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Prefrontal reinstatement of contextual task demand
is predicted by separable hippocampal patterns
Jiefeng Jiang 1✉, Shao-Fang Wang1, Wanjia Guo2, Corey Fernandez3 & Anthony D. Wagner 1,4

Goal-directed behavior requires the representation of a task-set that defines the task-

relevance of stimuli and guides stimulus-action mappings. Past experience provides

one source of knowledge about likely task demands in the present, with learning enabling

future predictions about anticipated demands. We examine whether spatial contexts serve to

cue retrieval of associated task demands (e.g., context A and B probabilistically cue retrieval

of task demands X and Y, respectively), and the role of the hippocampus and dorsolateral

prefrontal cortex (dlPFC) in mediating such retrieval. Using 3D virtual environments, we

induce context-task demand probabilistic associations and find that learned associations

affect goal-directed behavior. Concurrent fMRI data reveal that, upon entering a context,

differences between hippocampal representations of contexts (i.e., neural pattern separ-

ability) predict proactive retrieval of the probabilistically dominant associated task demand,

which is reinstated in dlPFC. These findings reveal how hippocampal-prefrontal interactions

support memory-guided cognitive control and adaptive behavior.
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A hallmark of human intelligence is the ability to adaptively
adjust behavior based on current task demands1–4. This
ability depends on the representation of task-sets, which

specify the task-relevance of stimuli, features and locations to
attend to, and stimulus-action configurations that support the
execution of a task through cognitive control3,4. Task-sets are
known to be instantiated, in part, in neural activity patterns in
lateral prefrontal cortex (PFC)5–13. As goals and environments
change, it is necessary to retrieve new task-sets to replace ones
that are no longer relevant. While the currently relevant task-set
is sometimes explicitly cued, such as when a supervisor directs an
employee to perform a specific task, in other situations, knowl-
edge about the likely relevant task-set comes from past experience
and can be reinstated via mnemonic mechanisms. One source of
knowledge about the likely relevant task-set is associations
between the spatial context in which goal-directed behavior is
expressed and past task demands. In real life, spatial contexts are
often strong predictors of the likely tasks that will be performed
in the contexts (e.g., kitchen-cooking, library-reading). As such,
learned associations between spatial contexts and demands of the
to-be-performed tasks (hereafter, contextual task demand, CTD)
may permit proactive control, wherein a subsequent encounter
with a specific context triggers the retrieval (reinstatement) of the
most strongly associated task demand.

A wealth of behavioral, computational, and neuroimaging data
inform theories of proactive control, yet fundamental questions
remain regarding how the brain acquires knowledge of and
proactively retrieves probabilistically likely task-sets. Notably,
task-sets are different from other knowledge about “what” (e.g.,
sensory information, semantic knowledge), in that task-sets
include additional instructions on “how” to perform the tasks
(e.g., how information should be processed, how attention should
be directed, and how evidence maps to action selection). This
difference warrants separate investigations of the mnemonic
mechanisms of task-sets. On the acquisition end, previous studies
have shown that neural structures implicated in probabilistic
learning, such as the striatum, support the learning of cognitive
control demand14–16. However, the neurocognitive mechanisms
enabling the proactive retrieval of CTD remain unclear.

Given recent evidence that the hippocampus contributes to the
retrieval of associative memories17, guiding spatial attention18,19

and adjusting cognitive control20, we hypothesize that the
retrieval of CTD depends on the hippocampus. Based on our
hypothesized neurocognitive process model in Fig. 1, we predict
that entering a spatial context will trigger the hippocampus to
retrieve its associated CTD, which is reinstated in the PFC and
influences goal-directed behavior. To test these predictions, we
first assess the reinstatement of CTD in the PFC and its beha-
vioral relevance. Next, we examine the link between CTD rein-
statement in PFC and its relationship with hippocampal
mnemonic mechanisms––in particular, pattern separation, which
refers to the specialized hippocampal mechanism of assigning
distinct hippocampal coding for similar items or events, which
serves to reduce interference and facilitate discrimination among
memory traces21,22.

Following this logic, we develop a behavioral experiment
leveraging 3D virtual environments to induce associations
between four spatial contexts and two distinct task demands (two
contexts per task demand). Using this paradigm and reinforce-
ment learning models, we find behavioral evidence of the learning
of CTD. In concurrently acquired fMRI data, we observe brain
activity patterns reflecting the reinstatement of CTD in the right
dorsolateral (dl)PFC when the participants entered the spatial
context and prior to the start of the task. Further, CTD rein-
statement is correlated with the similarity between hippocampal
activity patterns, suggesting that retrieval of task demand

representations relate to the representational similarity of hip-
pocampal context codes.

Results
Behavioral results. The experiment consisted of 6 runs of 8
blocks each, during which participants needed to draw on
selective attention to make perceptual decisions about compound
stimuli (an overlapping face/object pair). In each block, partici-
pants (n= 33) were cued to navigate to one of four buildings in a
3D environment. After entering each building, its interior was
shown for 7.75 s, followed by eight perceptual decision-making
trials (Fig. 2a). Each trial started with a task cue, followed by a
face and object image pair. Based on the task cue, participants
indicated either the gender of the face (male/female) or the type
of object (clothes/tool) via a button press (Fig. 2). To manipulate
CTD, participants performed 75% face/25% object trials in two
contexts/buildings and 75% object/25% face trials in the other
two contexts/buildings (Fig. 2c; see the “Methods” section for
details).

Participants achieved high accuracy on the face (mean ± SEM:
0.89 ± 0.02) and object (0.90 ± 0.01) tasks, but were slower on
object (1158 ± 38 ms) than on face (1094 ± 37 ms) trials (t32=
5.37; uncorrected P < 0.00001, paired t-test; d= 0.93). A see-
mingly straightforward way to test the learning of CTD would be
to compare the behavioral performance between conditions when
the required task was congruent with the CTD (e.g., face task in a
context of 75% face trials) to when it was incongruent (e.g., face
task in a context of 75% object trials). However, this test can be
confounded by other learning strategies that (partially) capture
the statistical contingency. For example, one can in theory
employ a temporal learning strategy, which makes predictions
based on previous trials and ignores transitions of contexts, to
achieve accurate prediction in most trials except for when there is
a change of CTD between blocks. To control for temporal
learning and to determine whether participants learned the task
demand probabilistically associated with each context (i.e., the
CTD), we performed reinforcement learning model-based, trial-
level analyses (Fig. 3a). One reinforcement learning model
(contextual model) simulated the learning of CTD16, and a
second reinforcement learning model (temporal model) simu-
lated context-insensitive learning of task demand through
temporal information23,24. Prior work indicates that model-
based predictions of task demand facilitate behavioral perfor-
mance when the predictions match the actual task demand23,24.
In an analogous manner, we tested whether the CTD was learned
by (a) computing trial-level prediction error in the contextual
model, defined as the discrepancy between the predicted and
actual task demand, and (b) determining whether contextual
prediction error accounted for variance in trial-wise accuracy and
response time (RT). Prediction error from the temporal model
and the task required were used as covariates (see the “Methods”
section: “Behavioral analysis”).

Analyses revealed that the temporal model prediction error
scaled with RT (regression coefficient: 0.03 ± 0.004; t32= 9.05;
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Fig. 1 Proposed neurocognitive processes underlying the reinstatement
of learned CTD. Blue text indicates the figures where relevant results
are shown.
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P < 0.00001, one-sample t-test; d= 1.58), consistent with previous
findings23,24. The prediction error in the temporal model
demonstrated a trend towards modulating accuracy (regression
coefficient: 0.09 ± 0.05; t32= 1.81; P > 0.07, one-sample t-test; d
= 0.31). Crucially, analyses further revealed that larger contextual
model prediction error predicted lower accuracy (regression
coefficient: −0.19 ± 0.04; t32=−4.61; P= 0.00006, one-sample t-
test; d= 0.80; Fig. 3b) and slower RT (regression coefficient: 0.01
± 0.004; t32= 2.62; P= 0.01, one-sample t-test; d= 0.46; Fig. 3c,
see Supplementary Fig. 1 for individual data). Given that both the
contextual model and the temporal model were included in the
same analysis to explain variance in the behavioral data, these
latter findings indicate that CTD was learned and influenced task
execution. Note that FDR correction25 was applied to control for
multiple comparisons in these behavioral analyses, and all
reported significant behavioral results survived FDR correction.
Repeating the behavioral analyses using residuals, after regressing
out shared variance, did not qualitatively change the results
(Supplementary Note 1).

Reinstatement of CTD in frontoparietal cortex. Having docu-
mented the learning of CTD in behavior, fMRI analyses focused on
quantifying neural activity patterns related to the representation
and retrieval of the CTD. Given prior demonstration that task
representations can be decoded from patterns of activity in human
frontoparietal cortex10,11,26–31, BOLD patterns were extracted from
frontoparietal regions-of-interest (ROIs) defined using the Human
Connectome Project’s multi-model cortical parcellation32. We
hypothesized that predictions (i.e., retrieval) of CTD would occur
upon arrival in the context. Accordingly, we computed the pattern
similarity between BOLD activity patterns evoked at the onset of

each context (i.e., the 7.75 s pre-task period coinciding with the
onset of the room at the beginning of each block; Fig. 2c) and
activity patterns evoked at the onset of the task cue on each trial.

Specifically, because learning had yet to occur, data from the
first run were excluded from the pattern similarity analyses (see
the “Methods” section). For each context in all subsequent runs,
the context’s pattern similarity was computed in relation to out-
of-run trials33. Note that the context has an associated task
demand defined by its CTD. Moreover, a trial is always presented
in a context and hence also inherited the associated task demand
from this context (i.e., defined by the CTD of the context). To
quantify task representations and their prediction, we computed
three types of context-trial pattern similarity: (1) Same Context
(i.e., context and trial in the same room that, by definition, have
the same associated task demand); (2) Same CTD (i.e., context
and trial in different rooms that have the same associated task
demand); and (3) Different CTD (i.e., context and trial in
different rooms that have different associated task demand). This
yielded a 3 (context: Same context, Same CTD, Different CTD) ×
2 (congruency: match/mismatch between the CTD and the actual
task demands on the trial) factorial design (Fig. 4a, b). We
hypothesized that reinstatement of CTD during context onset will
bias the neural activity patterns towards the predicted task.
Therefore, if the context and the trial are associated with the same
task (i.e., same context and same CTD conditions), then context-
trial pattern similarity should be higher on match than mismatch
trials. On the other hand, if two trials are associated with different
tasks, then this effect will be attenuated or reversed, because the
unexpected task in one context (e.g., face trials in a 75% object
context) is the predicted task in other contexts (e.g., face trials in a
75% face context).
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Fig. 2 Experimental design. a Experiment trial structure and response mappings. Left: structure of an exemplar block. Participants were first cued to
navigate to a target building and then entered a room in the building (top row). They then performed eight perceptual decision-making trials within the
room (bottom row). Right: response mapping. Blue, yellow, green and red buttons correspond to index, middle, ring and pinky fingers, respectively.
Participants were randomly assigned to use one hand to respond to faces and to use the other hand to respond to objects. b Task cues and an example
stimulus pair. Depending on the letter/task cue (left), participants were to identify the gender of the face or the type of object in the compound stimulus
(right). c Building exteriors and room interiors for the four contexts. For each participant, the mapping of the four contexts to the two CTDs was randomly
assigned.
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Given the above logic, we tested whether CTD reinstatement
occurred during the onset of a context using a context ×
congruency interaction (Fig. 4b). Strikingly, four frontoparietal
regions––left inferior frontal junction (IFJP), left superior frontal
(BA i6-8), right dlPFC/frontopolar (BA 9-46d), and left superior
parietal (BA 7PL)––showed a significant context × congruency
interaction (p < 0.05, FDR corrected; Fig. 4c–f, brain images). In
post-hoc analyses, we tested the effect of congruency collapsed
across Same Context and Same CTD conditions, as well as in the
Different CTD condition. All four ROIs displayed higher context-
trial pattern similarity on match than mismatch trials when the
associated task demands were the same between the context and
the trial, though the effect in left superior parietal did not reach
significance (Fig. 4c–f, dot graphs; Table 1; see Supplementary
Fig. 2 for individual data). Critically, while it is possible that
context-trial pattern similarity on Same Context trials reflects
perceptual coding of the room rather than task coding, significant
effects in the Same CTD condition must reflect task demands.
Importantly, all ROIs displayed a numerical trend of higher
context-trial pattern similarity on congruent than incongruent
trials in the Same CTD condition, with right dlPFC/frontopolar
cortex and left inferior frontal junction reaching statistical
significance (Fig. 4c–f, dot graphs; Table 1). Finally, all four
ROIs exhibited lower context-trial pattern similarity on match
than mismatch trials when the associated task demands differed
between the context and the trial, though the effect in right
dlPFC/frontopolar cortex did not reach significance (Fig. 4c–f,
dot graphs; Table 1).

To further examine whether the cortical reinstatement of CTD
predicts behavior, we conducted a trial-level brain-behavior

analysis on each of the four identified frontoparietal ROIs.
Specifically, trial-level reinstatement was measured using the
match/mismatch contrast on Fig. 4b. The Different CTD
condition was excluded from this analysis to avoid the measure
of CTD reinstatement being confounded by the mismatch of
CTD between the two contexts (e.g., the mismatch of CTD may
impact the context-trial pattern similarity and/or its congruency
effect). Trial-level reinstatement was then used to predict trial-
level RT. Temporal model prediction error, task, and ROI-mean
univariate activity were used as regressors of no interest. We
hypothesized that reinstatement should facilitate behavioral
performance. Out of the four regions (see Supplementary Fig. 2
for individual data for each ROI), significant reinstatement-
related modulation on RT was found in right dlPFC/frontopolar
(regression coefficient: −0.0062 ± 0.0024; t32=−2.63; P= 0.01,
one-sample t-test; d= 0.46; survived FDR correction across the
four ROIs) and left superior parietal (regression coefficient:
−0.0045 ± 0.0024; t32=−1.89; P= 0.04, one-sample t-test; d=
0.33; did not survive FDR correction across the four ROIs). We
repeated the analysis above using both contextual prediction error
and temporal prediction error as covariates, and observed a
marginally significant modulation of dlPFC/frontopolar CTD
reinstatement on RT (regression coefficient: −0.0040 ± 0.0022;
t32=−1.81; P= 0.08, one-sample t-test; d= 0.32). This finding
provides initial support for the claim that the neural measure of
CTD reinstatement explains behavioral data above and beyond
what is accounted for in the behavioral models. These results
reflect a facilitation effect (Fig. 4c), such that stronger task
reinstatement led to faster RT. The left inferior frontal junction
(regression coefficient: 0.0013 ± 0.0025; t32= 0.55; P > 0.58, one-
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sample t-test) and the left superior frontal (regression coefficient:
−0.0004 ± 0.0021; t32= 0.21; P > 0.83, one-sample t-test) ROIs
did not reach statistical significance. For completeness, we also
repeated this analysis using the congruency effect in the Different

CTD condition; none of the ROIs showed significant modulation
on RT in this analysis (all Ps > 0.09). We did not see strong
evidence for CTD reinstatement in visual, motor, premotor and
medial prefrontal cortex (Supplementary Notes 2–4). Together,
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these analyses demonstrate that reinstatement of CTD is evident
in frontoparietal patterns of activity upon arrival in each context/
room, and that the strength of task reinstatement predicts RTs
during subsequent task performance.

Hippocampal pattern similarity predicts CTD reinstatement.
Prior studies document that trial-level estimates of hippocampal
univariate activity and hippocampal pattern similarity relate to
cortical reinstatement during retrieval34–38. To examine the
relationship between hippocampal functional activity and (a)
frontoparietal indices of CTD reinstatement and (b) the beha-
vioral consequences of CTD, we extracted block-level measures of
hippocampal univariate activity at context onset and computed
trial-level pattern similarity between hippocampal activity pat-
terns at context onset (i.e., context–context pattern similarity). To
account for the possible change in pattern separation after each
encounter of a context, context–context pattern similarity was
calculated at the onset of the room for each block, again for Same
Context, Same CTD, and Different CTD conditions (Fig. 5a). To
validate our context–context pattern similarity measures, we
found a context-level representation effect, such that
context–context pattern similarity within the Same Context
condition (0.0063 ± 0.0005) was significantly higher than
context–context pattern similarity in the Different CTD condition
(0.0044 ± 0.0007, t32= 2.39; P= 0.02, paired t-test; d= 0.42;
Supplementary Fig. 3; Note: This test was performed on all 6
runs, because no learning was assumed in this prediction).
Context–context pattern similarity did not systematically change
as a function of time (Supplementary Note 5).

We next tested for the predicted hippocampal differentiation
effect39–41–that is, reduced pattern similarity between two distinct
events that share a feature (here, the Same CTD condition)
compared to pattern similarity between two events with distinct
features (here, the Different CTD condition). Consistent with this
prediction, hippocampal context–context pattern similarity in the
Same CTD condition was significantly lower than that in the
Different CTD condition (Same CTD: 0.0031 ± 0.0008; Different
CTD: 0.0051 ± 0.0005; t32=−2.91; P= 0.007, paired t-test; d=
0.51; Fig. 5b). Moreover, examination of the temporal profile of
hippocampal pattern similarity revealed that similarity was
constant across the six scan runs in the Different CTD condition,
but significantly declined from Run 1 to Runs 2–6 in the Same
CTD (Supplementary Note 6; Supplementary Fig. 4). As such,

hippocampal differentiation for overlapping contexts (i.e., those
that shared the same CTD) emerged through time.

Next, we examined whether hippocampal context–context
pattern similarity and univariate activity predicted frontoparietal
cortical reinstatement of the CTD. Specifically, a block-wise
analysis was conducted for each of the four cortical ROIs showing
CTD reinstatement effects (Fig. 4c–f). For each ROI, hippocampal
context–context pattern similarity in Same Context, Same CTD
and Different CTD conditions, along with the hippocampal
univariate activity were used as four predictors of block-wise
CTD reinstatement in the ROI (calculated using the contrast on
Fig. 4b); the univariate activity of the frontoparietal ROI was used
as a covariate of no interest. Only the CTD reinstatement in right
dlPFC/frontopolar cortex (BA 9-46d) positively co-varied with
hippocampal context–context pattern similarity in the Same CTD
condition (regression coefficient: 0.083 ± 0.028; t32= 2.98; P=
0.005, one-sample t-test; d= 0.52; survived FDR correction across
the three pattern similarity conditions; Fig. 5c, d) and
hippocampal univariate activity (regression coefficient: 0.087 ±
0.042; t32= 2.13; P= 0.04, one-sample t-test; d= 0.37; Fig. 5c, d;
see Supplementary Fig. 5 for individual data). When repeated
separately for the left and right hippocampus, the regression
coefficient for the Same CTD context–context pattern similarity
did not significantly differ between the two hemispheres (left:
0.037 ± 0.038; right: 0.044 ± 0.032; t32= 0.12; P= 0.9; paired t-
test). Collectively, these results are consistent with theories of
pattern completion that posit that the hippocampus drives
restatement of associated event features (here the CTD) in cortex
(here dlPFC/frontopolar). While fMRI data lack the temporal
resolution to definitively demonstrate that the hippocampal effect
precedes the CTD reinstatement in PFC, we performed additional
control analyses to discount the possibility that the observed
hippocampal-PFC relationship was due to a modulation from
dlPFC/frontopolar cortex to the hippocampus or to a common
modulator (Supplementary Note 7). Again, definitive evidence on
this point awaits further experimentation.

We further explored the behavioral relevance of hippocampal
activity and representation by examining whether hippocampal
univariate activity and hippocampal context–context pattern
similarity in Same Context, Same CTD and Different CTD
conditions account for trial-level RTs. Because the neural
measures were calculated at the retrieval of CTD, a match/
mismatch factor was applied to these predictors, similar to the
above brain-behavior analysis using frontoparietal ROIs. Hippo-
campal univariate activity displayed significant modulation on RT
(regression coefficient: −0.0044 ± 0.0021; t32=−2.10; P= 0.04,
one-sample t-test; this relationship is marginally significant when
including block-wise CTD reinstatement measured in BA 9-46d
as a covariate in the model: −0.0043 ± 0.0023; t32=−1.91; P=
0.07). By contrast, RT was not significantly modulated by
context–context pattern similarity in the Same Context (regres-
sion coefficient: −0.0005 ± 0.0021 t32= 0.25; P > 0.80), Same
CTD (regression coefficient: −0.0036 ± 0.0023; t32=−1.56; P >
0.12) and Different CTD conditions (regression coefficient:
−0.0012 ± 0.0022; t32= −0.53; P > 0.60). These results provide
suggestive evidence that hippocampal contributions to behavior
were partly implemented via hippocampal modulation on CTD
reinstatement in right dlPFC/frontopolar cortex.

Discussion
Retrieval of the task-set that is relevant for impending goals is
essential for flexible and efficient behavior. Prior work suggests
that retrieval of task demand can be facilitated by the prediction
of the relevant task-set in a probabilistic manner23,42. In real life,
the spatial contexts we live in are often strong predictors of task

Table 1 Summary statistics of the context-trial pattern
similarity congruency effects in the four cortical ROIs
showing significant context × congruency interactions in
context-trial pattern similarity.

R BA 9-46d L BA i6-8 L IFJP L BA 7PL

Same Context
+ Same CTD

0.0026
±0.0007

0.0021
±0.0007

0.0028
±0.0011

0.0023
±0.0012

3.75*** 3.04** 2.61* 1.92
P= 0.0007 P= 0.005 P= 0.01 P= 0.06

Same CTD 0.0033
±0.0014

0.0020
±0.0011

0.0037
±0.0014

0.0021
±0.0014

3.65*** 1.85 2.59* 1.57
P= 0.0009 P= 0.07 P= 0.01 P > 0.12

Different CTD -0.0012
±0.0009

-0.0017
±0.0008

-0.0036
±0.0011

-0.0046
±0.0010

−1.38 −2.16* −3.51** −4.54***
P > 0.17 P= 0.04 P= 0.001 P= 0.00007

For each condition, the top and bottom rows show the group mean ± SEM and the t-value (DOF
= 32, two-sided one-sample tests), respectively.
*p < 0.05; **p < 0.01; ***p < 0.001. P values are uncorrected.
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demands. In this study, we investigated the neurocognitive
mechanisms that are engaged when spatial contexts cue retrieval
of relevant task-sets. To better simulate spatial contexts encoun-
tered in real life, participants performed the task in a 3D virtual
environment with spatial contexts (i.e., buildings and rooms).
These contexts were then associated with different CTDs, which
were manipulated by the probabilistic distributions of the task
demands required within each context. After controlling for
context-insensitive learning of task demand, we observed sig-
nificant modulation of CTD on both accuracy (Fig. 3b) and RT
(Fig. 3c) in behavior, such that behavioral performance was better
when the required task matched the predicted task demand.

Given that the spatial context changed after each block, the
behavioral results indicate that participants learned and retrieved
the probabilistically dominant CTD at each block to guide goal-
directed behavior, setting the stage for fMRI analyses focused on
the neural mechanisms supporting the retrieval of the
associated CTD.

We predicted that neural activity patterns elicited by the
reinstatement of the retrieved CTD would be similar to the
activity patterns when the task predicted by the CTD was being
performed. This prediction was tested using context-trial pattern
similarity analyses, which resemble encoding-retrieval similarity
analysis in the memory literature37,43 and complement previous
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Fig. 5 Hippocampal activity and pattern separation predict cortical reinstatement of CTD. a Four examples (grouped by blue background) of how the
CTDs of context A (top row) and context B (bottom row) define the experimental condition of context–context pattern similarity (text label below the
background). b Visualization of the hippocampus ROI (top, in red) and individual data and mean ± SEM of the three conditions of hippocampal
context–context pattern similarity (bottom). At the group level, pattern similarity in the Same CTD condition was significantly lower than the Different CTD
condition. c Individual data and mean ± SEM of the regression coefficients of each of the four predictors and the ROI univariate activity on the CTD
reinstatement in each of the four frontoparietal ROIs. d Quintiles (x-axis) of group mean of CTD reins tatement in BA 9-46d (±SEM) plotted as a function
of hippocampal context–context pattern similarity in the Same CTD condition and hippocampal univariate activity. *p < 0.05; **p < 0.01. P values are
uncorrected and from two-sided one-sample t-tests. The experiment was conducted once (n= 33 biologically independent samples). Source data are
provided as a Source Data file.
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decoding analyses focused on distinguishing activity patterns
elicited by different cued tasks or task demands23,29,30. Consistent
with previous findings showing instantiation of task-set during
task in PFC5–13, the context-trial pattern similarity analyses
revealed frontoparietal foci in which reinstatement of CTD was
observed, including right dlPFC (Fig. 4c). Right lateral PFC has
been implicated not only in representing task rules, but also in
task organizations such as temporal order27 and composition26.
We suggest that the reinstatement of CTD in right dlPFC facil-
itates proactive cognitive control44, which provides top-down
modulation to bias processing towards the task predicted by the
CTD. Consistent with this account, the strength of CTD rein-
statement in right dlPFC upon entrance into a context covaried
with subsequent behavioral performance, such that stronger
reinstatement was followed by faster correct responses during
task trials encountered in the context (Fig. 4c, quintile graph).

We then investigated the relationship between CTD rein-
statement in dlPFC and hippocampal activity at the onset of the
spatial context. While CTD reinstatement in dlPFC did not
covary with its own univariate activity, it selectively covaried with
univariate activity in the hippocampus. This finding is in line with
the literature documenting hippocampal-cortical reinstatement
coupling during associative retrieval of visual stimuli34–38. Multi-
variate hippocampal activity patterns45 and connectivity46 pro-
vide additional support for the mechanism of pattern completion
during cued retrieval of stimulus-action sequences. The beha-
vioral relevance of the present hippocampal univariate effect is
supported by our observation that, as with CTD reinstatement in
dlPFC, hippocampal activity at context onset modulates RT on
trials subsequently encountered in the block.

To further study the interaction between CTD reinstatement
and hippocampal mnemonic mechanisms, we examined the
relationship between hippocampal pattern separation and CTD
reinstatement in dlPFC. To this end, our analyses were motivated
by recent hippocampal findings showing lower pattern similarity
between events with shared features than between events with
distinct features39–41. We first replicated this effect, observing
reduced hippocampal pattern similarity between contexts sharing
the same CTD as compared to pattern similarity between contexts
with different CTDs (Fig. 5b). As with the preceding studies, this
finding might to be at odds with pattern separation theory, which
posits that pattern separation drives the hippocampal repre-
sentations of overlapping events to be distinct as would be
expected by default for the representations of non-overlapping
events. However, such hyper pattern distinctiveness for over-
lapping events may be explained as a secondary effect that follows
initial pattern separation. Specifically, assuming that pattern
separation generates initial orthogonal representations for events
sharing the same feature, the nonmonotonic plasticity hypothesis
proposes that pattern similarity between the events can decrease
further through a pruning process that follows weak activation of
the overlapping portion of the neural codes47. Indeed, analyses of
the temporal profile of change in pattern similarity in the Same
CTD condition lends support for this latter interpretation, as the
hyper pattern distinctiveness (i.e., lower similarity in Same CTD
than in Different CTD) emerged over time (Supplementary
Note 6). The behavioral relevance of the present hippocampal
pattern distinctiveness effect is supported by the observed rela-
tionship between hippocampal pattern differentiation in the Same
CTD condition and CTD reinstatement in right dlPFC/fronto-
polar cortex (Fig. 5d), which modulated RT in trials later in the
same block (Fig. 4c).

In the present paradigm, we hypothesized that context-level
differentiation may support achieving the goal of representing the
particular context in which one is situated as well as the goal of
remembering the probabilistically dominant task performed

within the context. While a priori one might predict that hip-
pocampal pattern separation would similarly benefit both goals, it
is possible that the effects can differ. On the one hand, if the goal
is to distinguish between two contexts, hippocampal coding of
contexts within each pair may be separated to counter the
interference between contexts caused by the shared CTD. On the
other hand, pattern separation may be disruptive if the goal is to
retrieve the associated CTD: Specifically, consider two pairs of
contexts (dark and light dots in Fig. 6, each dot representing one
context), each associated with one CTD. Relative to weaker hip-
pocampal pattern separation, when pattern separation is strong
the cuing of one context is less likely to concurrently retrieve, or
suffer interference from, the other context sharing the same CTD.
However, while such strong pattern separation might keep the
contexts more distinct, this may result in a failure to leverage the
other context to boost retrieval and reinstatement of the shared
CTD through recurrent retrieval48,49. While speculative, the
divergent effects on the two goals may explain why overlapping
contexts and their shared CTD were, on average, not linked in a
single memory trace through integrative encoding50 (which
would have been evidenced by increased pattern similarity
between contexts in the Same CTD condition). At the same time,
we observed that dlPFC reinstatement of CTD positively scaled
with the hippocampal pattern similarity between the two over-
lapping contexts (i.e., Same CTD condition, see Fig. 5c, d). This
observation is broadly consistent with models of hippocampal
generalization48,49, as weaker pattern separation may allow
recurrent retrieval of the other context sharing the CTD, which
would facilitate the retrieval and reinstatement of the associated
CTD. Future research should explore whether and how recurrent
or chained retrieval of associated task-sets and sensory informa-
tion support prospective planning and flexible behavior in com-
plex tasks51.

The context-task-set model52 would suggest that participants
form a hierarchical structure of the task, with a higher level
representing the two CTDs, each of which is further linked to its
two associated contexts at a lower level. This theory would appear
to predict higher pattern similarity in Same CTD than Different
CTD conditions, which is the opposite of the findings in the
present study. One possibility is that strong pattern separation at
the context level hindered the clustering of contexts sharing the
same CTD. More generally, in this experiment, pattern separation
at the context level appears to reflect a trade-off between two
goals: navigation and context representation that benefited from
pattern separation and perceptual decision making that was
hindered by pattern separation. Pattern separation may be a
dynamic process that optimizes between tradeoffs. Here, these
dynamics are consistent with the block-level fluctuations in hip-
pocampal context–context pattern similarity and dlPFC CTD
reinstatement. The argument that hippocampal pattern separa-
tion balances integration and separation would predict that

Strong separation Weak separation

Weak facilitation

Strong facilitation

Fig. 6 Relationship between pattern separation of context
representations and CTD retrieval. Stronger hippocampal separation of
contexts sharing the same CTD may lead to more distinct neural coding of
contexts (indicated by the distance between dots of the same color), but
weaker facilitation from the other context in supporting retrieval of the
associated CTD (indicated by the thickness of the red arrows).
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stronger pattern separation will lead to stronger facilitation in
behavior. We tested this prediction by correlating the Same CTD
context–context pattern similarity in the hippocampus with the
behavioral modulation of CTD shown in Fig. 3 (separately for
accuracy and RT) across participants. Consistent with this pre-
diction, we observed a significant correlation (r=−0.39, P=
0.03, Supplementary Fig. 6), such that, contextual prediction
errors impact accuracy more (indicating stronger behavioral
influence of CTD) when the pattern similarity scores are lower
(indicating stronger separation).

The present study advances understanding of how the brain
retrieves goal-relevant task-sets. Utilizing a 3D virtual environ-
ment to induce strong associations between spatial contexts and
CTD, we observed that context-CTD associations modulated
subsequent goal-directed behavior; these data document a form of
task-level memory-guided prospection. The fMRI data further
revealed CTD reinstatement in dlPFC (BA 9-46d), which further
predicted decision response times at the trial level. This rein-
statement of CTD was predicted by hippocampal activity and
differences in hippocampal pattern separation between contexts
sharing the same CTD. Taken together, these findings document
the role of hippocampal-prefrontal interactions in CTD retrieval
and goal-directed behavior.

Methods
Subjects. Thirty-eight subjects gave informed written consent, in accordance with
procedures approved by the Stanford University Institutional Review board. Two
subjects dropped out before the experiment ended (one felt motion sick and one
felt anxious). Another two subjects were excluded due to low behavioral perfor-
mance (accuracy was lower than the group median minus 3 standard deviation).
An additional subject was excluded due to excessive head motion. The final sample
consisted of 33 participants (18–32 yrs old; 19 females, 13 males and 1 NA) with
normal or corrected-to-normal vision and no self-reported history of psychiatric or
neurological disorders.

Behavioral tasks. Participants performed a perceptual decision-making paradigm
(Fig. 2a) embedded in a spatial navigation task in a 3D environment made using
Python and Panda EPL. The environment consisted of a circular track and four
visually distinct buildings (Fig. 2c) located on the exterior side of the track. The
experiment was divided into 6 runs of 8 blocks each, with 2 blocks/building/run.
Each block started with a building cue for 6 s, indicating to which building the
participant was to navigate. The participant then moved on the circular track to the
cued building and indicated their arrival by a button press. If the response was not
made at the entrance to the cued building, an error message was presented for 1 s.
On error trials, the participant resumed navigating until the correct building was
reached.

Immediately upon arriving at the cued building, the interior of a room in the
building was presented for 7.75 s (Fig. 2a). The colors and textures of the backwall
and the floor were unique for each room, thus creating four distinct spatial
contexts––defined by the perceptual features of the room along with which
building the room was located. All four contexts included a display on the backwall.
For each block within a room, participants performed eight perceptual decision-
making trials presented on the display on the backwall. Each trial began with the
presentation of a task cue (either the letter G or O) for 250 ms, followed by the
presentation of overlapping, translucent images of a face (either male or female)
and an object (either clothes or tool) for 1500 ms. The particular combinations of
face and object images were randomly generated without repetition for each
participant. Depending on the cue, participants were required to categorize either
the gender of the face (cued by letter G) or the type of the object (cued by letter O),
by pressing one of two response buttons (response mappings are shown in Fig. 2a).
Trials were separated by a 4.25 s inter-trial interval. Critically, to induce different
learned associations between each context and expected task demands (face vs.
object)–i.e., the CTD–blocks consisted of 75% face/25% object trials in two contexts
and 75% object/25% face trials in the other two contexts. The pairings of contexts
and CTD were randomized across participants. Inspired by the literature of item-
cognitive control demand associations16, we adopted an incidental learning
paradigm. However, we do not assume such learning is implicit (or exclusively
implicit). We expect that explicitly learned CTD (can result from intentional or
incidental learning) will result in similar retrieval processes, given the importance
of hippocampus in the retrieval of explicitly formed associations53. For example,
the hippocampal pattern differentiation findings (c.f., Fig. 5b) were first observed in
studies exploring explicit associations39.

Prior to the fMRI experiment and outside the MR environment, participants
were shown all face stimuli (10 males and 10 females) and object stimuli (10 pieces
of clothes and 10 tools) for familiarization. Specifically, all stimuli for each category

(e.g., female faces, tools) were displayed on one page in a browser window on the
screen. Participants could freely change pages without time constraints. They were
instructed that general familiarity would suffice and that there was no need to
remember the details of each image. Most participants finished this process within
3 min. Participants then practiced the perceptual decision-making tasks. During
this practice, the stimuli (overlapping object and face pairs) were presented on a
white background (i.e., no room interior) to prevent the learning of CTDs prior to
the fMRI experiment. The practice session consisted of 10 trials for each task, and
repeated if the participant failed to reach an overall accuracy of 70%. Participants
then practiced the navigation task for 20 trials (5 trials for each building), which
allowed them to become familiar with using the button box for navigation as well
as to learn the locations of the four buildings within the environment. The
structure of a practice navigation trial was identical to the main task (i.e., building
cue followed by navigation). However, upon arrival at the correct building, the
practice proceeded to the next building cue (rather than moving into a room in the
building).

Behavioral analysis. We adopted reinforcement learning model-based behavioral
analyses16,23,24. Without loss of generality, we denote 0 and 1 for a face and an
object trial, respectively. The reinforcement learning model learns to predict the
task demand at trial t using the probability of performing an object task (denoted as
Po(t), with Po(t) greater than 0.5 predicting higher likelihood of encountering an
object task than face task), in the following manner:

Po tð Þ ¼ Po t � 1ð Þ þ α T t � 1ð Þ � Po t � 1ð Þð Þ
where α is the learning rate, and T(t− 1) denotes the task performed in the
previous trial. Given the trial sequence experienced by a participant, T becomes
known to the model. Therefore, given α and a neutral initial prediction Po(0) of 0.5,
we can estimate the prediction of task demand for each trial using the reinforce-
ment learning model. Relatedly, trial-level (unsigned) prediction error, which was
used in model-based behavioral analysis, was defined as |T(t− 1)− Po(t− 1)|, or
the absolute difference between T and Po.

We then constructed two reinforcement learning models to separately model (a)
temporal predictions and (b) contextual predictions of task demand. The temporal
model selectively used temporal information (i.e., ignored context changes), and
consisted of only one reinforcement learner that is active throughout the
experiment and learns task predictions from the sequence of trials. By contrast, the
contextual model used a combination of temporal information and context to learn
the CTD, such that there was one reinforcement learner for each of the four
contexts. At each trial, only the learner associated with the present context was
activated (i.e., no updating of Po for the other three learners). The four contextual
learners shared the same learning rate. Thus, at a given trial, the temporal model
and the contextual model differ in: (1) the learning rate used, and (2) the learner
updated (for the temporal model it is always the same learner, whereas in the
contextual model it is the learner corresponding to the present context). Recent
studies have shown the benefit of adopting self-adjusting learning rates in learning
models15,54. The benefit is more pronounced in changing environments (e.g., when
CTD changes over time in the context of the present experimental design). Given
that the CTD in the experimental design stayed constant, we chose a simple fixed
learning rate. Under this configuration, the learning rate for each model was a free
parameter determined by a grid search (range: 0.01–0.99, step size= 0.01): for each
combination of learning rates, temporal and contextual prediction errors were
calculated using the trial sequence. The prediction errors were regressed against the
log-transformed trial-level RTs (see below). Learning rates that led to the lowest
errors in the linear regression were used for subsequent behavioral analyses. Note
that we did not constrain the signs of the regression coefficients for the prediction
errors; therefore, the grid search procedure was neutral to the subsequent analyses.
An alternative model using joint temporal and contextual predictions yielded
similar behavioral results (Supplementary Note 8).

Normalized prediction errors were used to predict accuracy and RT. A logistical
regression was applied to temporal and context prediction errors to predict trial-
level accuracy (1= correct, 0= incorrect) for each participant. Covariates included
the task cue (face or object task) as a categorical covariate and a constant
accounting for the grand mean of accuracy. For RT analysis, error trials, post-error
trials and RTs longer than 2.5 standard deviations from the median were excluded.
Specifically, post-error trials are known to display ‘post-error slowing’, possibly due
to a cautionary shift in response thresholds55, which represents a process that is not
targeted in the model-based behavioral analysis or the retrieval of CTD analysis.
For each subject, a linear model including temporal and context prediction errors,
task cue and constant was fit to the logarithm of RT to make the distribution of RT
more Gaussian24. For the accuracy and RT analyses, regression coefficients for both
prediction errors were submitted to group-level t-test against 0.

MR data acquisition. Data were acquired on a 3T GE Discovery MR750 MRI
scanner (GE Healthcare) using a 32-channel radiofrequency receive-only head coil
(Nova Medical). Functional data were acquired using a 3-band echo planar ima-
ging (EPI) sequence (acceleration factor= 2) consisting of 63 oblique axial slices
parallel to the long axis of the hippocampus (TR= 2 s, TE= 30 ms, flip angle=
74°, FOV= 215 mm × 215 mm, voxel size= 1.8 × 1.8 × 1.8 mm3). To correct for
distortions of the B0 field that may occur with EPI, we collected two B0 field maps
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before every functional run, one in each phase encoding direction, with the same
slice prescription as the functional runs. Structural images were acquired using a
T1-weighted (T1w) spoiled gradient recalled echo structural sequence (186 sagittal
slices, slice thickness= 0.9 mm, TR= 7.26 ms, FoV= 230 mm × 230mm, in-plane
resolution= 0.9 mm × 0.9 mm).

Anatomical data preprocessing. Preprocessing was performed using fMRIPprep
1.1.4 (RRID:SCR_016216)56,57, which is based on Nipype 1.1.1 (RRID:
SCR_002502)58,59. The T1-weighted volume was corrected for intensity non-
uniformity (INU) using N4BiasFieldCorrection (ANTs 2.2.0)60; a T1w-reference
was used throughout the workflow. The T1w-reference was skull-stripped using
antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as the target template. Brain
surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847)61,
and the brain mask estimated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the
cortical gray-matter of Mindboggle (RRID:SCR_002438)62. Spatial normalization to
the ICBM 152 Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796)
63 was performed through nonlinear registration with antsRegistration (ANTs 2.2.0,
RRID:SCR_004757)64, using brain-extracted versions of both the T1w volume and
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter
(WM) and gray-matter (GM) was performed on the brain-extracted T1w using
FAST (FSL 5.0.9, RRID:SCR_002823)65.

Functional data preprocessing. For each of the 6 BOLD runs per subject, the
following preprocessing was performed. First, a reference volume and its skull-
stripped version were generated using a custom version of fMRIPrep. A defor-
mation field, to correct for susceptibility distortions, was estimated based on two
EPI references with opposing phase-encoding directions, using 3dQwarp (AFNI).
Based on the estimated susceptibility distortion, an unwarped BOLD reference was
calculated enabling a more accurate co-registration with the anatomical reference.
Head-motion parameters with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and translation parameters) were esti-
mated before spatiotemporal filtering using MCFLIRT (FSL 5.0.9)66. The BOLD
time-series were resampled onto their original space by applying a single, com-
posite transform to correct for head-motion and susceptibility distortions. These
resampled BOLD time-series will be referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. The BOLD reference was then co-registered to
the T1w reference using bbregister (FreeSurfer) which implements boundary-based
registration67. Co-registration was configured with nine degrees of freedom to
account for distortions remaining in the BOLD reference. The BOLD time-series
were resampled to MNI152NLin2009cAsym standard space, generating a pre-
processed BOLD run in MNI152NLin2009cAsym space. Several confounding time-
series were calculated based on the preprocessed BOLD: framewise displacement
(FD), DVARS and three region-wise global signals. FD and DVARS were calculated
for each functional run, both using their implementations in Nipype (following the
definitions by Power et al.68). The three global signals were extracted within the
CSF, WM, and whole-brain masks. The head-motion estimates calculated in the
correction step were also placed within the corresponding confounds file. All re-
samplings were performed with a single interpolation step by composing all the
pertinent transformations (i.e., head-motion transform matrices, susceptibility
distortion correction, and co-registrations to anatomical and template spaces).
Gridded (volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the smoothing effects
of other kernels69. The preprocessed fMRI data were smoothed by a 2 mm full-
width-half-maximum Gaussian kernel.

fMRI analysis. Prior to fMRI analyses, we removed the first 5 TRs in each run. For
each run, we then built a general linear model, which was then regressed against
preprocessed fMRI data at the voxel level. To obtain event-level beta estimates for
brain activity, each event (i.e., onset of building cue/building exterior and onset of
room interior for each block, and onset of task cue for each trial) was represented
by a single regressor of a hemodynamic function time-locked to the onset of the
event. Each event was modeled using a stick function, because it was a priori
unclear whether the learning and retrieval of CTD would last for the whole
duration of stimulus presentation. The GLM also included nuisance regressors
marking outlier TRs (DVARS > 5 or FD > 0.9 mm from previous TR) and regres-
sors representing TR-level 6-dimensional head movement estimates and global
mean signals within the whole brain, WM and CSF masks. The GLM was then
regressed against the fMRI data at each voxel, yielding estimates of event-level
brain activity. Trials excluded from behavioral analyses and trials with onset time
within 12 s prior to an outlier TR were excluded from fMRI analyses (15 ± 6 trials
per subject). Due to the focus on retrieval in this study, we excluded data from the
first run based on the approximation that a low learning rate of 0.02 will lead to a
clear difference of ~0.32 between the two CTDs after one run. A single GLM was
constructed for each of the five runs.

For each participant, we conducted pattern similarity analyses on data extracted
from bilateral hippocampus (defined by FreeSurfer) and 150 lateralized
frontoparietal and medial temporal ROIs (defined by the multi-modal cortical
parcellation from the Human Connectome Project; major assignment IDs: 13, 16,

17, 19, 20, 21, and 22, ROI size= 198 ± 16 voxels; range= 51–511)32. For each ROI
and each event, its activity pattern was quantified as a vector of multi-voxel
normalized betas by dividing the original betas by the square root of the covariance
matrix of the error terms from the GLM estimation70. All voxels in the ROIs were
used in the calculation of pattern similarity. Pattern similarity was measured as
Fisher transformed Pearson’s r. All pattern similarity analyses were conducted
across runs, in order to avoid artifacts33. Multiple comparisons were controlled for
using FDR correction25. Unless otherwise specified, all reported P-values were
uncorrected. We also report whether the reported results survived FDR correction
if applicable. All pattern similarity analyses and statistical tests were conducted
using Matlab 2017a.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw MRI data and behavioral data can be downloaded at [https://openneuro.org/
datasets/ds002169]. A reporting summary for this Article is available as a Supplementary
Information file. The source data underlying Figs. 3b, c, 4c–f, 5c, d and Supplementary
Figs. 1–6 are provided as a source data file.

Code availability
Analysis scripts are available at [https://github.com/JiefengJiang/CTD].
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