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Abstract 

A key feature of human task learning is shared task representation: Simple, subordinate tasks 

can be learned and then shared by multiple complex, superordinate tasks as building blocks to 

facilitate task learning. An important yet unanswered question is how superordinate tasks 

sharing the same subordinate task affects the learning and memory of each other. Leveraging 

theories of associative memory, we hypothesize that shared subordinate tasks can cause both 

interference and facilitation between superordinate tasks. These hypotheses are tested using a 

novel experimental task which trains participants to perform superordinate tasks consisting of 

shared, trained subordinate tasks. Across three experiments, we demonstrate that sharing a 

subordinate task can (1) impair the memory of previously learned superordinate tasks and (2) 

integrate learned superordinate tasks to facilitate new superordinate task learning without 

direct experience. These findings shed light on the organizational principles of task 

knowledge and their consequences on task learning. 

 

Keywords: Task learning, generalization, integration, proactive interference, retroactive 

interference 
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Introduction 

Humans are able to learn and retain a large number of tasks. Each of us is proficient in a wide 

array of tasks and can leverage this knowledge to acquire new skills. In fact, most new skills 

we develop involve components of already mastered abilities. For example, learning to play 

pickle ball may tap our knowledge of tennis and volleyball and learning how to use new 

teleconference software is faster for a person who already knows how to use a webcam. 

However, how the memory of tasks is organized to support the efficient transfer of task 

learning remains largely unknown. 

In theory, learned tasks can be used as building blocks to accelerate the learning of more 

complex tasks (Musslick & Cohen, 2021; Musslick et al., 2017). Moreover, reusing learned 

task knowledge can reduce redundancy in task representation (e.g., remove the need to store a 

separate copy of the knowledge of webcam operation for every task using a webcam). This 

organizational principle that superordinate tasks can share subordinate tasks leads to a 

hierarchical architecture of task representations, similar to hierarchical representation of 

knowledge within a task (Collins, Cavanagh, & Frank, 2014; Kikumoto & Mayr, 2018; 

Schumacher & Hazeltine, 2016) and the proposed hierarchical organization of the prefrontal 

cortex (Badre, 2008; Badre & Nee, 2017; Koechlin & Summerfield, 2007). However, little 

empirical work has examined how shared components of tasks affects their learning. 

Sharing a subordinate task representation makes superordinate tasks interdependent. It is 

currently unknown whether/how this interdependency affects memory organization of 

superordinate tasks. Conceptually, a superordinate task should consist of associations among 

subordinate tasks. Therefore, leveraging concepts from the associative memory literature, we 

hypothesize that two mnemonic effects will occur when superordinate tasks share subordinate 

tasks. First, sharing a subordinate task may cause interference between superordinate tasks, as 
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in memory interference effects (e.g., Badre & Wagner, 2005; Bramao, Jiang, Wagner, & 

Johansson, in press; Darby & Sloutsky, 2015; Martínez, Villar, Ballarini, & Viola, 2014; 

Underwood, 1957; Wixted, 2004). Specifically, if two superordinate tasks are learned 

sequentially, the memory of the first superordinate task may interfere with the learning of the 

second superordinate task, a phenomenon termed proactive interference. Moreover, the 

learning of the second superordinate task may also impair the memory of the first 

superordinate task, a phenomenon termed retroactive interference.  

Second, sharing a subordinate task may cause the integration of the two superordinate 

tasks, leading to (indirect) associations among their non-overlapping subordinate tasks, 

analogous to computational simulations of partially overlapping associative memories 

(Kumaran & McClelland, 2012). This integration may facilitate the learning of a new 

superordinate task consisting of the non-overlapping subordinate tasks. In this way, task 

learning can occur without direct experience (i.e., transfer or zero-shot learning, see Bejjani, 

Zhang, & Egner, 2018; Jiang et al., 2020; Koster et al., 2018; Kuhl, Shah, DuBrow, & 

Wagner, 2010; Shohamy & Wagner, 2008; Wimmer & Shohamy, 2012; Zeithamova, 

Dominick, & Preston, 2012; Zeithamova & Preston, 2010). For example, superordinate tasks 

AB (i.e., consisting of subordinate tasks A and B) and BC can be integrated by their shared 

subordinate task B. This integration will facilitate the learning of a new superordinate task 

AC, as A and C have been associated by integration. 

To test these hypotheses, we designed a novel hierarchical task learning paradigm with 

superordinate tasks that consist of shared subordinate tasks (Figs. 1 and 2). We first validate 

the learning of subordinate and superordinate tasks in Experiment 1. Importantly, we 

demonstrate that learning of superordinate tasks involves encoding of associations between 

involved subordinate tasks. We then show retroactive interference and integration effects in 
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hierarchical task learning in Experiment 2a. The findings are replicated in Experiment 2b. 

These findings further demonstrate how partially overlapping between-subordinate task 

associations, established from superordinate task learning, can affect the learning and 

memory of complex tasks. Taken together, we extend classic effects in declarative memory 

(e.g., association, interference and generalization) to memory of skills. These findings 

indicate that the two different types of memory may share similar underlying mechanisms. 

These findings also shed light on the organizational principles of task knowledge and their 

consequences on task learning. 

 

Experiment 1 

In a hierarchical organization of task knowledge, learning of superordinate task can benefit 

from reusing knowledge of learned subordinate tasks. It remains unclear whether learning 

occurs at the superordinate task level. On the one hand, the superordinate task can be viewed 

as a collection of subordinate tasks. If all subordinate tasks are learned, no learning is needed 

at the superordinate task level. On the other hand, superordinate task may maintain a task 

structure of compositional relations to subordinate tasks. Performing superordinate tasks may 

cause learning at the superordinate task level (e.g., strengthening compositional relations). 

We address this question by testing (1) whether participants can learn the subordinate and 

superordinate tasks with the experimental procedure and (2) whether the learning of 

superordinate tasks occurs at the superordinate level (e.g., not only due to performance 

improvement in subordinate tasks) while controlling for performance at subordinate level and 

stimulus and response configuration learning. To preview the results, our findings are 

consistent with both forms of learning. To our knowledge, this provides the first evidence 

supporting the notion that the learning of complex tasks involves strengthening of their 
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compositional information at superordinate level and learning at subordinate task level, thus 

supporting the proposal that tasks can be hierarchically represented. 

Method 

Participants.  

For this experiment, the target sample size was 50 based on a previous study on 

generalization effect of cognitive control (Jiang et al., 2020). A total of 58 participants 

completed the experiment through Amazon’s Mechanical Turk online, with monetary 

compensation of $8 for the whole experiment. Eight participants were removed from analysis 

due to technical difficulty during data transmission (1 participant), low accuracy (below 60%) 

in either phase (5 participants), in test stage, or due to more than half of trials in any of the 

blocks in superordinate task phase being removed in data trimming process (2 participants; 

see below). The final sample consisted of 50 participants (21 females, 29 males; age: M = 

34.80 years, sd = 9.75). The study was approved by the University of Iowa Institutional 

Review Board. 
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Figure. 1. Stimulus features and cues and target stimuli used in all experiments. There were 

six stimulus features with two possible values each. Cue stimuli indicated one stimulus 

feature presented as text or image. The presentation type (text or image) was randomized on 

each trial. Target stimuli (see rightmost column for two examples) consisted of all six 

stimulus features.  

Figure 2. Trial structure of subordinate and superordinate tasks. (A) Illustration of a 

subordinate task. In subordinate tasks, participants first encounter a single cue that contains 

prediction of upcoming stimulus. After 0.5 s, participants see the actual stimulus and decide 

whether the cue correctly described the stimulus by pressing ‘D’ or ‘F’ key. After the 

response, visual feedback is provided. (B) Illustration of a superordinate task. Here, 

participants encounter two cues simultaneously, and each cue contain different feature 
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prediction of upcoming stimulus. After a 0.5 s delay, participants see the stimulus and decide 

whether only one cue is correct. The rest of the design is identical to the subordinate task. 

 

Stimuli 

The stimuli consisted of six features, each with two possible values (Fig. 1). The features and 

their possible values were: shape (oval or rectangle), color (green or red), outline (thick or 

thin), shadow (cast upward or downward), tilt (clockwise or counterclockwise) and fill 

pattern (parallel or diagonal). The cue stimuli indicated the value of one feature. The task 

stimuli are combinations of all six features. This design leads to 64 (26) unique target stimuli. 

The size of the target stimuli was 177 (width) by 280 (height) pixels. The size of image cues 

was approximately 43 (width) by 58 (height) pixels. The size of font for text cues was 40 

pixels.  

Procedure 

Four features were randomly chosen from the six features as task-relevant features for each 

participant, so only four subordinate tasks were used. Participants started the experiment by 

reading the instructions presented on the screen with multiple slides. They then completed 

two phases: a subordinate task phase (4 blocks of 64 trials each) followed by a superordinate 

task phase (6 blocks of 48 trials each). The blocks were separated by a self-paced rest period 

and then a 5-second on-screen countdown to the next block. 

For the subordinate task phase, each trial started with the presentation of a cue stimulus 

indicating a single feature value for 1,500 ms (Fig. 2A). This cue could be an image or text. 

Two cue types were used to make the experiment compatible with future neuroimaging 

research with decoding analysis as we assume that using two cue types will prevent visual 
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information of cues from confounding decoding results. Note that we do not expect any 

behavioral effects influenced by using different cue types in this research. The cue type was 

randomized on a trial-by-trial basis. The cue stimulus was followed by a blank screen delay 

of 500 ms. The target stimulus was then presented in the center of the screen and remained 

until a response was detected.  

Participants were required to report whether the cue stimulus correctly predicted the 

feature in the target stimulus by pressing the appropriate keyboard button (‘correct’ = ‘D’, 

and ‘incorrect’ = ‘K’). This response mapping was constant across-subjects. After the 

response, a blank screen was presented for 500 ms followed by a feedback screen. The 

feedback presented the word ‘correct’ or ‘incorrect’ based on the correctness of the response. 

Additionally, starting from the second block, the screen also displayed the participant’s 

overall accuracy in this phase.  

For all experiments, subordinate tasks were evenly distributed within each block so that 

no subordinate task was practiced more than any other. The subordinate task phase trained 

participants to perform subordinate tasks, which were match/mismatch tasks defined by the 

cued feature (Fig. 2A shows a fill pattern match/mismatch task).   

Note that the subordinate tasks can be represented as either rules or collections of 

individual cue-stimulus-response associations (Sloman, 1996). However, given the large 

number of unique cue-stimulus combinations (4 cue dimensions × 2 levels/cue × 64 stimuli), 

rule representations are more likely used in this study. We assume that, for the subordinate 

tasks, practice improves the application of these rules to the current stimulus to facilitate 

performance (Brass, Liefooghe, Braem, & De Houwer, 2017). The rules specify which 

stimulus features are task relevant and thus can guide cognitive control to direct selective 

attention to the appropriate feature. Recent theoretical accounts posit that cognitive control is 
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dynamic and adapts to specific task demands (Ritz, Leng, & Shenhav, 2021; Shenhav, 

Botvinick, & Cohen, 2013). Within this framework, an important part of learning the 

subordinate tasks is the optimization of cognitive control of selective attention. Better applied 

cognitive control will consequently improve performance. Other learning occurring may 

involve more efficient processing of stimulus and response generation. 

The trial structure in the superordinate task phase was identical to the subordinate task 

phase except for two changes (Fig. 2B). First, two cue stimuli were presented simultaneously 

instead of one. They predicted the values of two distinct features of the upcoming target 

stimulus. The presentation duration increased to 3,000ms to give participants more time to 

process the additional cue. Second, participants were required to make a response using the 

“exclusive or” rule, that is, whether one and only one of the two cues correctly predicted the 

target stimulus. In other words, if both cues were correct or if both were incorrect, 

participants should press the ‘K’ button. Otherwise, participants were required to press the 

‘D’ button. This rule was chosen to ensure that participants must perform both subordinate 

tasks (i.e., evaluating both cues) to make the correct response. Tasks performed in this phase 

were superordinate tasks, which were built upon two practiced subordinated tasks (e.g., Fig. 

2B shows a fill pattern-color superordinate task). 

The superordinate task phase was further divided into two stages: a learning stage (block 

1-4) and a test stage (block 5-6) (Fig. 3A). The structure of the trials was identical for the two 

stages; only the task combinations differed. In the learning stage, participants performed two 

superordinate tasks (denoted AB and CD, indicating the subordinate tasks involved) each 

composed of two of the four subordinate tasks trained in the subordinate task phase (denoted 

A-D). For all experiments, superordinate tasks were evenly distributed within a block to 

avoid familiarity with subordinate tasks from confounding performance in superordinate 
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tasks. In the test stage, participants had already learned superordinate tasks (AB and CD), as 

well as new superordinate tasks (AC, AD, BC and BD). Learned and new tasks were evenly 

distributed in this stage to avoid differences in the degree of exposure to subordinate tasks 

from confounding the superordinate task performance. Importantly, the learned and new 

superordinate tasks shared the same subordinate tasks and only differed in the composition of 

their subordinate tasks. Therefore, behavioral difference between learned and new 

superordinate tasks can only be attributed to the superordinate level of the task representation 

hierarchy. 

The superordinate task was designed to simulate real-life tasks that require completing 

multiple sub-tasks (e.g., making coffee involves sub-tasks of grinding coffee beans and 

boiling water.). A key form of learning that is unique to superordinate tasks is the association 

between subordinate tasks. Specifically, during the execution of a superordinate task, the co-

occurrence of the two subordinate tasks will trigger binding between them (DuBrow & 

Davachi, 2016; Eichenbaum, 2014; Zeithamova & Preston, 2017). The association between 

subordinate tasks provides structural information for cognitive control to optimize the 

coordination and execution of the subordinate tasks, leading to performance improvement. 

Much of the previous research has employed hierarchical rules in which a higher-level rule 

determines which of the several lower-level rules will be used to generate response (e.g., 

Badre, Hoffman, Cooney, & D'esposito, 2009; Collins et al., 2014; Theves, Neville, 

Fernández, & Doeller, 2021). The branching at the higher-level rule will result in only a part 

of lower-level rules being executed. As our goal is to establish an association between 

subordinate tasks, we applied an exclusive or rule to ensure that both subordinate tasks must 

be executed to determine the correct response. As with subordinate tasks, the large number of 

cue-stimulus combinations make it more likely for the participants to associate the two 
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subordinate tasks than encoding individual cue-stimulus-response associations.   

Data Analyses. We first removed trials that exceed 4,000ms or less than 300ms/500ms for 

subordinate/superordinate task in response time (RT). Additionally, within each participant, 

slow trials that had RT above 3 standard deviations from the median were removed. The 

remaining trials were used in the accuracy analysis. For the RT analysis, only correct trials 

were used. In all experiments, all statistical tests were two-tailed. 

    To test the learning effect of subordinate and superordinate tasks, analyses were performed 

collapsed across tasks. Trimmed data from the subordinate task phase and the learning stage 

of the superordinate task phase were analyzed using linear mixed model analysis and R 

software version 4.1.0 (R Core Team, 2020) with lme4 (Bates, Kliegl, Vasishth, & Baayen, 

2015). The formula for this analysis is as follows: 

𝑦𝑦𝑖𝑖 = (𝛽𝛽0 + 𝑢𝑢𝑖𝑖1 ) + (𝛽𝛽1 + 𝑢𝑢𝑖𝑖2)𝑥𝑥 + 𝜖𝜖𝑖𝑖  

where 𝑦𝑦𝑖𝑖 refers to a value of behavior measures (either RT or accuracy) for a participant 𝑖𝑖. 𝛽𝛽0 

and 𝛽𝛽1 each represent fixed effects for the intercept (𝛽𝛽0) and slope (𝛽𝛽1) that are consistent 

among participants. Additionally, 𝑢𝑢𝑖𝑖1  and 𝑢𝑢𝑖𝑖2 represent random effects for the intercept and 

slope that can vary randomly for each participant. The term 𝑥𝑥  represents block, and 𝜖𝜖𝑖𝑖 

reflects a residual effect. In this model, the effect of interest was the fixed-effect of slope, 𝛽𝛽1, 

that indicates how the behavioral measure changes over blocks. Additionally, we conducted 

logistic mixed effect model analysis to test the learning effect in accuracy over trials more 

thoroughly (Table S1). Overall, we replicated all the findings from the linear mixed-effect 

model with averaged accuracy data (see Table S1 in the online supplemental material). 

 To test the possibility of exponential trend in learning curve, we conducted a non-

linear mixed effect model using simple exponential function. The formula for this analysis is 
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as follows: 

𝑦𝑦𝑖𝑖 = (𝛽𝛽0 + 𝑢𝑢𝑖𝑖1 ) − (𝛽𝛽1 + 𝑢𝑢𝑖𝑖2) ∗ 𝑒𝑒(𝛽𝛽2+ 𝑢𝑢𝑖𝑖3)∗𝑥𝑥 +  𝜖𝜖𝑖𝑖  

where 𝑦𝑦𝑖𝑖 refers to a value of behavior measures (either RT or accuracy) for a participant 𝑖𝑖. 𝛽𝛽0, 

𝛽𝛽1, and 𝛽𝛽2 each represent fixed effects for the intercept (𝛽𝛽0), saturation point (𝛽𝛽1), and 

learning rate (𝛽𝛽2) that are consistent among participants. Additionally, 𝑢𝑢𝑖𝑖1 , 𝑢𝑢𝑖𝑖2, and 𝑢𝑢𝑖𝑖3 

represent random effects for the intercept, saturation point, and learning rate that can vary 

randomly for each participant. The term 𝑥𝑥 represents block, and 𝜖𝜖𝑖𝑖 reflects a residual effect. 

In this model, the effects of interest were the fixed-effects 𝛽𝛽0, 𝛽𝛽1, and 𝛽𝛽2 that indicate how 

the behavioral measure changes over blocks. Overall, the non-linear model provided a better 

fit of the subordinate task RT in Exp1 and Exp2a, and accuracy in Exp 2b. Additionally, we 

found a better fit of superordinate tasks for RTs in odd blocks of Exp2b. In all other cases, the 

linear model provided a better fit than the non-linear model. (See Table S2 and S3 in the 

online supplemental materials). Therefore, there is no conclusive evidence supporting a better 

fit for the non-linear model. 

Crucially, learning of superordinate tasks was further tested between learned and new 

superordinate tasks in the test stage. To this end, we first tested accuracy between learned and 

new superordinate tasks using paired t-tests. For RT, a trial-level approach was applied using 

Matlab 2019b. First, we built a nuisance effect matrix, each row of which represented the 

trial-wise status of response, response repetition, post-error, cue modality (text or image), 

task repetition, and cue modality repetition. To remove the influence of individual differences 

in subordinate tasks and their temporal change on superordinate task RT, eight additional 

regressors, encoding whether each of the four subordinate tasks was performed on each trial 

and their temporal drift, were also included in the nuisance effect matrix. The nuisance effect 

matrix was then regressed against trial-wise RT. To control for the non-normal distribution of 
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RTs while making the results more interpretable, we computed the median of the residuals for 

learned and new superordinate tasks for each participant and used the medians of the 

residuals for paired t-tests. Note that although in theory this trial-level analysis can be applied 

to accuracy data using logistic regression, the high overall accuracy did not provide sufficient 

error trials to obtain robust estimates for logistic regression. 
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Figure 3. Design and results of Experiment 1. (A) Illustration of experimental design. (B) 

Individual RT (left) and accuracy (right) in subordinate task phase, imposed with group mean 

and SEM plotted as a function of block. (C) Data from the training stage of the superordinate 

task phase. Panel arrangements are identical to (B). (D) Individual RT (left) and accuracy 

(right) at the test stage of the superordinate task phase, imposed with group mean and SEM 

plotted as a function of experimental condition (learned or new tasks). 
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Table 1. 
 

Exp 
Task 

Behavior 
Training 

Test 
1 Block 

2 Block 
3 Block 

4 Block 
5 Block 

6 Block 
7 Block 

8 Block 
Learned/G

en 
N

ew
/C

on 

Exp1 

Sub 

R
T 

(m
s) 

1069.61 
(17.11) 

981.64 
(9.80) 

957.00 
(8.13) 

914.51 
(9.95) 

N
A 

N
A 

N
A 

N
A 

N
A 

N
A 

Acc (%
) 

89.10 
(0.55) 

91.69 
(0.61) 

94.04 
(0.46) 

95.73 
(0.60) 

N
A 

N
A 

N
A 

N
A 

N
A 

N
A 

Sup 

R
T 

(m
s) 

1867.59 
(29.36) 

1786.67 
(24.68) 

1747.27 
(24.24) 

1687.70 
(25.39) 

N
A 

N
A 

N
A 

N
A 

-135.46 (8.98) 
-19.18 
(8.98) 

Acc (%
) 

82.29 
(1.29) 

86.39 
(0.86) 

88.97 
(0.86) 

91.35 
(1.02) 

N
A 

N
A 

N
A 

N
A 

90.31 (0.49) 
90.72 
(0.49) 

Exp2a 

Sub 

R
T 

(m
s) 

1046.12 
(23.50) 

952.10 
(23.51) 

867.62 
(11.72) 

846.01 
(12.34) 

820.24 
(9.33) 

831.64 
(8.98) 

798.45 
(12.23) 

781.14 
(13.14) 

N
A

 
N

A
 

Acc (%
) 

87.08 
(1.01) 

90.01 
(0.70) 

90.25 
(0.50) 

90.94 
(0.64) 

92.44 
(0.60) 

92.71 
(0.57) 

92.79 
(0.50) 

93.48 
(0.52) 

N
A

 
N

A
 

Sup 

R
T 

(m
s) 

1811.19 
(25.95) 

1752.69 
(25.59) 

1739.49 
(15.76) 

1667.07 
(17.21) 

1699.61 
(22.29) 

1573.45 
(21.01) 

1624.94 
(18.42) 

1554.71 
(16.59) 

-87.36 
(10.18) 

-43.32 
(10.18) 

Acc (%
) 

81.30 
(1.43) 

86.24 
(1.29) 

88.58 
(0.82) 

89.75 
(0.97) 

88.55 
(0.76) 

90.64 
(0.85) 

88.81 
(0.84) 

91.61 
(0.83) 

87.03 
(0.44) 

86.72 
(0.44) 

Exp2b 

Sub 

R
T 

(m
s) 

1291.88 
(17.09) 

1144.30 
(13.86) 

1134.05 
(10.68) 

1107.70 
(9.16) 

1077.94 
(11.58) 

1064.67 
(10.93) 

1041.96 
(14.62) 

1052.33 
(12.23) 

N
A

 
N

A
 

Acc (%
) 

90.92 
(0.74) 

92.79 
(0.49) 

94.12 
(0.33) 

93.47 
(0.39) 

94.24 
(0.35) 

94.76 
(0.41) 

93.88 
(0.46) 

95.06 
(0.44) 

N
A

 
N

A
 

Sup 

R
T 

(m
s) 

2130.24 
(27.78) 

1995.89 
(34.40) 

2018.85 
(22.07) 

1911.98 
(14.20) 

1976.36 
(22.07) 

1884.62 
(18.10) 

1973.40 
(19.39) 

1908.01 
(17.87) 

-75.67 
(11.30) 

-47.19 
(11.30) 

Acc (%
) 

86.89 
(0.89) 

91.89 
(0.47) 

89.46 
(0.55) 

92.17 
(0.60) 

90.53 
(0.53) 

92.50 
(0.50) 

91.52 
(0.72) 

91.90 
(0.60) 

89.06 
(0.40) 

88.63 
(0.40) 
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Summary statistics of behavioral performance as a function of block (for training stage) and 

condition (for test stage). For test phase, residual RTs are shown. NA = not appliable; Sub = 

subordinate task phase; Sup = superordinate task phase; Learned = learned superordinate 

tasks in Exp 1; New = new superordinate tasks in Exp 1; Gen = generalizable superordinate 

tasks in Exp 2a and 2b; Con = control superordinate tasks in Exp 2a and 2b. 

 

Results 

Subordinate task phase.  

Figure 3B and Table 1 show performance change as a function of block in subordinate task 

phase. A linear mixed-effect model analysis revealed significant negative slope of RT (t50 = -

6.76, p < .001, Cohen’s d = 0.97) and positive slope of accuracy (t50 = 5.37, p< .001, Cohen’s 

d = 0.76) as a function of block, indicating improved performance over time. A logistic mixed 

effect model with trial-wise accuracy data also showed same result (z50 = 6.61, p < .001, 

Cohen’s d = 0.94). Additionally, a nonlinear mixed-effect model analysis with exponential 

function also revealed significant saturation point and learning rate for RTs , but not for 

accuracy. Statistics are provided in the online supplemental materials (Table S2 and S3). 

Superordinate task phase.  

Figure 3C and Table 1 show performance change as a function of block in the learning stage 

(block 1-4) of superordinate task phase. Overall, participants’ performance improved across 

blocks, supported by a linear mixed-effect model analysis showing statistically significant 

decrease in RT (t50 = -3.22, p = .002, Cohen’s d = 0.46) and increase in accuracy (t50 = 4.45, p 

< .001, Cohen’s d = Cohen’s d = 0.64) over time. A logistic mixed effect model with trial-

wise accuracy data showed same result (z50 = 5.47, p < .001, Cohen’s d = 0.78). Additionally, a 
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nonlinear mixed-effect model analysis with exponential function revealed significantly 

different saturation point from zero for both RTs and accuracy but only significantly different 

learning rate from zero for RTs. Additional analysis on Akaike information criteria (AIC) and 

Bayesian information criteria (BIC) showed better fitness of linear model than exponential 

model in all types of blocks in superordinate tasks (Table S3). Statistics are provided in the 

online supplemental materials (Table S2 and S3). 

Critically, we compared performance between learned and new superordinate tasks in 

the test stage (block 5-6) of the superordinate task phase (Fig. 3D, Table 1). Participants 

showed significantly faster residual RTs for learned than new superordinate tasks (t49 = -6.54, 

p < .001, Cohen’s d = 0.93). Accuracy showed no significant difference between conditions 

(t49 = -0.42, p = .677, Cohen’s d = 0.06). Given that the learned and new superordinate tasks 

were built upon the same subordinate tasks, shortened RT in learned subordinate tasks 

provides strong support for learning at the superordinate task level and the encoding of 

associations between included subordinate tasks during the learning of a superordinate task.  

To rule out the possibility that participants learned superordinate tasks independent of 

subordinate tasks rather than forming a hierarchy in task representations, we compared 

performance of the learned superordinate tasks in block 2 and new superordinate tasks in 

block 5. Specifically, if superordinate task learning occurred independently from subordinate 

task learning and the learning of other superordinate tasks, performance of new superordinate 

task in block 5 should not benefit from the extra practice of subordinate tasks in blocks 1-4 of 

the superordinate task stage. Consequently, task performance for new superordinate tasks in 

block 5 would be expected to be comparable to that of learned superordinate task 

performance in block 2. A simple t-test for this hypothesis did not support the independent 

learning hypothesis, as it showed significantly higher accuracy for new superordinate tasks in 
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block 5 than the learned superordinate tasks in block 2 (t49=2.31, p = .025), while showing 

non-significant difference in RTs (t49=-0.67, p>.50). This analysis further supported the 

hypothesis that participants learned superordinate tasks by leveraging learned subordinate 

task knowledge.  

However, one could also argue that better performance in the new superordinate tasks in 

block 5 compared to the learned superordinate tasks in block 2 might stem from subjects have 

more exposure to the superordinate task procedure in block 5 than in block 2. To rule out this 

possibility, we conducted Experiment S1. Experiment S1 further supported hierarchical task 

representation hypothesis by showing significantly higher accuracy (t24 = 2.31, p = .030) in a 

superordinate task that consisted of already learned subordinate tasks compared to a 

superordinate task that consisted of new subordinate tasks. Residual RTs showed a non-

significant difference (t24 = -0.31, p = .760) between two conditions (Fig S1). See Exp. S1 

and Fig. S1 in the online supplemental material for detailed information. 

The finding that task learning occurs at both superordinate and subordinate levels also 

provides to our knowledge the first direct evidence for the encoding of association between 

subordinate tasks in hierarchical task representation. Thus, Experiment 1 set the stage for 

using task associations to investigate the organizational principles of complex task 

representations (e.g., how does sharing a subordinate task affect the learning and memory of 

superordinate tasks?). 

 

Experiment 2a 

In Experiment 2a, we built on the findings from Experiment 1 that supported associations 

between subordinate tasks and investigated how these associations can organize the memory 
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of superordinate tasks by testing the task interference and integration hypotheses. That is, we 

examined whether two superordinate tasks sharing a subordinate task (e.g., AB and BC) (1) 

interfere with the learning of each other and (2) link their non-overlapping subordinate tasks 

(e.g., A and C) to facilitate the learning of a new superordinate task (e.g., AC) consisting of 

these non-overlapping subordinate tasks. 

 

Figure 4. Design and illustration of predictions of Experiment 2a and 2b. (A) Illustration of 

experimental design. (B) Predictions for proactive and retroactive interference effect in 
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training stage of superordinate phase. If proactive interference is stronger than retroactive 

interference, there should be higher RT for even than odd blocks, and the opposite if 

retroactive interference is stronger. (C) Predictions for generalization effect in test stage. If 

generalization facilitates learning new tasks as predicted by integration, faster RT in and 

faster learning speed are expected in generalizable tasks than control tasks. P.I. = proactive 

interference; R.I. = retroactive interference. 

 

Method 

Participants  

The target sample size was 50 as in Experiment 1. A total of 68 participants completed the 

experiment through Amazon’s Mechanical Turk online, with monetary compensation of $12 

for the whole experiment. Eighteen participants were removed from analysis due to technical 

difficulty during data transmission (3 participant), low accuracy (below 60%) in either phase 

(6 participants), in test stage (2 participants), or due to more than half of trials in any of the 

blocks in superordinate task phase is removed in data trimming process (7 participants). The 

final sample consisted of 50 participants (25 females, 25 males; age: M = 31.06 years, sd = 

11.36). The study was approved by the University of Iowa Institutional Review Board. 

Stimuli 

The stimuli were identical to Experiment 1. 

Procedure 

The same six subordinate tasks from Experiment 1 were used for all participants. The phases 

in the experiment were identical to Experiment 1 except for the number of blocks and trials. 
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Participants completed 8 blocks of 64 trials each for the subordinate task phase and 10 blocks 

of 48 trials each for the superordinate task phase. The superordinate task phase was divided 

into two separate stages: a learning stage (block 1-8), and a test stage (block 9-10) (Fig. 4A). 

In the learning stage, participants encountered two superordinate tasks in each block, and the 

composition of superordinate tasks alternated between odd (AB and DE) and even blocks 

(BC and EF). The interleaving procedure allows us to test proactive interference (how AB 

and DE impair performance of BC and EF) and retroactive interference (how BC and EF 

impair performance of AB and DE).  

Because superordinate tasks AB and BC share the subordinate task B, we predict that the 

learning of AB and BC will cause A and C to be linked and that this will lead to facilitation in 

the learning of superordinate task AC (i.e., generalization). Similarly, we predict that task DF 

is generalizable from learning DE and EF based on the shared subordinate task E. This 

prediction was tested in the test stage, in which participants encountered two generalizable 

superordinate tasks (AC and DF). They also performed control superordinate tasks (AD, AF, 

CD, and CF), whose composition of subordinate tasks is not predicted by integration. 

Importantly, both the generalizable and control superordinate tasks were never presented to 

participants prior to the test stage. Furthermore, both generalizable and control superordinate 

tasks shared the same subordinate tasks and were evenly distributed within each block. 

Therefore, the generalizable and control superordinate tasks only differed in their 

composition of subordinate tasks (i.e., whether the composition can be inferred from learned 

superordinate tasks). 

Data Analyses. Analyses on learning effects in subordinate task phase and learning stage of 

subordinate task phase were identical to those in Experiment 1 with one exception: We 

separated odd blocks and even blocks in learning stage for linear mixed-effect model analysis 
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due to the interleaved design. 

To test interference effects, we compared performance between odd (AB and DE tasks) 

and even (BC and EF tasks) blocks in the learning stage of the superordinate task phase (Fig. 

4B). Better performance in odd than even blocks would support the notion of proactive 

interference (e.g., task AB, which was learned earlier, impairs the learning of task BC). The 

opposite pattern can be viewed as evidence for retroactive interference (e.g., learning of task 

BC compromises memory of task AB). Note that this analysis tests the net effect of proactive 

and retroactive interference. That is, while a significant result will support the presence of 

one interference effect, it does not rule out the presence of the other interference. In this 

analysis, the first two blocks were excluded to remove the confound of initial learning of the 

superordinate tasks. The last block was removed to balance the temporal order of odd and 

even blocks. In other words, blocks 3-7 were used so that both odd and even blocks had the 

same temporal center (i.e., both odd and even blocks centered at block 5), thereby controlling 

for the potential confound of time. Difference in accuracy between odd and even blocks was 

tested using paired t-test at the group level. For RT analysis, as in Experiment 1, trial-wise 

status of response, response repetition, post-error, cue modality (text or image), task 

repetition, and cue modality repetition were regressed out. The difference in the RT residuals 

between odd and even blocks was tested using paired t-tests. Note that regressors encoding 

subordinate tasks and their temporal change were not used in the regression, as they are 

perfectly correlated with the effect of interests (i.e., regressors encoding task A and D also 

encode odds blocks, and regressors encoding task C and F also encode even blocks). Within 

each participant, this perfect correlation may suggest that the odd vs. even block comparison 

reflects performance differences in subordinate tasks involved. However, this perfect 

correlation is unlikely to confound the main result at the group level, because tasks order was 
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randomized for each participant. 

One possible confounding factor for interpreting the interference effect is a non-linear 

learning curve for RT. Specifically, if the exponential learning effect caused robust reduction 

of RT in early 3rd to 4th blocks and smaller reductions in the later blocks, then RT would be 

faster in even blocks than odd blocks. To test this hypothesis, we first fitted the RTs of 3rd to 

7th blocks with nonlinear mixed-effect model with the exponential model used in the Exp 1. 

Furthermore, we conducted additional linear mixed effect model analysis for the data and 

compared the fitness of the linear model to the exponential model. Even though neither of the 

single linear model nor the single exponential model is our hypothesized interference model, 

the analysis was conducted to test the plausibility of the exponential model since exponential 

learning might produce a pattern of RTs that would contaminate our measure of the relative 

influence of proactive and retroactive interference. 

As in the learning stage, new associations between subordinate tasks in the test stage are 

formed and strengthened for each of the new superordinate tasks. Furthermore, associative 

learning theories (e.g., Rescorla, 1972) posit that the strength of these associations will 

increase with repeated exposure (i.e., practice). Accordingly, we further hypothesized that the 

generalization will affect the learning of associations in two possible time courses: at the 

beginning of test phase and throughout the test phase. Consistent with the second time course, 

it has been reported that performance of generalized tasks improve gradually over trials 

(Vaidya, Jones, Castillo, & Badre, 2021). Instead of comparing generalizable and control 

superordinate tasks over all trials, we accounted for the different time course effects with 

three predictions of the generalization effect: First, the generalization effect may grant 

generalizable superordinate tasks a head start at the beginning of the test phase, leading to 

better performance than control superordinate tasks (Fig. 4C). Second, the generalization 
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effect may promote the learning of generalizable superordinate tasks, leading to faster 

performance improvement than control superordinate tasks (Fig. 4C). Third, related to 

increased performance improvement, generalizable superordinate tasks may show better 

performance in the later part of the test phase than control superordinate tasks.  

To test the predictions, we first regressed out the confounding factors from trial-wise 

RTs using all nuisance regressors as in Experiment 1. We then compared accuracy and 

residual RTs separately between generalizable and control superordinate tasks using paired t-

tests. The first two predictions were tested using trial-level RT analyses. Specifically, we fit a 

design matrix, which consisted of binary regressors marking generalizable and control 

superordinate tasks (to estimate RT at the beginning of test phase) and their temporal order 

(i.e., a value n indicates the n-th occurrence of the task; the regressors were used to estimate 

RT improvement over time) against the residual RTs. We then compared the resulting 

regression coefficients of estimated starting RT and estimated RT improvement over time 

between regressors representing generalizable and control superordinate tasks. To test the last 

prediction, we compared residual RTs between generalizable and control superordinate tasks 

from block 10 using a paired t-test. 
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Figure 5. Results from Experiment 2a. (A) Individual RT (left) and accuracy (right) in 
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subordinate task phase, imposed with group mean and SEM plotted as a function of block. 

(B) Data from the training stage of the superordinate task phase. Panel arrangements are 

identical to (A). (C) Behavioral measures in the test stage of the superordinate task phase. On 

the left, Individual residual RT (left), group mean residual RT (right) with SEM plotted as a 

function of block and experimental condition (generalizable or control superordinate task). 

On the right, individual accuracy imposed with group mean and SEM plotted as a function of 

experimental condition. (D) Individual intercepts (left) and slopes (right) for residual RT in 

the test stage of the superordinate task phase imposed with group mean and SEM plotted as a 

function of condition (generalizable or control superordinate task). 

Results 

Subordinate task phase.  

Figures 5A and Table 1 show performance as a function of block in subordinate task phase. 

As in Experiment 1, a linear mixed-effect model analysis showed significant negative slope 

of RT (t50 = -9.69, p < .001, Cohen’s d = 1.38)  and positive slope of accuracy (t50 = 5.91, 

p< .001, Cohen’s d = 0.84) as a function of block, indicating an increase in performance over 

time. A logistic mixed effect model with trial-wise accuracy data showed the same result (z50 

= 8.21, p < .001, Cohen’s d = 1.17). Additionally, a nonlinear mixed-effect model analysis using 

an exponential function also revealed significant saturation point and learning rate for both 

RTs and accuracy. Statistics are provided in the online supplemental materials (Table S2 and 

S3). 

Superordinate task phase.  

Figure 5B and Table 1 show performance change during the superordinate task phase as 

a function of block in the learning stage (block 1-8). Overall, performance improved over the 
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blocks for both odd and even blocks, supported by a linear mixed-effect model analysis 

showing a statistically significant decrease in RT (Odd: t50 = -5.32, p < .001, Cohen’s d = 

0.76; Even: t50 = -6.45, p <. 001, Cohen’s d = 0.92) and increase in accuracy (Odd: t50 = 3.56, 

p = .001, Cohen’s d = 0.51; Even: t50 = 2.92, p = .005, Cohen’s d = 0.42) over block, thus 

replicating the learning effect on superordinate tasks in Experiment 1. A logistic mixed effect 

model analysis with trial-wise accuracy data also showed same result (Odd: z50 = 3.91, p 

< .001, Cohen’s d = 0.56; Even: z50 = 2.04, p = .042, Cohen’s d = 0.29). Additionally, a nonlinear 

mixed-effect model with an exponential function showed a significantly different saturation 

point from zero for both RTs and accuracy. However, learning rate was not significantly 

different from zero for both RTs and accuracy in all types of blocks except for RTs in odd 

block (Table S2), suggesting that the exponential model does not provide significantly better 

explanation for the data compared to the linear mixed-effect model. Additional analysis that 

shows fitness of models further supported these findings by showing better fit for the linear 

model than the exponential model in all types of blocks (Table S3). Statistics are provided in 

the online supplemental materials (Table S2 and S3). To test the relative effects of proactive 

and retroactive interference, we compared performance between odd (block 3, 5, and 7) and 

even (block 4 and 6) blocks. Residual RT was significantly slower in odd (task AB and DE) 

than even (task BC and EF) blocks (t49 = 2.39, p = 0.021, Cohen’s d = 0.34), consistent with 

the prediction of retroactive interference (i.e., later learned tasks impairs the memory of 

previously learned tasks). Accuracy did not show statistically significant difference (t49 = 

1.23, p > 0.22, Cohen’s d = 0.17), with odd blocks numerically less accurate than even blocks 

(Fig. 5A-B). 

To test the possible confounding effect of an exponential learning curve on the 

interference effect, we conducted a nonlinear mixed-effect model analysis with exponential 
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model using RTs of 3rd to 7th blocks. The result showed non-significant fixed effect for both 

saturation point (t198 = -1.45, p = .148) and learning rate (t198 = 0.76, p = .446). Further model 

comparison between linear model and exponential model showed a better fit for linear model 

over exponential model, which justifies our interpretation of the interference effect. 

    As a coarse test of generalization effect, we compared performance between generalizable 

and new superordinate tasks (Fig. 5C). Accuracy was similar between two types of tasks (t49 

= 0.36, p > 0.71, Cohen’s d = 0.05). Consistent with the generalization effect, RT in 

generalizable superordinate tasks was significantly shorter than control superordinate tasks 

(t49 = 2.19, p = 0.034, Cohen’s d = 0.31).  

We further tested generalization in three ways (Fig. 5D; see Methods). First, surprisingly, 

estimated residual RT at the beginning of the test phase showed a trend of slowing for 

generalizable than control superordinate tasks (t49 = 1.90, p = 0.062, Cohen’s d = 0.27). 

Second, consistent with our prediction, residual RT improved faster in generalizable than 

control superordinate tasks, indicated by a larger slope of residual RT decreasing over time 

(t49 = 2.67, p = 0.010, Cohen’s d = 0.38). Finally, supporting the notion that the faster 

reduction in residual RT was indeed linked to better residual RT in generalizable than control 

superordinate tasks later in the test phase, we found that, in block 10, the trials were faster for 

generalizable than control superordinate tasks (t49 = 2.30, p = 0.026, Cohen’s d = 0.33). 

Collectively, the findings support the generalization hypothesis, such that generalizable 

superordinate tasks showed faster RT improvement over time and faster RT after the 

beginning of the test phase. 

In summary, our findings supported retroactive interference and integration when the 

two superordinate tasks shared a subordinate task. The findings suggest that compositional 

information, possibly in the form of associations between simple tasks included in the same 
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complex task, is used to organize the memory of complex task representations. 

 

Experiment 2b 

In this experiment, we aimed to replicate the findings of interference and generalization 

effects in Experiment 2a using a well-powered sample. 

Method 

Participants  

The target sample size was 84, calculated based on the weakest effect of interest (the RT 

difference in residual RTs between generalizable and control superordinate tasks, Cohen’s d = 

0.31), alpha level of 0.05, and statistical power of 0.8. A total of 133 participants completed 

the experiment through Amazon’s Mechanical Turk online, with monetary compensation of 

$13 for the whole experiment. Forty-nine participants were removed from analysis due to low 

accuracy in either phase (14 participants), low accuracy in test stage (5 participants), or more 

than half of trials in any of the blocks in superordinate task phase is removed in data 

trimming process (30 participants). The final sample consisted of 84 participants (24 females, 

60 males; age: M = 35.40 years, sd = 8.94). The study was approved by the University of 

Iowa Institutional Review Board. 

Stimuli 

The stimuli used were identical to Experiment 1. 

Procedure 

The procedure was identical to Experiment 2a, except that participants were required to rest 

for at least 7 minutes (enforced as countdown on the screen) following the learning stage of 
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the superordinate task phase. The rest period was included to promote memory replay and 

integration (Roscow, Chua, Costa, Jones, & Lepora, 2021). 

Data Analyses. All analytic procedures were identical to Experiment 2a. 
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Figure 6. Results of Experiment 2b. Panel arrangements are identical to Fig. 5. 
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Results 

Subordinate task phase.  

Figures 6A and Table 1 show performance change as a function of block in subordinate task 

phase. As in Experiment 1, a linear mixed-effect model analysis showed significant negative 

slope of RT (t84 = -8.85, p < .001, Cohen’s d = 0.97) and positive slope of accuracy (t84 = 

3.23, p= .002, Cohen’s d = 0.84) as a function of block, indicating increase in performance 

over time. A logistic mixed effect model with trial-wise accuracy data showed the same result 

(z84 = 5.23, p < .001, Cohen’s d = 0.57). Additionally, a nonlinear mixed-effect model with an 

exponential function also revealed significant saturation point and learning rate for both RTs 

and accuracy. Statistics are provided in the online supplemental materials (Table S2 and S3). 

Superordinate task phase.  

Figure 6B and Table 1 show performance change as a function of block in the learning stage 

(block 1-4) of the superordinate task phase. Overall, performance improved over blocks for 

both odd and even blocks, supported by linear mixed-effect model analysis showing 

statistically significant decrease in RT (Odd: t84 = -3.65, p < .001, Cohen’s d = 0.40; Even: t84 

= -2.68, p =. 009, Cohen’s d = 0.29) and increase in accuracy (Odd: t84 = 3.17, p = .002, 

Cohen’s d = 0.35; Even: t84 = 0.12, p = .909, Cohen’s d = 0.01) over block, thus replicating 

the learning effect on superordinate tasks. A logistic mixed effect model analysis with trial-

wise accuracy data also showed the same result (Odd: z84 = 4.01, p < .001, Cohen’s d = 0.44; 

Even: z84 = -1.00, p = .316, Cohen’s d = 0.11). Additionally, a nonlinear linear mixed-effect 

model with an exponential function showed significantly different saturation point from zero 

for both RTs and accuracy except for accuracy in even blocks. However, learning rate was not 

significantly different from zero for both RTs and accuracy in all types of blocks, which 

suggests that the exponential model does not provide significantly better explanation for the 



36 
 

data compared to the linear mixed-effect model. Additional analysis that shows fitness of 

models partly supported these findings by showing better fitness of linear model than 

exponential model in accuracy only, but not in RTs (Table S3). 

Replicating the findings supporting retroactive interference in Experiment 2a, we again 

observed slower residual RTs in odd than even blocks (t83 = 3.01, p = 0.004, Cohen’s d = 

0.33). Numerically, accuracy in the odd blocks was lower than the even blocks. However, this 

difference was not statistically significant (t83 = 1.65, p > 0.10, Cohen’s d = 0.18). 

To test the possible confounding effect of exponential learning curve on the interference 

effect, we conducted nonlinear mixed-effect model with an exponential function on the RTs 

of 3rd to 7th blocks. The result showed a non-significant fixed effect for saturation point (t334 = 

1.21, p = .23) but a significant fixed effect for learning rate (t334 = -3.17, p = .002). Further 

model comparisons between linear model and exponential model showed a better fit for 

linear model over exponential model, which justifies our analysis of the interference effect. 

In the test phase, accuracy was not significantly different between generalizable and 

control superordinate tasks (Fig. 6C; t83 = 0.53, p > 0.59, Cohen’s d = 0.06). Across the whole 

test phase, residual RT was numerically shorter in generalizable than control superordinate 

tasks, although the difference was not statistically significant (Fig. 6c; t83 = 1.27, p > 0.20, 

Cohen’s d = 0.14). All the remaining tests replicated the findings from Experiment 2a (Fig. 

6D). Specifically, estimated residual RT at the beginning of the test phase was marginally 

slower in generalizable than control superordinate tasks (t83 = 1.68, p > 0.098, Cohen’s d = 

0.18). Crucially, residual RT again decreased faster in generalizable than control 

superordinate tasks (t83 = 2.45, p = 0.017, Cohen’s d = 0.27). Consistent with this finding, the 

remaining trials were faster for generalizable than control superordinate tasks in block 10 (t83 

= 2.32, p = 0.020, Cohen’s d = 0.26). Thus, the findings support the generalization hypothesis 
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by replicating faster RT improvement in generalizable than control superordinate tasks, which 

was accompanied by faster RT later in the test phase, despite of a trend of slower RT in the 

beginning. 

 

Discussion 

This study investigated the effects of shared task representations on task learning and 

memory within the superordinate level of a task hierarchy. To address this question, we first 

applied the classic theories of associative memory (for review, see H. Eichenbaum, 2017), 

which focus on items, to the learning of tasks. We predicted that a crucial part of complex 

task learning is to establish associations among the subordinate tasks. To test this prediction, 

we designed a novel experimental paradigm with six subordinate tasks in the form of a one-

feature match/mismatch task on multi-feature objects. Participants exhibited robust learning 

of the subordinate tasks in all experiments (Figs. 3B, 5A, 6A).  

To investigate how the hierarchical organization of task knowledge can enable task 

learning without direct experience, we then tested whether subordinate tasks are associated 

during superordinate task learning to facilitate generalization to novel superordinate tasks. To 

this end, subjects learned superordinate tasks consisting of two learned subordinate tasks 

(Fig. 2B). The “exclusive or” rule ensured that both subordinate tasks were performed to 

produce the correct response for the superordinate tasks. Learning was first demonstrated by 

robust performance increases over time for superordinate tasks (Figs. 3C, 5B, 6B). Critically, 

performance for in learned superordinate tasks was better than performance for new 

superordinate tasks that differed from learned superordinate tasks only in the composition of 

subordinate tasks, thus controlling for subordinate task performance. The data analysis 

further controlled for potential confounding factors involving stimulus and response 
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configuration learning. Participants showed significant RT decrease in learned than new 

superordinate tasks (Fig. 3D). To our knowledge, these findings are the first to demonstrate 

task learning at both superordinate and subordinate levels, thus providing strong support for 

the hierarchical organization of tasks and the encoding of associations between subordinate 

tasks during superordinate task learning. 

Notably, the association between subordinate tasks included in the same superordinate 

tasks is similar to relational processing in several aspects. First, under the framework of 

configurational processing of face perception (Maurer, Le Grand, & Mondloch, 2002; 

Mercure, Dick, & Johnson, 2008), there are two orders of configural processing. First-order 

configural processing involves the relationship between items (e.g., mouth is below nose), 

similar to associations between subordinate tasks within a superordinate task. Nevertheless, 

the relations in face perception are often directional, whereas in the current experiments, the 

order of the two cues in superordinate tasks was randomized, making the relationship 

between the two subordinate tasks nondirectional. Second-order configural processing 

includes the distance between features (e.g., distance between mouth and nose). Its 

counterpart in the present experiments would be the strength of association between 

subordinate tasks, which may be tested by manipulating association strength via statistical 

contingency (e.g., probability of subordinate tasks being included in a superordinate task).  

Second, compared to item-specific processing, relational processing focuses more on the 

relationship between items (Burns, 2006; Humphreys, 1976; Hunt & Einstein, 1981). In the 

context of Experiment 1, item-specific processing is equivalent to subordinate task-level 

learning effect. Only relational processing would predict that the learned superordinate task, 

which encodes the practiced relation between subordinate tasks, will outperform new 

superordinate tasks (Fig. 3D).  
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Finally, the hierarchical organization of tasks is also similar to levels of abstraction in 

categorization (Jolicoeur, Gluck, & Kosslyn, 1984). In categorization, a decision can be made 

at a subordinate (i.e., more concrete) or a superordinate (i.e., more abstract) level. For 

example, instead of identifying an animal as a cat, the response can be subordinate (e.g., 

British Shorthair) or superordinate (e.g., mammal). Importantly, the mechanisms of selecting 

the most suitable level of abstraction (e.g., D’Lauro, Tanaka, & Curran, 2008) may share the 

mechanisms of determining which task representation to activate (e.g., when to switch from a 

superordinate task representation of making coffee to a subordinate task of grinding beans 

and vice versa). In general, future studies may examine whether and how theories of 

relational processing may apply to hierarchical task representations and the memory 

organization of task knowledge. 

Our focus was the performance of superordinate tasks while maintaining the level of 

exposure of subordinate task constant across conditions (e.g., AC vs DF), However, another 

approach to understanding superordinate task representations would be to investigate the 

difference of behavioral performance between superordinate tasks as a function of expertise 

of consisting subordinate tasks. Specifically, if participants indeed build superordinate task 

representations by associating pre-existing subordinate tasks together, then one would expect 

a better behavioral performance on superordinate tasks consisting of more trained subordinate 

tasks then superordinate tasks with less trained subordinate tasks. Testing this hypothesis 

would provide strong evidence that subordinate task representations are basic building blocks 

of superordinate task representations. 

With the current experimental paradigm, we investigated how superordinate tasks are 

organized in learning and memory by associations between their consisting subordinate tasks 

in Experiment 2a and 2b. Specifically, we tested two hypotheses: sharing the same 
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subordinate task will induce both interference and integration between superordinate tasks. 

Although the memory of tasks, which involves semantic and procedural memory, is different 

from the memory of items both conceptually and in their neural basis (Squire, 2004), our 

findings showed that task learning, similar to item learning, exhibited interference and 

integration, thus suggesting similarities in the organizational principles of the memories of 

items and tasks.  

We showed empirical evidence that interference due to shared task representations 

occurs during task learning and when superordinate tasks are performed separately. 

Specifically, we observed retroactive interference (i.e., impaired memory of learned 

superordinate task, Fig. 5B, 6B). Intriguingly, computational modeling work has also shown 

that multitasking performance is impaired among superordinate tasks sharing the same 

subordinate task following task learning (Musslick & Cohen, 2019; Musslick et al., 2017; 

Sagiv, Musslick, Niv, & Cohen, 2020). In a connectionist view (e.g., McClelland, 

McNaughton, & O'Reilly, 1995), learning is achieved by changing connectivity between 

neural computing units. Therefore, interference may result from superordinate tasks 

competing for the connectivity patterns of the shared subordinate task. An important future 

research question is whether/how shared task representations can become exclusive in order 

to reduce interference (Sagiv et al., 2020). For this purpose, the theory of multiple memory 

traces (Nadel, Samsonovich, Ryan, & Moscovitch, 2000) may provide a mechanism for 

obtaining multiple representations of the same task to reduce task representation sharing (e.g., 

high demand of a task may lead to replication of the task representation). The possible 

mechanisms of interference may include impaired memory trace (e.g., the memory strength 

of superordinate task AB decreases when performing superordinate task BC) and slowed 

prospective learning (e.g., performing task BC in block 4 reduces the learning of task AB in 
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block 5). Due the lack of proper control condition (e.g., not-interleaved superordinate task 

condition) in the present study, we were unable to determine the mechanism. Future research 

may adjudicate the two hypotheses using two tests: The impaired memory trace hypothesis 

may be tested by comparing task performance before and after interference (e.g., task 

performance at the end of block 3 vs. task performance at the beginning of block 5). The 

slowed learning hypothesis may be tested via derived learning parameters (e.g., slope, 

learning rate).  

Note that the retroactive interference effect may have masked a weaker proactive 

interference effect in the learning stage of the superordinate phase. In both Experiment 2a and 

2b, we observed a trend of slower RTs to generalizable than control superordinate tasks at the 

beginning of test phase (Fig. 5D, 6D). In an exploratory analysis, we combined the datasets 

and found this effect to be statistically significant (t133 = 2.35, p = 0.020, Cohen’s d = 0.20). 

This may reflect stronger proactive interference in generalizable than control superordinate 

tasks. That is, in generalizable superordinate tasks, both subordinate tasks (e.g., A and C) 

reactivate the same associated subordinate task (e.g., B), leading to stronger interference 

(e.g., the reactivation of B interferes the execution of A and C). This potential proactive 

interference effect (worse performance for generalizable tasks) may have cancelled out the 

expected generalization effect (better performance for generalizable tasks) at the beginning of 

the test phase and confounded the contrast between generalizable and control superordinate 

tasks’ test phase performance. Future studies should test whether shared subordinate tasks 

produce proactive interference. 

Experiment 2a and 2b also supported the integration hypothesis and demonstrated how 

task learning can occur without direct experience. Specifically, the learning of two 

superordinate tasks AB and BC that shared subordinate task B facilitated the learning of a 
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new superordinate task AC, as shown by faster improvement in RT (Fig. 5D, 6D) and faster 

RT in the later part of the test stage (Fig. 5C, 6C). This finding is conceptually consistent with 

studies showing inferential preference to AC item pairs after learning AB and BC item pairs 

(e.g., Wimmer & Shohamy, 2012; Zeithamova & Preston, 2010) and extends the findings to 

task learning. This finding also suggests that the task representation may be organized to 

facilitate the encoding of potential related tasks (e.g., through partially overlap associations of 

subordinate tasks such as AB and BC)(Bar, 2009) and proactively facilitate these inferred 

tasks. 

It may seem counterintuitive to observe both a beneficial integration effect and a 

detrimental interference effect within the same experiment. A crucial distinction between the 

two effects is the tasks involved: the integration effect benefits the learning of a new 

superordinate task (e.g., AC) that does not include the shared subordinate task (e.g., B), 

whereas the interference effect affects learned superordinate tasks that share the subordinate 

task (e.g., AB and BC). We view these effects as two sides of the same coin: Without shared 

task representation, neither interference nor integration would occur. In this way, integration 

may be viewed as a benefit at the cost of interference. We further speculate that integration 

occurs with the resolution of interference. Recall that in Experiment 2a and 2b the partially 

overlapping superordinate tasks (e.g., AB and BC, and DE and EF) were interleaved. The 

interleaved design has been shown to be able to prevent old knowledge from being 

catastrophically overwritten by new knowledge (McClelland et al., 1995). From the 

connectionist perspective, by interleaving superordinate tasks, connectivity patterns of a 

shared subordinate task may iteratively converge to a state that works for both superordinate 

tasks, thus resolving the interference as well as providing the common ground for integration.  

This finding is also in line with a recent paper (Flesch et al., 2018) reporting clearer 
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segregation of categorization rules between two different object categorization tasks with a 

blocked training design than an interleaved training design, while interleaved training design 

promoted integration of categorization rules from both human participants and deep neural 

network agents. We extended this finding by showing that this result can be generalized to 

abstract, complex task representations. In our experiments, participants might be impaired in 

the suppression of similar superordinate tasks in previous block during training, which may 

induce interference effect, but also might help to integrate two similar superordinate tasks, 

allowing for generalization.  

More broadly, this study connects cognitive control and long-term memory. First, 

cognitive control, which is defined as a set of cognitive mechanisms that align thinking and 

behavior to internal goals (Egner, 2017; Miller & Cohen, 2001), is central to task 

performance. Recent studies have begun to investigate how humans learn and remember 

cognitive control settings for single tasks (for reviews, see Bugg & Crump, 2012; Chiu & 

Egner, 2019; Egner, 2014). However, it remains underexplored how memories of multiple 

tasks are organized and how the organization of the tasks in memory affects their 

performance. Here, we demonstrate that tasks can be associated with each other. These 

associations form a network of tasks, such that multiple associations can interfere with each 

other and also facilitate future learning of tasks through generalization.  

These findings also extended the boundary conditions of associative memory. 

Specifically, associative memory has been extensively studied with declarative memory tasks. 

We showed that well-established associative memory effects, such as interference and 

inference, also exist in memory of skills. Although declarative memory and skill memory are 

historically viewed as different memory types (Gabrieli, 1998; Squire, Knowlton, & Musen, 

1993), our findings suggest that they may share similar organizational principles. 
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Specifically, the associations between tasks may serve as a foundation to support relational 

memory that reconstructs or infers relations (e.g., temporal order, hierarchy and shared 

context) between tasks (Buckmaster, Eichenbaum, Amaral, Suzuki, & Rapp, 2004; Fortin, 

Agster, & Eichenbaum, 2002; McKenzie et al., 2014). Relational memory of tasks may 

further lead to higher-order associations (Curran, 1997; Garvert, Dolan, & Behrens, 2017; 

Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013; Schapiro, Turk‐Browne, 

Norman, & Botvinick, 2016). Importantly, these associations may be extended to cognitive 

maps for task knowledge organization, similar to studies showing that abstract information 

can be represented in cognitive maps (Constantinescu, O’Reilly, & Behrens, 2016; Park, 

Miller, Nili, Ranganath, & Boorman, 2020).  

In sum, the framework of a cognitive map may capture task organization in long-term 

memory, such that tasks are represented as nodes (e.g., cities on a map) and their associations 

serve as links between nodes (e.g., roads connecting cities). This map provides a direction of 

task learning through practice, such that procedural task memory (e.g., how cognitive control 

is applied) changes through practice to benefit multitasking of or switch between strongly 

associated tasks (e.g., the association effect and the generalization effect). As a trade-off, 

tasks linked to multiple other tasks would suffer interference due to competition among its 

linked tasks. This framework may have practical implications on how to adjust training 

procedures (e.g., how to use different equipment to run different experiments in a laboratory, 

how to use different tools to repair different parts of a car) to reduce interference and improve 

generalization. 

In conclusion, we demonstrated that shared subordinate tasks can induce both 

interference and integration in the learning and memory of superordinate tasks. These 

findings shed light on the organizational principles of task knowledge in the brain and their 
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consequences on task learning. The findings also have practical implications for how to 

leverage the principles of task representations to improve the organization of study materials 

and activities in skill training. 

Context 

Compared to other species and artificial intelligence agents, humans learn and retain multiple 

tasks remarkably efficiently. This is due in part to the fact that we can reuse acquired task 

knowledge. That is, learned tasks can be used as shared resources to construct new, more 

complex tasks. However, how task knowledge is shared across tasks during learning is 

largely unknown. Here, we employ a novel task design to demonstrate that this sharing can 

be a double-edged sword. On the one hand, sharing a simple task can facilitate the learning of 

complex tasks through the integration of previously acquired knowledge about the simple 

tasks. On the other hand, sharing can also cause interference between the memories of 

complex tasks. This study sheds light on the organizational principles of task knowledge in 

the brain and motivates further research on how to leverage these organizational principles to 

facilitate task learning. 
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Supplementary Experiment 

 

Experiment S1 

 

Method 

Participants.  

For this experiment, the target sample size was 25 based on the size of the hierarchical task 

learning effect (i.e., effect between training and new superordinate tasks) in Experiment 1 with 

an alpha level of 0.05 and a beta level of 0.9. A total of 35 participants completed the experiment 

through Amazon’s Mechanical Turk online with monetary compensation of $6 for the whole 

experiment. Ten participants were removed from analysis due to low accuracy (below 60%) in 

either phase (9 participants) or to more than half of trials in any of the blocks in the superordinate 

task phase being removed in the data trimming process (1 participant; see below). The final 

sample consisted of 25 participants (7 females, 18 males; age: M = 37.00 years, sd = 9.22). The 

study was approved by the University of Iowa Institutional Review Board. 

 

Stimuli 

The stimuli were identical to Experiment 1. 

 

Procedure 

The procedure was the same as Experiment 1 except for the following changes. Participants 

completed two phases: a subordinate task phase (2 blocks of 64 trials each) followed by a 



superordinate task phase (2 blocks of 48 trials each). In the subordinate task phase, only two 

subordinate tasks were used for training (A & B). In the superordinate task phase, participants 

performed two superordinate tasks: one that consisted of already learned subordinate tasks (AB) 

and the other that consisted of new subordinate tasks (CD). Before the subordinate task phase, 

participants performed 24 training trials consisting of four possible subordinate tasks (A, B, C, 

D). 

 

Data Analyses. 

Data processing was identical to the Experiment 1 with one exception: The regressors 

representing individual subordinate tasks were removed when computing RT residuals because 

the experimental design leads to perfect collinearity between subordinate and superordinate task 

regressors. For this analysis, we compared behavioral performance (residual RTs, accuracy) 

between the learned (AB) and new superordinate tasks (CD) using paired t-test. 

 

Results 

We compared performance between superordinate tasks consisting of already learned 

subordinate tasks (AB) and superordinate tasks consisting new subordinate tasks (CD) using 

paired t-test (Fig S1). We did not find significant differences in residual RTs (t24 = -0.31, p = 

.760) between the two conditions, but we found significantly higher accuracy (t24 = 2.31, p = 

.030) in the learned condition (AB) than the new condition (CD). Thus, this experiment supports 

the notion of hierarchical task learning, that is, knowledge of subordinate tasks is re-used during 

the learning of superordinate task. 



Supplementary Figure 

 

 
 
 
Figure S1. Results of Experiment S1. Individual RT (left) and accuracy (right) at the 

superordinate task phase, imposed with group mean and SEM plotted as a function of 

experimental condition (superordinate tasks consisted of already learned subordinate tasks or 

new subordinate tasks). 

 



Supplementary Table 
 
Table S1. Summary statistics of logistic mixed-effect model analysis for accuracy 
 

 Subordinate Superordinate 

Exp 1 z50 = 6.61, p < .001, Cohen’s d = 0.94 z50 = 5.47, p < .001, Cohen’s d = 0.78 

Exp 2a z50 = 8.21, p < .001, Cohen’s d = 1.17 
Odd: z50 = 3.91, p < .001, Cohen’s d = 0.56 
Even: z50 = 2.04, p = .042, Cohen’s d = 0.29 

Exp 2b z84 = 5.23, p < .001, Cohen’s d = 0.57 
Odd: z84 = 4.01, p < .001, Cohen’s d = 0.44 
Even: z84 = -1.00, p = .316, Cohen’s d = 0.11 

Note. Each cell includes group-mean value with standard error in parentheses, z- statistic and p-
value. Cells are organized based on experimental phase, parameter and dependent variable. 
 
 
Detailed statistics of logistic mixed-effect model analysis for accuracy. Overall, logistic mixed 
effect model analysis with trial-wise accuracy data replicated all the results using linear-mixed 
effect model analysis with averaged accuracy data. 



Table S2. Summary statistics of nonlinear mixed-effect model with exponential function 

  
Subordinate Superordinate 

saturation (‘𝛽ଵ’) Learning rate (‘𝛽ଶ’) saturation (‘𝛽ଵ’) Learning rate (‘𝛽ଶ’) 

Exp 1 

RTs 
-0.13 (0.02) 
t148 = -5.52, p < .001 

1.86 (0.48) 
t148 = 3.88, p < .001 

-0.36 (0.11) 
t148  = -3.39, p < .001 

0.44 (0.14) 
t148 = 3.11, p = .002 

Accuracy 
0.21 (0.48) 
t148 = 0.44, p = .663 

0.11 (0.34) 
t148 = 3.08, p = .748 

0.20 (0.09) 
t148 = 2.14, p = .034 

0.30 (0.41) 
t148 = .74, p = .458 

Exp 2a 

RTs 
-0.47 (0.05) 
t148 = -8.77, p < .001 

0.41 (0.07) 
t148 = 5.62, p < .001 

Odd: 2.37 (0.22) 
t148 = 2.58, p = .01 

Odd: -0.09 (0.03) 
t148 = -3.46, p = .007 

Even: -0.28 (0.13) 
t148 = -2.24, p = .027 

Even: 0.44 (0.37) 
t148 = 1.20, p = .232 

Accuracy 
-0.12 (0.04) 
t148 = -2.51, p = .012 

-0.05 (0.02) 
t148 = -3.36, p = .001 

Odd: 0.07 (0.01) 
t148 = 5.27, p < .001 

Odd: 4.12 (11.76) 
t148 = 0.35, p = .727 

Even: 0.06 (0.02) 
t148 = 2.64, p = .001 

Even: 0.92 (0.92) 
t148 = 1.00, p = .318 

Exp 2b 

RTs 
-0.23 (0.02) 
t148 = -15.22, p < .001 

0.62 (0.10) 
t148 = 5.92, p < .001 

Odd: -0.15 (0.04) 
t148 = -3.87, p < .001 

Odd: 2.09 (1.09) 
t148 = 1.92, p = .056 

Even: -0.10 (0.03) 
t148  = -3.35, p < .001 

Even: 3.02 (3.38) 
 t148 = 0.92, p = .360 

Accuracy 
0.04 (0.01) 
t148 = 3.54, p < .001 

0.52 (0.07) 
t148 = 7.76, p < .001 

Odd: 0.05 (0.02) 
t148 = 2.13, p = .033 

Odd: 0.59 (0.60) 
t148 = 0.98, p = .329 

Even: 0.003 (0.01) 
t148 = 0.40, p = .690 

Even: 4.05 (143.91) 
t148 = 0.03, p = .978 

 
Note. Each cell includes group-mean value with standard error in parentheses, t- statistic and p-
value. Cells are organized based on experimental phase, parameter and dependent variable. 
 
Detailed statistics of nonlinear mixed-effect model analysis with exponential function. In case of 
subordinate tasks, both saturation points and learning rate showed significant fixed effect for 
both RTs and accuracy in all three experiments. On the other hand, superordinate tasks showed 
mixed results. Superordinate tasks in Exp 1 showed significant fixed effect of saturation point for 
both RTs and accuracy, and significant fixed effect of learning rate for RTs only. In Exp 2a, 
saturation points showed significant fixed effect in RTs and accuracy for both odd and even 
blocks, while learning rate showed non-significant fixed effects except in RTs for odd blocks. 
Exp 2b showed significant fixed effects of saturation point except for accuracy in even blocks, 
and non-significant fixed effect of learning rate in all cases. 
 
 
 
 
 
 
 



Table S3. Description for the fitness of models in all conditions.  
 Subordinate (AIC / BIC) Superordinate (AIC / BIC) 

Linear exponential linear exponential 
Exp 1 RTs -189.71 / -169.92 -211.18 / -188.09 68.38 / 88.17 75.37 / 98.46 

Accuracy -599.43 / -579.64 -569.10 / -546.01 -348.21 / -328.42 -319.19 / -296.10 
Exp 2a RTs -376.38 / -352.43 -436.19 / -408.25 Odd: 23.41 / 43.20 

Even: 16.52 / 36.31 
Odd: 27.23 / 50.32 
Even: 18.94 / 42.03 

Accuracy -1140.03 / -1116.08 -1113.72 / -1085.78 Odd: -349.45 / -329.66 
Even: -372.59 / -352.80 

Odd: -347.73 / -324.65 
Even: -356.98 / -333.89 

Exp 2b RTs -565.68 / -538.62 -544.07 / -512.50 Odd: 231.53 / 254.43 
Even: 94.78 / 117.68 
 

Odd: 227.44 / 254.1557 
Even: 91.00 / 117.72 

Accuracy -2121.42 / -2094.36 -2163.96 / -2132.39 Odd: -669.26 / -646.35 
Even: -816.12 / -793.22 

Odd: -623.45 / -596.73 
Even: -800.88 / -774.16 

Note. Each cell includes Akaike Information Criteria (AIC) / Bayesian Information Criteria 
(BIC) values as measures for fitness of models. 
 
 
Detailed model fitting values of linear mixed-effect model and nonlinear mixed-effect model 
with exponential function. In case of subordinate tasks, both Exp 1 and Exp 2b showed better 
fitness of RTs for linear model than exponential model while showing better fitness of accuracy 
for exponential than linear model. However, Exp 2b presented opposite trend by showing better 
fit of RTs for linear model and better fitness of accuracy for exponential model. Superordinate 
tasks showed better fit of linear model than exponential model in all cases except RTs in Exp 2b, 
which showed better fitness of exponential model than linear model. Overall, exponential models 
did not outperform linear models in explaining performance improvement in participants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S4. Summary statistics of nonlinear mixed-effect model analysis with exponential function 
in superordinate tasks using RTs of 3rd to 7th blocks. 
 

 Saturation point (‘𝛽ଵ’) Learning rate (‘𝛽ଶ’) 

Exp 2a -0.18 (0.12) 
t198 = -1.45, p = .148 

0.33 (0.43) 
t198 = 0.76, p = .446 

Exp 2b 0.18 (0.15) 
t334 = 1.21, p = .23 

-0.06 (0.02) 
t334 = -3.17, p = .002 

Note. Each cell includes average value with standard error in the upper row, and t-test statistics 
in the bottom row. 
 
 
Detailed statistics of nonlinear mixed-effect model analysis with exponential function. Saturation 
points did not show significant fixed effect in both experiments. Learning rate did not 
significantly differ from 0 in Exp 2a, or even showed statistically significant result in direction 
opposite to prediction in Exp 2b. Together these results do not support the hypothesis that the 
faster RTs in even blocks than odd blocks are an effect of exponential learning curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5. Description for the fitness of models in superordinate tasks using RTs of 3rd to 7th 
blocks. 
 

 Linear (AIC / BIC) Exponential (AIC / BIC) 

Exp 2a 17.48/38.61 18.72 / 43.37 

Exp 2b 197.61 / 221.86 211.97 / 240.25 

Note. Each cell includes AIC / BIC values as an index for fitness of models. 
 
Detailed model fitting values of linear mixed-effect model and nonlinear mixed-effect model 
with exponential function. Linear model showed better fitness than exponential model in all two 
experiments, which do not support the exponential model hypothesis. 
 


