and trait-level analyses. Five participants (of 80) were excluded from trial-level analyses involving EEG assays due to 
retrieval outcomes and technical artifacts. Five participants (of 80) were excluded from trait-level analyses involving EEG assays due to 
technical artifacts. No participants were excluded for failing to complete the study.

Non-participation No participants dropped out or declined participation.

Randomization Participants were not allocated into between-subject experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants were recruited from online advertisements at Stanford University and the surrounding community, were right-
handed, and had normal or corrected-to-normal vision, no history of neurological or psychological impairment, and no current 
medication. There was no self-selection bias in recruitment. 

Ethics oversight Stanford University Research Compliance Office (Human Subjects Research and IRB)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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