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Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural
signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple
concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected
object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently
manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex
were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature
might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might
“spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an
expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival
hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior
and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one
object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational
principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision.
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Introduction
To recognize its surroundings, the visual brain has to infer accurately
the causes of retinal stimulation. This process is greatly complicated
by the inherent ambiguity of the visual signal: depending on view-
point, occlusion, and lighting conditions, a single object can cast a
vast number of different light patterns onto the retina, whereas myr-

iad different stimuli can produce identical patterns of stimulation.
To mitigate this problem, visual cognition is thought to rely heavily
on contextually informed expectations to disambiguate bottom-up
stimulation (Bar, 2004; Kersten et al., 2004; Summerfield and de
Lange, 2014). Accordingly, objects are recognized more quickly if
they occur in a typical context (e.g., a toaster on a kitchen counter)
than when they are encountered in unusual circumstances (e.g., said
toaster placed on a car roof) (Palmer, 1975; Biederman et al., 1982).
Similarly, conditionally less probable (i.e., unexpected) stimuli ap-
pear to require more extensive neural processing in sensory cortex
than more probable (expected) ones (Summerfield et al., 2008; den
Ouden et al., 2009; Alink et al., 2010; Egner et al., 2010; Meyer and
Olson, 2011).

Although the central role of expectations in perceptual infer-
ence is now widely acknowledged and some of its basic implica-
tions have been successfully modeled (Spratling, 2008; Jiang et al.,
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Significance Statement

We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for
different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently
varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that
behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object
feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of
multiple independent features.
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2012; Wacongne et al., 2012), one particularly notable shortcom-
ing is that we do not know how the visual brain manages multiple,
simultaneous expectations for different features of an object such
as its color, shape, and size. Prior studies have used only simple,
one-dimensional scenarios in which predictions and surprise sig-
nals were limited to a single feature of a given object or object
category (e.g., the forthcoming stimulus likely being a face, or a
right-tilted Gabor patch; Egner et al., 2010; Kok et al., 2012a). In
the real world, however, object expectations are rarely limited to
a single feature. For instance, a soccer player must form expecta-
tions about both the motion of surrounding players and the color
of their jerseys, to distinguish trajectories of teammates from
those of opponents. Therefore, we typically acquire, and make
use of, concurrent expectations about multiple features of an
object. Importantly, this can give rise to circumstances in which
one feature conforms to expectations, but another feature does
not. A key unresolved question is thus how the brain resolves
conflict between inconsistent feature expectations to produce
unified object-level perception.

In the present study, we investigated how the processing of
one stimulus feature (e.g., player motion) is affected by the vio-
lation of expectations concerning another feature (e.g., jersey
color) of the same stimulus. To understand this core aspect of
visual object cognition, we used behavioral and fMRI data to
adjudicate between three rival hypotheses: First, the two feature
expectations might operate independently of each other such that
an expectation violation of one feature would not affect the pro-
cessing of the other feature (“independence model”). Second,
perceptual expectations may operate at an object level such that
one surprising feature might render the entire object (including
the expected feature) surprising (“reconciliation model”). A par-
allel to this scenario exists in the attention literature, in which
attending to one feature (or part) of an object can lead to the
attentional selection of the entire object (Egly et al., 1994;
O’Craven et al., 1999). Third, the cooccurrence of an expected
and an unexpected object feature might motivate the perceptual
hypothesis that the two features are not in fact part of the same
object (“segregation model”). This hypothesis echoes findings in
figure– ground segmentation, in which subjects tend to interpret
a single unusual shape as reflecting a collection of mutually oc-
cluding, common shapes (for review, see Wagemans et al., 2012).
Finally, we investigated whether, and in what manner, a surpris-
ing feature affecting the processing of an expected feature could
plausibly interact with feature-based attention (i.e., the feature’s
relevance to the current task; Summerfield and Egner, 2009). Our
models therefore also incorporated effects of feature-based
attention.

Materials and Methods
Design and rationale
Our goal was to determine how the visual brain processes expectations
for multiple features of a single object as a function of whether a given
feature is attended. We operationalized this problem with a perceptual
categorization task involving a stimulus (a coherent motion field of dots)
composed of two independently varying features: color and motion di-
rection (see Figs. 1A,2A). Both of these features are known to drive neural
responses in early visual cortex (EVC; Movshon and Newsome, 1996;
Engel et al., 1997; Johnson et al., 2001; Kamitani and Tong, 2006), but are
thereafter processed by specialized areas of the ventral (color: V4; Gegen-
furtner, 2003) and dorsal (motion: area MT�; Born and Bradley, 2005)
visual streams.

This provides an ideal scenario for testing how an expectation (or
violations thereof) for one stimulus feature affects the processing of an-
other feature of the same object both in feature-selective regions (i.e., V4

and MT�) and in regions sensitive to both of these features (i.e., EVC).
To this end, we independently manipulated whether a given feature con-
formed to or violated perceptual expectations. These manipulations
produced four experimental conditions: color-unexpected/motion-
unexpected (CU/MU), color-expected/motion-expected (CE/ME),
color-unexpected/motion-expected (CU/ME), and color-expected/
motion-unexpected (CE/MU). Therefore, the expectation status across
the two features is consistent in the CU/MU and CE/ME conditions, but
inconsistent in the CU/ME and CE/MU conditions. To assess how mul-
tifeature expectations interact with attention and to dissociate expecta-
tion effects from attentional effects, we furthermore independently
varied the task relevance of the two feature dimensions (attend to color vs
attend to motion).

Using this experimental design, we compared three types of predictive
coding models concerning how expectation and surprise interact be-
tween object features to produce unified object perception. This interac-
tion relies on cross-feature exchange of prediction error (PE), which
drives the updating of neural representation to match sensory input.
Specifically, a parameter, �, is used to determine the proportion of PE
that propagates from one feature stream to the other (see Materials and
Methods: Computational simulation). When expectations are consistent
across features (i.e., CE/ME and CU/MU conditions), the PEs are iden-
tical for both features (either both are low or both are high) such that any
PE mixing across feature streams is balanced: the same amount of color
PE would propagate to the motion stream as the other way around.
Therefore, PE mixing does not alter feature processing in these condi-
tions. Crucially, however, when expectations are inconsistent between
features (i.e., CU/ME and CE/MU conditions), PE mixing affects the
feature stream cross talk in different ways depending on the sign of �.
(The absolute value of � does not qualitatively change the pattern of the
interaction; see Fig. 7).

Setting � to 0 simulates the “independence model” in which no PE
mixing occurs (see Fig. 3A), so PE in one feature exerts no influence on
the processing of the other feature (e.g., violation of the expectation of a
player’s jersey color does not affect the processing of his or her motion).
In contrast, setting � to a positive value simulates the “reconciliation
model” (see Fig. 3B), which reduces the discrepancy of PE between the
expected and the unexpected features by dampening PE in the unex-
pected feature and augmenting PE in the expected feature. Here, expec-
tations for multiple features of a single object are effectively blended into
an object-level expectation. For example, violation of the expectation of
a player’s jersey color— even in the presence of an expected motion
direction—would make the perception of the player per se unexpected.
The reconciliation model makes the following specific predictions. First,
the positive � ensures that PE from one feature affects information pro-
cessing in both features in the same direction (i.e., surprise in one stream
enhances surprise in the other stream), which results in a reduced dis-
crepancy between PEs across the two features. Second, this decreases the
expectation effect (i.e., the discrepancy between unexpected and ex-
pected conditions; see Fig. 3B) in expectation-inconsistent conditions,
thus making CU/ME and CE/MU less distinct from each other compared
with expectation-consistent conditions (see Fig. 3E). And third, this type
of PE mixing makes the unexpected feature less unexpected and the
expected feature less expected (see Fig. 3B). Therefore, the PE mixing
would interfere with within-feature information processing, making the
neural representations of features in expectation-inconsistent trials
weaker than in expectation-consistent trials.

Conversely, setting � to a negative value simulates the “segregation
model” in which the unexpected feature sends PE to the expected feature
stream to drive its processing in the opposite direction while enhancing
its own PE to boost within-feature processing (see Fig. 3C). In other
words, the segregation model resolves clashing expectations between fea-
tures by discarding the premise that the features belong to the same
object and producing segregated and enhanced perceptions for each fea-
ture instead. Observing an expected motion trajectory paired with an
unexpected jersey color would result in an updated belief that the jersey
color and object motion are caused by two different players. Compared
with the reconciliation model, the reversed sign of � in the segregation
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model thus leads to the exact opposite predictions. All model predictions
are summarized in Table 1.

We adjudicated between the three rival models using behavioral and
neuroimaging data from the following two experiments. Note that all the
model predictions concern differences in neural representations or PE
between conditions. The key goal of our fMRI analyses was to quantify
these distinctions. To this end, we adopted multivoxel pattern analysis
(MVPA) as our hypothesis testing tool because MVPA measures how
separable the neural activity patterns of different conditions are and the
resulting classification accuracy is a natural quantification of condition
separability. The rationale for focusing on MVPA (rather than GLM)
results was also driven by additional considerations stemming from the
predictive coding framework that underlies our models (see below). This
framework assumes that computational units involved in producing ex-
pectations and PE are located in close spatial proximity (Bastos et al.,
2012). Given random sampling of such units across fMRI voxels, previ-
ous studies have found spatially intermingled voxels with signals that
were either primarily driven by expectation or PE signals (de Gardelle et
al., 2013). This implies that mean regional BOLD signals derived from
conventional univariate analysis with spatial smoothing blend together
expectation and surprise signals (Egner et al., 2010) and therefore have
limited sensitivity for distinguishing different expectation conditions
(see also Kok et al., 2012a). In contrast, MVPA treats each voxel indepen-
dently and is capable of exploiting heterogeneous response profile in
adjacent voxels to distinguish activity patterns of different experimental
conditions. For example, given two intermingled groups of voxels, one
showing A � B activity and the other showing B � A activity, averaging
across (e.g., smoothing) these voxels may cancel out any difference be-
tween these conditions, but MVPA can assign positive and negative
weights to these two groups to “align” their opposite patterns of activity
to distinguish between the A and B conditions.

Experiment 1 (behavior)
Subjects. Seventeen volunteers (11 females, 19 –54 years old, mean age �
27 years, one left-handed) gave informed consent in accordance with
institutional guidelines and completed this experiment. All subjects had
normal or corrected-to-normal vision. This study was approved by the
Duke University Health System Institutional Review Board.

Stimuli. The presentation of stimuli and response recording were con-
trolled using Psychtoolbox version 3 (Brainard, 1997). The auditory
stimuli were composed of four tones. Each tone consisted of four notes
(200 ms each) that were ordered to produce either a rise or fall in pitch.
Therefore, the rising and falling tones did not differ in the notes used,
only in the way the notes were ordered. In addition, the tones were played
in two distinct timbres, resulting in a two (rising/falling pitch) � two
(timbres) factorial design. These auditory stimuli were delivered via
noise-canceling headphones.

The visual stimuli consisted of clouds of colored (either red or green)
moving (either up or down, 100% coherence) dots presented at the cen-
ter of the screen against a gray background (duration � 1 s). The lumi-
nance of the dots and the background were identical. The moving dots
display spanned �6° of visual angle both vertically and horizontally and
consisted of 200 dots of �0.12° radius. The motion speed of each dot was
drawn randomly from a uniform distribution from 13°/s to 15°/s. The
visual stimuli were presented on a 17 inch LCD display at 60 Hz. The
responses were recorded using a standard keyboard.

Procedure. Each trial started with the presentation of the auditory cue
tone, which was followed by the moving dots display (see Fig. 1A). There-
fore, the cue and stimulus processing did not overlap in sensory modal-

ity. The cue’s timbre and pitch were predictive of the forthcoming dots’
color and motion direction at 75% validity, respectively. To avoid poten-
tially confusing violations in contingency, up/down motion was always
predicted by rising/falling tones, respectively. For each trial, the partici-
pants were asked to identify the color or motion direction of the dots with
button presses. The target feature (color or motion) was cued via written
instruction (see below). The manipulation of target feature served the
function of directing feature-based attention to either color or motion.
Trials were separated by an intertrial interval (ITI) of 1.5 s.

Participants first went through a training and practice phase to learn
the auditory cue-dots associations and task requirements: they first per-
formed a training session of 20 trials (five trials for each tone) of 100%
validity to promote learning. Participants were then asked to explicitly
indicate the predicted color and motion direction of the dots for each cue
tone. These training and test sessions repeated until the participants
reached 100% correct rate in the test session. Then, the concurrent ex-
pectations (i.e., “the rising/falling of the pitch predicts the motion direc-
tion, and the timbre predicts the color”) were further explained explicitly
to the participant by the experimenter to reinforce the learned associa-
tions. Next, two practice sessions (one for each attention condition) of 20
trials each with the predictive validity of 75% were administrated to
ensure that the participants comprehended the task instructions before
performing the main task.

The main task consisted of six runs (three for each attention condition
in an ABABAB order, with the attention condition in the first run coun-
terbalanced across subjects) of 64 trials each. At the beginning of each
run, an instructional cue was shown to specify the target feature (color or
motion) that the subjects were to discriminate via a button press on each
trial. The response mapping was displayed at the bottom of the screen
throughout each run and counterbalanced across subjects. The numbers
of presentations for each tone � color–motion combination were
equated within each run and each condition of the factorial design to
avoid bias in the analyses.

Analysis. The accuracy for each condition in the two (feature atten-
tion) � two (color expectation) � two (motion expectation) factorial
design was calculated and entered into a repeated-measures three-way
ANOVA. The same analysis was performed on response time (RT) means
after excluding RTs from error trials or outlier trials (i.e., trials with RTs
outside of the range of grand mean � 2.5 SD).

Experiment 2 (fMRI)
Subjects. Twenty-five right-handed volunteers gave informed consent in
accordance with institutional guidelines and completed this experiment.
All subjects had normal or corrected-to-normal vision. Two subjects
were excluded from further analysis due to excessive head movement
during scanning (movement �6 mm or 6° within any run). The final
sample consisted of 23 subjects (14 females, 22–35 years old, mean age �
27 years). This study was approved by the Duke University Health System
Institutional Review Board.

Stimuli. The presentation of stimuli and response recording were ac-
complished using Psychtoolbox version 3. The auditory stimuli were
identical to Experiment 1 and were delivered via MR-compatible, noise-
canceling headphones. The visual stimuli were the same as Experiment 1
except with additional colors of blue and yellow (with equal luminance to
the background) and additional motion directions of left and right sam-
pled from the same uniform distribution of speed as in Experiment 1.
The visual stimuli were presented on a back projection screen viewed via
a mirror attached to the scanner head coil. The responses were recorded
using two MR-compatible button boxes (one for each hand).

Procedure. The training, test, and practice sessions were identical to
Experiment 1. The main task consisted of eight runs (in the order of
ABABBABA, with the first run counterbalanced across subjects) of 64
trials each, with exponentially jittered ITIs (from 4 to 6 s with a step size
of 500 ms). Different from Experiment 1, the goal of this task was to
identify occasional changes in color/motion via button press. The target
feature (e.g., color) was cued at the beginning of each run. The subjects
were also explicitly informed that no change would occur in the nontar-
get feature to encourage the subjects to direct attention solely to the target
feature. Therefore, similar to Experiment 1, this experimental design

Table 1. Summary of key predictions from three different models of multifeature
expectations in visual object cognition

How PE in feature A
affects feature B

Distinction between
EI and EC

Representation
strength

Independence model No effect EI � EC EI � EC
Reconciliation model Same direction as feature A EI � EC EI � EC
Segregation model Opposite direction to feature A EI � EC EI � EC

EI, Expectation inconsistent conditions; EC, expectation consistent conditions.
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resulted in a two (feature attention) � two (color expectation) � two
(motion expectation) factorial design.

To manipulate feature-based attention and to keep subjects on task,
eight trials (12.5%) per run were randomly selected as “change trials” (or
target trials), in which the target feature (color/motion) changed to yel-
low or blue/left or right (at 50% probability) after 500 ms (see Fig. 2A),
which had to be reported by the subjects based on a response mapping
displayed at the bottom of the screen throughout each run. However,
fMRI analysis only included the frequent nontarget trials to avoid con-
founds from motor responses or target-related processing (Summerfield
et al., 2008). The auditory cues had no predictive value regarding the
postchange color/motion in change trials. Nevertheless, in no-change
trials, the expectation effects were still mediated by the auditory cues that
preceded each dot cloud. The numbers of presentations for each tone �
color–motion combination were equated within the no-change trials for
each run and each condition of the factorial design to avoid bias in the
analyses.

Behavioral data analysis. The accuracy in change trials and false alarm
rate in no-change trials were calculated for each subject to give a descrip-
tive assessment of task performance.

Image acquisition and preprocessing. Images were acquired parallel to
the AC–PC line on a 3 T GE scanner. Structural images were scanned
using a T1-weighted SPGR axial scan sequence (146 slices, slice thick-
ness � 1 mm, TR � 8.124 ms, FoV � 256 mm * 256 mm, in-plane
resolution � 1 mm * 1 mm). Functional images were scanned using a
T2*-weighted single-shot gradient EPI sequence of 42 contiguous axial
slices (slice thickness � 3 mm, TR � 2 s, TE � 28 ms, flip angle � 90 °,
FoV � 192 mm * 192 mm, in-plane resolution � 3 mm * 3 mm).
Functional data were acquired in eight runs of 206 images each. Prepro-
cessing was done using SPM8 	http://www.fil.ion.ucl.ac.uk/spm/
. After
discarding the first five scans of each run, the remaining images under-
went spatial realignment, slice-time correction, and spatial normaliza-
tion, resulting in normalized functional images in their native resolution.
As is customary in MVPA, no spatial smoothing was applied to the nor-
malized fMRI images.

MVPA procedures. For each subject and each experimental condition
in the factorial design (attention � color expectation � motion expec-
tation), we generated an activation map that encodes the t-value of this
condition at every gray matter (GM) voxel. Specifically, the normalized
images were regressed against a general linear model (GLM) to estimate
activation levels for each experimental condition. The GLM consisted of
nine event-based regressors (convolved with SPM8’s canonical hemody-
namic response function) representing the onsets of no-change trials in
each of the eight conditions of the factorial design, the onsets of change
trials, and nuisance regressors representing head motion parameters, as
well as the grand mean of the run (to remove the run-specific baseline
signal and activity elicited by the response mapping instructions that
were presented throughout each run). Note that the specific stimuli (e.g.,
red color, downward motion) were counterbalanced and collapsed
within each cell of the design because we were interested in classifying
neural patterns that distinguished the processing of different feature
dimensions (i.e., color vs motion) rather than different intradimensio-
nal exemplars (e.g., red vs green). This approach applied to both
expectation- and attention-based classifiers. In other words, within each
cell of the factorial design, the presented color and motion stimuli be-
longed to the same attention and expectation conditions to enable the
tests of generic (i.e., not specific to particular colors and motions) atten-
tion and expectation effects. This GLM also controlled for the unequal
trial counts between expected and unexpected conditions because
all trials within a particular condition were grouped into one regressor
such that expected and unexpected conditions were represented by an
equal number of regressors (or data points) for the MVPAs. As a result,
for each subject and each experimental condition in the factorial design
(attention � color expectation � motion expectation), this step gener-
ated an activation map that encodes the t-value of this condition at every
GM voxel defined in the segmented SPM T1 template (dilated by one
voxel). For each subject, activation estimates were further normalized
within voxels and across the eight conditions to remove individual dif-
ference in baseline activation level and absolute amplitude of activations.

The MVPA was performed in a searchlight-based (Kriegeskorte et al.,
2006), intersubject manner using a leave-one-out (LOO) cross-
validation approach: the classifiers were trained on the data from 22
subjects and tested on the data from the remaining subject. The training
and testing iterated until each subject served once as test subject. This
LOO cross-validation procedure was applied to all classifiers. According
to the predictive coding framework (see below), the effects of attention
and expectation in one region (or level) mainly originate from the next
lower or higher level in the processing hierarchy. Given the relatively
small size of the searchlights (2 voxel radius up to 33 voxels in volume) in
the MVPA, we did not expect one searchlight to cover more than one
region modeled in the computational framework (e.g., EVC, MT�, and
v4). Therefore, we used linear support vector machines, which assume no
intervoxel interaction of fMRI activity within searchlights (Pereira et al.,
2009), to quantify the differentiation of neural activity patterns between
experimental conditions. The size of the searchlight, along with the box
constraint of the linear support vector machine (1, also the default value
in Matlab), are the same as in an earlier study investigating expectation
and attention effects for single stimulus features (Jiang et al., 2013) and
produced comparable results. Note that we did not remove the search-
light mean activity level before MVPA, so the MVPA did not make any
assumptions about whether the signals of two experimental conditions
diverge along a single dimension (i.e., a univariate difference in the av-
erage amplitude of the BOLD signal across a region) or multiple dimen-
sions (i.e., a difference in the relative multivoxel pattern of activity
evoked between conditions).

We took this cross-subject approach based on three considerations.
First, this approach places the strong constraint on our findings that the
mixture of computations driving the BOLD signal (while unknown)
must be consistent (generalizable) across subjects at the voxel level after
anatomical normalization, which is also the assumption of the widely
used univariate fMRI analysis. This constraint is crucial in the present
work because it focuses on the early visual cortex, one of the regions with
the smallest degree of anatomical and functional individual differences in
the cerebrum. Compared with within-subject MVPA, the assumptions
underlying group results for cross-subject MVPA are in fact more similar
to the standard mass-univariate analysis group results in that cross-
subject MVPA requires the effects of interest to be in the same direction
across subjects. Previous cross-subject MVPA studies have demonstrated
this consistency by successfully decoding complex cognitive states such
as task state (Mourão-Miranda et al., 2005; Poldrack et al., 2009), lying or
telling the truth (Davatzikos et al., 2005), the ambiguity of a presented
sentence (Mitchell et al., 2004), receiving monetary or social reward
(Clithero et al., 2011), presence/absence of conflict in cognitive con-
trol (Jiang et al., 2015), experiencing pain (Gordon et al., 2014), fear
conditioning (Onat and Buchel, 2015), and observing people touch-
ing different objects (Kaplan and Meyer, 2012). In visual cortex, a
number of studies have demonstrated that, after standard anatomical
alignment, high cross-subject MVPA accuracy can be achieved in the
decoding of visual content (Haxby et al., 2011; Shinkareva et al.
(2008); Shinkareva et al. (2011)). Of direct relevance to the current
study, it has also been shown previously that this cross-subject gen-
eralizability held for the effects of different attention and expectation
conditions on visual cortex signal (Jiang et al., 2013). Second, the
current design, due to the importance of concurrently manipulating
expectations in two features, necessitated the creation of some rare
event conditions, namely the low probability events of CU/MU trials
(16 trials/subject). This low trial count creates suboptimal conditions
for running within-subject MVPA, a statistical power problem that
can be countered by using the cross-subject MVPA approach that
includes trials from all subjects to increase the trial count (to 23
subjects � 16 trials/subject) for the CU/MU condition in the MVPAs.
As shown in Figures 4F and 6C, analyses involving CU/MU trials did
in fact reveal significantly above-chance classification accuracies, sug-
gesting that the chosen cross-subject MVPA approach was not ham-
pered by low trial counts (high variance) in this condition. Third, the
cross-subject approach allowed us to control for a potential confound
introduced by specific response mappings because the mappings were
counterbalanced across subjects.
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To test the effects of the manipulation of feature-based attention and
expectation, we built classifiers discriminating fMRI activity patterns of
no-change trials between color and motion target runs (see Fig. 2B), CE
and CU conditions (see Fig. 2C), and ME and MU conditions (see Fig.
2D), respectively. Furthermore, in conjunction with behavioral analyses
in Experiment 1 (see Fig. 1C), we constructed expectation classifiers (i.e.,
expected vs unexpected) for the attended feature (see Fig. 2E) and unat-
tended feature (see Fig. 2F ), respectively, to further examine the interac-
tion between attention and expectation. Moreover, to test how
expectation (or violation thereof) of one feature affects the expectation of
the other feature, we followed the model predictions in Figure 3, A–F,
and Table 1 and compared the performance of two fMRI activity pattern
classifiers: one that discriminated between CU/MU and CE/ME trials
and another one that discriminated between CU/ME and CE/MU trials
(see Fig. 4 D, G). Finally, to test whether/how the effect of attention varies
as a function of concurrent expectation of color and motion, we con-
structed fMRI activity pattern classifiers between the attend-color and
attend-motion conditions separately for each of the four color expecta-
tion � motion expectation conditions and tested whether classifier per-
formance varies as a function of expectation conditions (see Fig. 6A–C).

As a result, for each classifier, a group-level classification accuracy map
was computed in which each GM voxel represented the classification
accuracy from the LOO cross-validation of the searchlight centered at
that voxel. For each searchlight, the statistical significance of its perfor-
mance was gauged using a binomial test. The difference of classification
performance between two maps was compared using a Bayesian ap-
proach. This approach inferred the probability that two classification
accuracies observed from the same searchlight over two different accu-
racy maps belonged to the same underlying classification accuracy (for
details, see Jiang et al., 2013; Jiang et al., 2015).

Statistical analysis and control for false positives. For all aforementioned
statistical analyses, false positives due to multiple comparisons were con-
trolled for at p � 0.05 (for classification analyses, the p-values were
obtained using binomial tests for each searchlight or ROI) for combined
searchlight classification accuracy and cluster extent thresholds using the
AFNI ClusterSim algorithm 	http://afni.nimh.nih.gov/pub/dist/doc/
program_help/3dClustSim.html
. Ten thousand Monte Carlo simula-
tions determined that an uncorrected voxelwise p-value threshold of
�0.01 (for p-value transformed from binomial distribution, the largest
p-value that was �0.01) in combination with a searchlight cluster size
21–32 searchlights (depending on the specific analysis) ensured a false-
positive rate of �0.05.

Computational simulation
Computational modeling. To enable quantitative and formal predictions
about responses under predictive coding framework, this study intro-
duces a particular predictive coding scheme that was used to simulate
perceptual inference under the three hypotheses above. This allowed us
to simulate particular response profiles that we then tested for using
behavioral reports and multivariate analysis of physiological responses.
To this end, the aforementioned three rival models were implemented
using a biologically feasible predictive coding model (Friston, 2005; Fig.
3G), which posits a continual interplay across the visual cortical hierar-
chy between the top-down passing of predictions concerning forthcom-
ing inputs and the bottom-up passing of PE (Mumford, 1992; Rao and
Ballard, 1999; Friston, 2005, 2010). Predictive coding models have been
demonstrated to account for many empirical findings in the visual cog-
nition literature (for review, see Summerfield and de Lange, 2014). To
simulate the processing of the two features of color and motion, the
model consists of two “visual streams” specialized in processing either
feature (see Fig. 3G). The model streams comprise four levels: an input
stage (level 0), followed by an EVC stage (level 1) that is sensitive to both
color and motion direction, followed by higher-level, feature-selective
visual cortex (level 2) that are sensitive to either color (i.e., V4) or motion
direction (i.e., MT�), and finally, putative higher-level regions (level 3)
that provide expectation inputs to the simulated lower level regions.
Consistent with the tenets of predictive coding (Friston, 2005), each level
consists of two types of computational units (except for the top level):
“representation units” that encode predictions of bottom-up inputs and

“error units” that receive top-down input from representation units at
the next-higher level, calculate PE (i.e., the discrepancy between pre-
dicted and actual input), and pass that error back to the representation
units at the next-higher level. The co-occurrence of predictive and sur-
prise signals in visual cortex has been confirmed in previous studies
(Egner et al., 2010; Keller et al., 2012; de Gardelle et al., 2013).

In this study, perception is considered as an inference process that
integrates prior expectations with actual visual input and is thus imple-
mented using a delta rule, which approximates the performance of the
optimal (Bayesian) inference algorithm for our task with reduced run-
ning time (Nassar et al., 2010; Nassar et al., 2012). Within each level of the
model, the error units’ computation of PE guides the adjustment of
prediction in representation units. This process is iterated until a stable
state (i.e., a stable interpretation of the current visual input) is reached. In
this model, representation and error units at level i of stream s (s � 0 and
1 for color and motion stream, respectively) are denoted by ri

s and ei
s,

respectively. For simplicity, at each level of each stream, only one repre-
sentation unit and one error unit were simulated.

To incorporate effects of attention into the model, we furthermore
allowed feature relevance to impose a multiplicative gain on visual pro-
cessing (Martinez-Trujillo and Treue, 2004) by an attentional factor a s.
In the framework of predictive coding, attention is modeled as the pre-
cision or confidence of the prediction errors (Feldman and Friston, 2010;
Auksztulewicz and Friston, 2015; Kanai et al., 2015), where more atten-
tion equates to enhanced PE input forwarded to the next level. This
assumption can successfully account for findings from behavioral cued
attention studies (Feldman and Friston, 2010). Attentional sharpening of
PE signals has also been documented at the level of fMRI signal in ventral
visual cortex (Jiang et al., 2013). Attention/confidence-modulated PE
can also be interpreted as a mathematical formulation of surprise that
consists of two levels of uncertainty, namely the (violation) of prediction,
and the confidence of this prediction (Yu and Dayan, 2005). This factor
also simulates attentional modulation on representation units (Rao,
2005; Spratling, 2008).

We did not include an additive attentional gain (Thiele et al., 2009)
because it would be canceled out when producing predictions for the
empirical analyses, all of which compared the simulated activity between
two conditions. Furthermore, we did not model an attention-induced
shift of contrast-response function (Reynolds et al., 2000) because: (1)
the stimuli used in the experiments had 100% coherence in both color
and motion direction and thus had high contrast; (2) we only analyzed
no-change trials, so there was no contrast due to change of features; and
(3) our manipulation of attention did not direct the participants to any
particular color or motion direction and provided no information for
tuning the contrast-response function for a specific color or motion
direction. To sum up, at any moment t, ei

s	t
 was defined as follows:

ei
s	t
 � as � 	ri

s	t
 � �i
s	t
rt�1

s 	t

 (1)

Where a s was higher in attended than unattended streams. For example,
in a color detection change run, a 0 � a 1. We modeled attentional gain in
both attended and unattended features because it has been reported that
attention can also spread from attended features to other features of the
same object (O’Craven et al., 1999). a s set to 1 and 0.75 for attended and
unattended conditions, respectively.

�i
s modulates the strength of expectation imposed by the next higher

level and varied after Hebbian learning between ei
s and rt�1

s (Friston,
2005):

d�i
s	t


dt
� ei

s	t
rt�1
s 	t
 (2)

Similarly, the modulation of a s on rt�1
s was further implemented by

applying a s to the input; for example, r0�s
s � asu where u was the visual

input, which remained constant during simulation. The noninput rep-
resentation units were updated in the following manner:

dri
s	t


dt
� et�1

s 	t
 � ei
s	t
 (3)
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Therefore, updating of ri
s was also modulated by a s through the predic-

tion errors. e3
s 	t
 was a constant of 0 due to the fact that level 3 had no

error unit. In sum, attention and expectation were modeled separately
using a s and �i

s, respectively.
Crucially, the aforementioned crosstalk between the two stimulus fea-

tures was modeled in EVC, which is sensitive to both motion and color.
To introduce the effect of object-level perception on the processing of
individual features, the above predictive coding model was extended to
accommodate the belief that individual features were generated from the
same object. Specifically, at each time point t, the updating of r1

s 	t
 is
further modulated by this belief using the aforementioned parameter �
and a mechanism that allowed for the “mixing” of the inputs from level 0
to level 1 across streams (see Fig. 3G, blue links) to mediate the updating
of r1

s in the following manner:

dr1
s 	t


dt
� e0

s 	t
 � � � e0
s 	t
 � as � � � e0

1�s	t
 � e1
s 	t
 (4)

Where a s was applied to the PE from the other stream to reflect the
attentional modulation on the PE at the recipient stream. Therefore,
e0

s 	t
 � as � � � e0
s 	t
 � � � e0

1�s	t
 represented a mixed PE from
level 0. Specifically, when � is 0 (representing a neutral belief regarding
whether the color and motion are from the same objects or not), (4) is
identical to (3) to simulate the independence model. When � � 0
(representing the belief that the color and motion are from the same
object), the updating of color and motion expectations are “synchro-
nized” using � to facilitate an object-level expectation, as hypothe-
sized in the reconciliation model. Last, when � � 0 (representing the
belief that the color and motion come from different objects), the
mixed PE differentiates and enhances the updating of expectations for
individual features and therefore simulates the competition model.
This model has two free parameters, namely the attentional modula-
tor for the unattended stream (a) and �, which models modulation
that is spread over attended and unattended streams.

Because the training and practice phases ensured that the subjects had
learned the experimental manipulation of color and motion expectation,
we did not model the learning effects of u and r3

s during the simulation of
the two experiments. To simulate the two tasks in this study, ri

s ranged
from �1 (completely tuned to represent the unexpected stimulus) to 1
(completely tuned to represent the expected stimulus), with 0 reflecting
neutral selectivity. The absolute value of representation unit activity also
represents the encoding strength of the observed features (e.g., an activity
level of �0.8 represents a stronger neural representations of the observed
unexpected feature than an activity level of �0.5). Accordingly, ei

s ranged
from �2 to 2. u � 0 when the cue was presented and 1 and �1 when the
visual stimulus was expected or unexpected, respectively. ei

s	t
 � 0.5
(reflecting the 75% validity) during the presentation of the auditory cue
to induce a top-down expectation of forthcoming visual stimuli. During
the presentation of the visual stimuli, ei

s	t
 changed based on (3) to rec-
oncile the PE. The aforementioned parameter settings were applied to all
three models. The only parameter that varied across models was �, which
was set to 0, 0.3, and �0.3 for the independence model (no mixing of PE),
the reconciliation model (mixing of PE), and the segregation model (en-
hancing PE within each feature), respectively. This ensured that the bias
due to different model implementation details in model comparison was
minimized. Therefore, the different model predictions can only be attrib-
uted to � or how the two features exchange prediction errors. The sim-
ulation results are robust to perturbation of model parameters (see Fig.
7) such that the magnitudes of a and � do not qualitatively change the
pattern of simulation results. Consistent with the cross-subject MVPA
approach that produced group-level results, we did not fit parameters to
individual subjects. Instead, each model was run one time using the
aforementioned parameters to simulate group-level results. The Matlab
implementation of this framework and raw simulation results are avail-
able on request.

Simulation procedure. This 2 � 2 � 2 factorial design was simulated
using each of the three models. Because no randomness was introduced
in the models, only one trial was simulated for each condition. Within
each trial, the auditory cue was simulated for 200 time steps and the

moving dots were simulated for 600 time steps to ensure that a steady
state was reached (e.g., es

i converges to a minimum PE) to reflect that the
subjects had learned the manipulations of expectation before the simu-
lated tasks. The activity of ri

s was estimated as its mean activity level over
the last 10 time steps of the simulation to simulate the strength of
representation.

Results
Experiment 1
We began by conducting a behavioral experiment that allowed us
to establish how multifeature expectation interacts with attention
and to adjudicate between rival model predictions of behavioral
performance patterns. For the latter purpose, we simulated the
task and used the model’s neural activation estimates from the
visual area sensitive to the attended visual feature (i.e., level 2 of
the attended stream, see Materials and Methods, “Computational
simulation,” for details) as an index of RT. Consistent with em-
pirical data, we treat greater simulated neural activity in category-
selective visual cortex as reflective of stronger sensory evidence
and thus faster RT (Ratcliff and Rouder, 1998).

Model predictions
All three models predicted that confirmed expectation in the rel-
evant (attended) feature would facilitate performance (Fig. 1B).
Crucially, the models’ predictions diverged on the effect of ex-
pectation of the unattended feature on behavior. Specifically,
the independence model predicted no effect, the reconciliation
model predicted a positive effect (i.e., activity: expected � unex-
pected, and RT: expected � unexpected), and the segregation
model predicted a negative effect due to their different assump-
tions of how PE in one feature affects the other feature (Table 1).

Behavioral data
To arbitrate among the models, we compared their predictions
with the RT patterns of human participants judging expected
versus unexpected attended features (collapsed across target fea-
ture). Using a 2-way ANOVA (feature: attended/unattended �
expectation: expected/unexpected), we observed significant main
effects of both attention (F(1,16) � 38.68, p � 0.001; attended:
479 � 24 ms, unattended: 514 � 24 ms) and expectation
(F(1,16) � 7.85, P � 0.01; expected: 491 � 24 ms, unexpected:
501 � 24 ms). Post hoc analyses revealed a significant gain of
expectation (i.e., responses on expected trials were faster than on
unexpected trials) on the attended feature (34 � 5 ms, t(16) �
6.52, p � 0.001, one-sample t test; Fig. 1C). This finding was
consistent with all three models’ predictions (Fig. 1B).

Crucially, we also observed a significant expectation gain ef-
fect in the unattended feature (10 � 3 ms, t(16) � 2.93, p � 0.01;
Fig. 1C). This finding exclusively supports the reconciliation
model (cf. Fig. 1B), which assumes that surprise in one feature
“spreads” to the other feature. This behavioral effect also rules
out the possibility that only the attended feature expectations
drove subjects’ performance (which would predict no expecta-
tion gain in the unattended feature). Performing the correspond-
ing ANOVA on the accuracy of motion/color categorization (Fig.
1D) replicated the main effect of attention (F(1,16) � 8.14, p �
0.01), which was driven by more accurate responses when the
color was attended (0.936 � 0.008) than unattended (0.893 �
0.021). The effect of expectation on the unattended feature was
not observed in accuracy (�0.005 � 0.007, n.s)., implying that
the improved RT in expected conditions was not due to a speed–
accuracy trade-off.

These results clearly demonstrate that the experimental ma-
nipulations successfully induced concurrent color and motion

Jiang et al. • Visual Prediction Error Spreads Across Object Features J. Neurosci., December 14, 2016 • 36(50):12746 –12763 • 12751



expectations in the participants. Moreover, the behavioral data
were best accounted for by the reconciliation model with cross-
feature blending of PEs.

Experiment 2
We next sought to investigate how multiple feature expectations
and attention interact to shape neural stimulus representations in
the visual system, allowing us to further adjudicate between pre-
dictions of the three rival models. Subjects first learned the afore-
mentioned concurrent expectation cues in a training session and
then performed a visual change detection task during simultane-
ous fMRI scanning (see Materials and Methods, “Experiment
2”). As expected, subjects correctly indicated the changed color or
motion direction on target trials with high accuracy (mean accu-
racy � 0.947 � 0.012) and committed few false alarms (mean
false alarm rate � 0.006 � 0.002) in nontarget trials. In addition,
participants were more accurate in motion change runs (mean
accuracy � 0.975 � 0.024) than color change runs (mean accu-
racy � 0.919 � 0.010, t(16) � 3.08, p � 0.006), possibly due to a
more intuitive response mapping in the former (e.g., left key �

dots moving left) than the latter (e.g., left key � yellow). These
findings document that the participants followed instructions
and were focused on the task, thus providing a solid basis for
interpreting the fMRI data from nontarget trials.

Imaging data and model comparison
The predictive coding framework claims that there are neurons
encoding prediction and prediction errors and that these neurons
will respond in opposing ways to our factors of interest. There-
fore, a model-based univariate approach has two caveats: there is
always the potential that they will cancel one another out in uni-
variate signals and the interpretation of univariate results will
depend on assumptions about the relative numbers of prediction
versus error units. Alternatively, a more conservative way to
test the rival hypotheses is to look at multivariate activity patt-
ern divergence/convergence between experimental conditions,
which is directly inspired by the models and does not suffer from
the two caveats. Therefore, imaging data were analyzed using
whole-brain searchlight-based (Kriegeskorte et al., 2006), cross-
subject MVPA to classify activation patterns between different

Figure 1. Experiment 1 task, model predictions, and behavioral results. A, Two example trials in Experiment 1. Note that the number and size of the dots differ from the actual experimental
displays for illustrative purposes. The top/bottom example trial requires a participant to respond to the color/motion direction of the dots. B, Model predictions of the effects of expectation on the
attended and the unattended features. C, D, Group mean and MSE of the gain of expectation (i.e., improved performance for expected � unexpected features if value on y-axis is positive) in RT (C)
and accuracy (D) in Experiment 1 plotted as a function of whether the feature in question was attended (i.e., was the current target feature).
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experimental conditions (see Materials and Methods, “MVPA
procedure”). The classification accuracy quantifies the distinc-
tion between the activation patterns, or neural representations of
the two conditions being classified, whereby higher classification
accuracy indicates more distinct neural representations.

The multivariate fMRI analyses resembled a three-way
ANOVA on the attention � color expectation � motion expec-
tation factorial design. All classifiers were trained and tested on
independent portions of the data using a leave-one-out approach
over participants. We began with a positive control that involved
testing the main effects for each of the three factors. For example,
for the color factor, we trained classifiers on CE versus CU stimuli
and used the resulting classifiers to predict which trials involved
expected or unexpected stimuli in a left out participant. Similarly,
for the motion factor, we trained and tested on ME versus MU
stimuli, and for the attention factor, we trained and tested on
“attend color” versus “attend motion” trials. These results are
reported in the section entitled “Representation of feature-
expectations in visual cortex.” Subsequently, to adjudicate be-
tween the rival hypotheses regarding whether/how color- and
motion-expectation interact, we performed the crucial test on the
interaction between color- and motion-expectation (in the sec-
tion titled “Contagion of surprise signals across stimulus features
in EVC”). Then, to examine the role of feature-based attention in
modulating fMRI activity patterns, we tested the interactions in-
volving the attention factor (i.e., color expectation � attention,
motion expectation � attention, and color expectation � mo-
tion expectation � attention) in the section titled “Attentional
gain on feature representations in EVC depends on consistency of
feature expectations.” Finally, we conducted some control anal-
yses to control for multiple comparisons and activity pattern con-
sistency across subjects in order to further validate the results
under our MVPA approach.

Representation of feature-expectations in visual cortex. By test-
ing the main effects of each of the three factors using classifiers
discriminating the two levels of the respective factor (e.g., testing
the main effect of attention using classifiers discriminating color
target vs motion target trials), we confirmed our a priori model
assumption that information concerning whether stimulus fea-
tures were expected is represented for both motion and color in
EVC and selectively for motion and color in dorsal (area MT�)
and ventral (V4) visual cortex, respectively (Grill-Spector and
Malach, 2004; Fig. 2B–D). To follow up on the analyses of expec-
tation effects on attended and unattended features (collapsed
across feature dimensions) in Experiment 1, we further tested
whether fMRI activation patterns allow reliable decoding of the
expected and unexpected conditions with respect to the attended
feature (e.g., classifiers discriminating CU/MU and CU/ME vs
CE/MU and CE/ME trials in color target runs) and found signif-
icantly above-chance classifier performance in the EVC and
nearby extrastriate visual cortex (binomial tests, p � 0.05,
corrected; Fig. 2E). A repetition of this analysis using the un-
attended feature (e.g., classifiers discriminating CU/MU and
CU/ME vs CE/MU and CE/ME trials in motion target runs)
yielded similar findings (binomial tests, p � 0.05, corrected;
Fig. 2F ). In sum, these data replicate previous findings to
validate our basic model structure and lay the groundwork for
our main analyses of interest, namely, how the concurrent
expectations in color and motion streams interact to shape
neural stimulus representations.

Contagion of surprise signals across stimulus features in EVC. As
outlined above (see Materials and Methods. “Design and ratio-
nale”), the three models make different predictions about the

relative distance (distinction) between simulated neural activity
in different experimental conditions (Table 1, also shown sche-
matically in Fig. 3D–F). For this analysis, we divided our trials
into four key conditions: (1) CU/MU, (2) CE/MU, (3) CU/ME,
and (4) CE/ME according to whether the color, the motion, both,
or neither was expected based on the conditional cue (Fig. 2).
Specifically, the reconciliation model predicts that CE/ME and
CU/MU conditions, in which both features are either expected or
unexpected, will be more distinct (i.e., that neural classifiers will
be more successful in distinguishing them) than the converse
CU/ME and CE/MU conditions. In contrast, the segregation
model predicts the converse, namely that neural patterns associ-
ated with CU/ME and CE/MU conditions will become more dis-
similar, so classifiers will distinguish these conditions better than
CE/ME versus CU/MU conditions. Finally, the independence
model predicts that there will be no difference in classification
accuracy between the CE/ME versus CU/MU and CE/MU versus
CU/ME conditions. We calculated the distance in simulated neu-
ral signals (i.e., magnitude of r unit activity) in the EVC (due to its
sensitivity to both color and motion information) that were out-
put by each model in the CE/ME, CE/MU, CU/ME, and CU/MU
conditions, collapsing across the attention factor. As can be seen
in Figure 4A, the results were similar to the qualitative predictions
outlined in Figure 3, D–F.

To adjudicate between these model predictions, we tested the
interaction between color and motion expectation. Specifically,
for each searchlight, we calculated the classification accuracy,
which quantifies the distinction between two conditions on the
basis of the pattern of neural activity they evoke. To test the
hypotheses associated with each of the three models, we ran
whole-brain searches focused on the relative ability of the classi-
fier to distinguish between two pairs of conditions: CE/ME versus
CU/MU (“expectation-consistent classifiers”) and CE/MU ver-
sus CU/ME (“expectation-inconsistent classifiers”). For both
types of classifiers, the expectancies were different between the
two classes for both color and motion features. Therefore, the
comparison between expectation-consistent and expectation-
inconsistent classifiers was not biased by design. Within each
searchlight, each color � motion expectation condition included
two data points: one for each color-/motion-attended activation
pattern.

This analysis revealed significant differences in classification
accuracy in bilateral EVC (p � 0.05, corrected; Fig. 4D,E). Spe-
cifically, expectation-consistent classifiers (CU/MU vs CE/ME,
mean accuracy � 0.718, p � 0.001, binomial test, n � 92, or 23
subjects � 2 classes � 2 attention conditions; Fig. 4F) outper-
formed expectation-inconsistent classifiers (CU/ME vs CE/MU,
mean accuracy � 0.492, n.s., binomial test, n � 92; Fig. 4F) in a
large region of EVC (peaking at 9, �88, �2, Brodmann area 17).
To further demonstrate that this effect cannot be solely explained
by attention, we repeated this analysis separately on color and
motion change runs. In the same EVC region (Fig. 4F), CU/MU
versus CE/ME classifiers performed significantly above chance
level (color target trials: mean accuracy � 0.659, p � 0.05; motion
target trials: mean accuracy � 0.654, p � 0.05, binomial tests, n �
46), whereas the CU/ME versus CE/MU classifiers had accuracy
at chance level for both target conditions (color target trials:
mean accuracy � 0.484, n.s.; motion target trials: mean accu-
racy � 0.506, n.s., binomial tests, n � 46). These results indicate
that the representations of feature expectations in EVC were
more distinct when the expectations were consistent than when
they were inconsistent between streams. These results are consis-
tent with predictions from the reconciliation model (i.e., a larger
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distance between consistent than inconsistent conditions; Fig.
4B), but not with those of the independence and segregation
models (Fig. 4A,C). No brain regions were found where neural
activation patterns were more distinct when expectations were
inconsistent than consistent.

Alternatively, this result could also be driven by a single outlier
condition (either CU/MU or CE/ME, given the consistent � in-
consistent classification accuracy) that was more distinct from all

other three conditions. This interpretation would also predict a
modulation of one feature expectation on the other. For example,
if the CU/MU condition were the outlier condition, then it would
follow that the distinction between CU/MU and CU/ME condi-
tions is greater than the distinction between CE/MU and CE/ME
conditions. To test this prediction, we conducted additional
whole-brain analyses that tested the modulation of color expec-
tation on motion expectation (i.e., does the performance of the

Figure 2. Experiment 2 task and fMRI validation results. A, Example trials from color change detection (left) and motion change detection runs (right) in Experiment 2. Identical to Experiment 1,
a trial started with a predictive auditory cue followed by moving dots. In 87.5% of all trials, neither the color nor the motion direction of the moving dots changed. In the other 12.5% of trials, the
color (in color change runs) or motion (in motion change runs) changed after 500 ms. Subjects were required to identify the postchange feature. B–F, Lateral, posterior, and dorsal views of brain
areas showing significant (in red; binomial tests, p � 0.05, corrected) performance for attentional classifiers (B), color expectation classifiers (C), motion expectation classifiers (D), expectation of
attended feature classifiers (E), and expectation of unattended feature classifiers (F ).
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Figure 3. Model structure and rival hypotheses. A–C, Schematic illustration of how PE in one feature affects the representation of the other feature in the expectation-inconsistent (here, CE/MU)
conditions. The vertical axis represents PE level (i.e., the higher a disk, the greater the PE). Note how different signs of � lead to different mixed PEs (i.e., � � PE) that drive the representations of
both features (disks) in different directions and then produce different levels of PE discrepancy between features (i.e., the distance between disks along the vertical direction). D–F, Schematic
illustration of different model predictions of color � motion expectation interactions. The lengths of the orange and gray dotted lines reflect the CU/MU-CE/ME distance and the CU/ME-CE/MU
distance. G, Structure of the predictive coding implementation of the conceptual models (same structure for all three models). This implementation consists of two visual processing streams (top:
motion stream; bottom, color stream, separated by the dashed line) of four levels each. The levels used for model comparisons are surrounded by dotted boxes. Each level contains one representation
(r) unit that encodes the prediction of the incoming input and up to one PE (e) unit that computes the PE of the prediction. The edges indicate information flow. At each moment, the e units send PEs
to higher levels, which consequently adjust their prediction to account for the PE and then guide the adjustment of prediction at lower levels. The red nodes can receive input from outside of the
model (e.g., visual input in level 0 and predictive information from the auditory cue in level 3). The interaction between the two features was implemented by the cross-stream edges from level 0
to level 1 (blue arrows). The three computational models only differ in their patterns of this interaction.
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CE/MU vs CE/ME classifier differ from
the CU/MU vs CU/ME classifier?) and
vice versa. We did not find any brain re-
gions showing such modulation (for the
results in the aforementioned EVC re-
gion, see Fig. 4G), thus corroborating our
interpretation, consistent with the recon-
ciliation model.

Finally, this set of results could in prin-
ciple also be explained by a generic encod-
ing of PE, a feature-general surprise
signal, for both color and motion direc-
tion (e.g., color and motion PE
are encoded along the same dimension).
Following this logic, CU/ME and CE/MU
trials are inherently similar to each other
because both are generically unexpected.
However, note that this explanation is
simply a restatement of the reconciliation
model (i.e., surprise in one feature renders
other features unexpected).

In summary, consistent with the be-
havioral results in Experiment 1, we found
that multivariate information in EVC was
best explained by the reconciliation model
in which a positive PE mixing parameter
results in surprise signals being spread
from one visual object feature to another.

Attentional gain on feature repres-
entations in EVC depends on consistency
of feature expectations. The effects of
expectation on visual cognition are tho-
ught to interact with attention (Summer-
field and Egner, 2009; Summerfield and
de Lange, 2014). In this set of analyses, we
therefore further tested whether the above
findings can be solely attributed to atten-
tion and assessed how well the rival mul-
tifeature expectation models would be
able to account for possible modulatory
effects of (in)consistent feature expecta-
tions on the effects of feature-based atten-
tion. Specifically, for each color � motion
expectation condition (CU/MU, etc.), we
extracted the attentional effect of each of
the two features defined as the (unsigned)
difference of simulated activity between
color-attended and motion-attended tri-
als. This attentional effect on model activity allowed us to esti-
mate, in a monotonic fashion, the predicted neural dissimilarity
between the two attentional conditions (attended vs unattended)
while keeping the expectation settings identical. For predictions
about feature-selective visual areas (i.e., model levels 2: simulated
V4 and MT�), the attentional effect was computed separately for
color and motion. For the model simulation of EVC, sensitive to
both color and motion, the two features’ attentional effects were
summed. Note that the size of the attentional effect is positively
correlated with the magnitude of simulated neural activity (i.e.,
encoding strength) because attention was modeled as a multipli-
cative gain modulator on simulated neural activity.

All three models generated qualitatively similar predictions for
color- and motion-selective regions (Fig. 5A,B) in which the atten-
tional gain effect was larger when the preferred feature (e.g., color in

the color stream) was expected than when it was unexpected. These
effects resemble the two-way interaction between attention and col-
or/motion expectation. In contrast, the predictions of possible
color � motion expectation interaction effects on attentional gain
were distinct between the three models at the level of EVC (Fig. 5C,
Table 1), depicting different patterns of a three-way interaction
among attention, color expectation, and motion expectation (with
an emphasis on how the attentional effect is modulated by different
combinations of color and motion expectancy). Specifically, the in-
dependence model predicted that the two feature expectations
would independently modulate the multivariate effect of attention
due to no difference in neural representation strength among expec-
tation conditions. The reconciliation model predicted that the atten-
tional effects would be larger in expectation-consistent conditions
(CU/MU and CE/MU) than in expectation-inconsistent conditions

Figure 4. Joint effects of color and motion expectation in simulation and fMRI data. A–C, Simulation results of the distances of
r unit activity within expectation consistent and expectation inconsistent conditions at model level 1 (EVC, see Fig. 1A) using the
independence model, reconciliation model, and segregation model, respectively. D, Left to right, Lateral, posterior, and dorsal
views of the EVC cluster (in red) showing a significant (Text S8, p � 0.05, corrected) interaction between color and motion
expectation. E, Axial slice showing the same cluster (in red) as in D. F, Mean classification accuracy in the EVC cluster in D and E
plotted as a function of classifiers. The red dotted line marks the chance level (50%). G, Classification accuracy for each pair of the
color � motion expectation conditions. Using the cluster in D, the length of a dotted line represents the cluster mean accuracy of
discriminating activation patterns of the two conditions connected by that line. The numbers above the lines are the cluster-mean
accuracy of the classifiers represented by those lines. *p � 0.05; ***p � 0.001 using binomial tests (n � 92).
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(CU/ME and CE/MU) because of weakened neural feature repre-
sentations caused by PE mixing in the latter conditions. In contrast,
the segregation model predicted smaller attentional effects when ex-
pectations for the two features were consistent than when they were
inconsistent as a result of enhanced processing within each feature in
expectation-inconsistent conditions. We also included in this com-
parison an additional model that assumes that surprise attracts at-
tention and hence overrides the manipulation of attention by task-
relevance. Due to this override mechanism, this model would
predict no significant attentional effects when either feature is
unexpected.

We next adjudicated between these model predictions using
fMRI data. To this end, we constructed whole-brain, searchlight-
based, cross-subject attention classifiers (discriminating between
attend color and attend motion activation patterns) for each
color � motion expectancy condition (e.g., CU/MU trials in
color target runs vs CU/MU trials in motion target runs). Note

that because identical stimuli were used across the color and mo-
tion change detection runs, classification performance must re-
flect purely attentional effects. We then conducted a two-way
ANOVA on the performance of these attention classifiers based
on the two (color expectation) � two (motion expectation) de-
sign at each searchlight throughout the brain. We found a region
in the anterior collateral sulcus (aCos) where color-attended and
motion-attended trials evoked more dissimilar patterns of neural
activity when color was expected than when it was unexpected
(p � 0.05, corrected; Fig. 6A). As expected, based on our study
design, this region corresponds closely to color-sensitive cortex
defined in previous studies (Cavina-Pratesi et al., 2010). We also
detected a region in lateral occipital cortex where classifiers were
better able to distinguish color-attended from motion-attended
trials when motion direction was expected than when it was un-
expected (p � 0.05, corrected; Fig. 6B); this region corresponds
closely to prior studies’ localization of area MT� (Rahnev et al.,

Figure 5. Model simulation results of the color � motion expectation modulation on attentional gain effects. A, Simulation results using data from level 2 of the color stream (intended to
simulate color selective V4). The bar graphs represent attentional gain effects or distance of r unit activity between color change and motion change conditions. The attentional effects are plotted
as a function of color � motion expectation. Left to right, Simulation results using the independence model, reconciliation model, and segregation model, respectively. The simulation results using
data from level 2 of the motion stream (intended to simulate color -motion MT�) and data from level 1 of both streams (intended to simulate EVC) are shown in the same format in B and C,
respectively.
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2011). These findings were consistent with the activation predic-
tions for feature-selective level two nodes of all three models (Fig.
5A,B).

Crucially, however, we detected an interaction effect of color
and motion expectation on attentional gain in EVC (p � 0.05,
corrected; Fig. 6C) and this interaction selectively resembled the
predictions of the reconciliation model (Fig. 5C). Specifically, the
activation patterns differed significantly as a function of the at-
tended feature (i.e., color or motion) only in expectation-
consistent conditions (i.e., CU/MU and CE/ME), which was
consistent with the reconciliation model’s prediction of en-
hanced processing of visual information in these conditions. Im-
portantly, these results did not support the model that surprise
attracts attention, again suggesting that the results cannot be ac-
counted for by attentional mechanisms only. In summary,
whole-brain searchlight MVPA of attentional gain effects in the
context of multifeature expectation interactions showed that dis-
criminant information in EVC conforms to predictions of the
reconciliation model, in which attentional effects are larger when
the two feature predictions are either both confirmed or both
violated compared with when their expectation statuses are in-
consistent with each other. Consistent with the prior analyses of

behavioral data and neural stimulus expectations, these results
again provide selective support for a model in which a positive PE
mixing parameter attenuates visual representation strength, and
thus the multiplicative attentional gain effect, in expectation-
inconsistent conditions.

Patterns of simulation results only rely on the sign of �
To show that the model predictions were not biased by the spe-
cific choices of model parameters, we ran the simulations with a
wide range of attentional gain (�) and PE mixing (�) parameters
and found that the qualitative pattern of simulation results (i.e.,
the sign of the effect of the unattended feature expectation in Fig.
2B; whether expectation consistent classifiers outperform expec-
tation inconsistent classifiers in Fig. 4, A–C; and the color �
motion expectation interaction pattern on attentional effects in
Fig. 5C) only depended on the sign of �, which by definition was
how the rival models are distinguished (Fig. 7).

Univariate fMRI results
To explore the relationship between the above multivariate re-
sults and mean signal neural strength in the corresponding visual
regions, we conducted univariate analyses on the area-mean ac-

Figure 6. Effects of multifeature expectation on the accuracy of attention classifiers in visual cortex. A, Left, Cluster of searchlights in the right aCos that displayed a significant (Text S7, p � 0.05,
corrected) main effect of color expectation on attention classifiers. Right, Cluster mean attention classifier accuracy plotted as a function of color and motion expectation. B, Left, Cluster of
searchlights in the left lateral occipital cortex that displayed a significant (Text S7, p � 0.05, corrected) main effect of color expectation on attention classifiers. Right, Cluster mean attention classifier
accuracy plotted as a function of color and motion expectation. C, Left, Cluster of searchlights in early visual cortex that displayed a significant (Text S7, p � 0.05, corrected) interaction between color
and motion expectation on attention classifiers’ performance. Right, Cluster-mean attention classifier accuracy plotted as a function of color and motion expectation. The red dotted lines represent
chance level classification (i.e., accuracy�0.5). *p �0.05, **p �0.005, binomial tests (n �46). D, Mean fMRI activation level (�MSE) of the areas showing significant main effect of the preferred
feature expectation on attentional effects (i.e., collapsed across the areas shown in A and B plotted as a function of target feature) and the expectation of preferred and nonpreferred features. E, Mean
fMRI activation level (�MSE) of the area shown in C plotted as a function of target feature, color, and motion expectation.
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tivity levels in these regions (Fig. 6A–C). First, because the rival
hypotheses did not predict any difference between the color and
motion stream level two areas, we collapsed across the aCos (Fig.
6A) and MT� (Fig. 6B) areas and performed a repeated-
measures three-way ANOVA (attention � preferred feature ex-
pectation � nonpreferred feature expectation; Fig. 6D). We
found a significant main effect of attention (F(1,22) � 5.91, p �
0.05) driven by higher activity level when the target feature was
the preferred feature (0.15 � 0.11) than the nonpreferred feature
(0.00 � 0.10). This is consistent with the finding of increased
neuronal firing rate driven by an attended stimulus (for review,
see Reynolds and Chelazzi, 2004). We also observed a marginally
significant attention-reversed expectation effect in the preferred
feature (F(1,22) � 3.52, p � 0.07), as described previously (Kok et
al., 2012b). We then conducted a repeated-measures three-way
ANOVA (attention � color expectation � motion expectation;
Fig. 6E) on the EVC area and found a marginally significant main
effect of attention (F(1,22) � 3.91, p � 0.06) and a significant
three-way interaction (F(1,22) � 9.83, P � 0.005) that mimics the
pattern found in MVPA results (i.e., larger attentional effects in
expectation-consistent than expectation-inconsistent condi-
tions; Fig. 6C). Therefore, whereas the univariate analyses, as
expected a priori, were less sensitive in distinguishing the exper-
imental conditions, the mean regional BOLD responses were
broadly consistent with the MVPA findings and reflected known
effects of expectation and attention.

Validation of cross-subject MVPA
To test whether our MVPA approach was prone to false-positive
findings, we compared the cluster size of the four reported ROIs
(EVC reported in Fig. 4E, aCos in Fig. 6A, MT� in Fig. 6B, and
EVC in Fig. 6C) with a null distribution of cluster sizes using the
same voxelwise height threshold of uncorrected p � 0.01. The
null distribution was obtained by randomly shuffling fMRI acti-
vation levels in the visual brain (including occipital cortex and
ventral and dorsal visual pathway regions of the superior and
inferior parietal sulci, fusiform gyri, and middle and inferior tem-
poral gyri, based on the AAL template), conducting the exact
same cross-subject MVPA analyses (i.e., expectation consistent vs
inconsistent, Fig. 4, and the two-way ANOVA on attentional clas-
sifiers, Fig. 6) and then evaluating the sizes of all clusters obtained

using the threshold of p � 0.01. For each analysis, this procedure
was repeated 50 times, resulting a total of �11,000 clusters for
forming the null distribution of cluster size. Consistent with the
results of the standard correction for multiple comparisons, all 4
ROIs were significantly larger than clusters obtained from scram-
bled data (EVC in Fig. 4E: p � 0.0001, aCos: p � 0.001, MT�: p �
0.0005, EVC in Fig. 6C: p � 0.0001). Therefore, our analysis
approach was not prone to false positives.

Cross-subject MVPA requires that neural activity patterns are
consistent across subjects. To gauge such consistency, we calcu-
lated the correlation of activity patterns between subjects. Specif-
ically, this analysis was conducted separately for each of the four
reported ROIs. To further test whether signal (as opposed to
noise) exists at the level of single searchlights, for each searchlight
in a given ROI, we calculated the difference of activation patterns
between each pair of the eight conditions in the experimental
design and computed the z-transformed correlation coefficients
for each pair of subjects. The reason for using the difference of
activation patterns between two conditions is to simulate the
MVPAs. The z-values were then averaged across conditions, sub-
jects, and searchlights. The resulting mean z-value, which repre-
sents pattern consistency across subjects, was then compared
with the mean z-values calculated using randomly scrambled
data in the same ROI (repetition � 10,000 times). The results are
summarized in Table 2. These data show that the univariate ac-
tivity, which was used in MVPA, indeed contained signal patterns
that were consistent across subjects and can be decoded using
cross-subject MVPA.

The assumption of pattern consistency across subjects also
predicts that the voxelwise weights in the classifiers were pre-
served across subjects. To test this prediction, for each searchlight
in each of the aforementioned four ROIs, we randomly split the

Figure 7. The simulation results are only sensitive to the sign of �. Each heat map visualizes an effect that has divergent model predictions. Left to right, Expectation effect on the unattended
feature shown in Figure 1B, distance between expectation-consistent conditions minus the distance between expectation-inconsistent conditions shown in Figure 4, A–C, and the interaction of the
two features’ expectation on attentional effect shown in Figure 5C. We conducted the same analyses of model outputs as in the main text with a wide range of free parameter settings. Specifically,
� (horizontal axis) ranges from 0.2 (400% of attentional gain) to 0.95 (�5% of attentional gain) and � (vertical axis) ranges from �0.4 to 0.4. Each cell on a heat map represents the result from
a model in which the � and � parameters are determined by the horizontal and vertical coordinates, respectively. The color encodes the simulated effect. Positive, zero, and negative effects were
color coded in red, yellow and green, respectively. The “redness” and “greenness” further indicate the magnitude of the effect. In all three heat maps, the size of the simulated effects displayed a
similar dependence on the parameters. Crucially, the signs of all simulated effects are only sensitive to the sign of �. Therefore, our simulation results are not biased by the choices of specific model
parameters.

Table 2. Results of cross-subject fMRI activity pattern consistency

ROI name Random scramble z-value range
z-value from
real data p-value

EVC (Fig. 4E) ��0.0006, 0.0006 0.1314 �0.0001
aCos (Fig. 6A) ��0.0083, 0.0105 0.0691 �0.0001
MT� (Fig. 6B) ��0.0072, 0.0080 0.0314 �0.0001
EVC (Fig. 6C) ��0.0052, 0.0060 0.1234 �0.0001
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subjects into two groups, calculated the voxelwise weights of clas-
sifiers for each group, and tested the correlation of weights be-
tween groups. This procedure was repeated 100 times for each
searchlight and the mean z-transformed correlation coefficients
were used as a quantification of the preservation of voxelwise
weights in cross-subject MVPA. Due to the high computational
cost, we only computed contrasts that we reported as statistically
significant. The ROI mean z-value was compared with z-values
computed using randomly scrambled data of the same ROI (rep-
etition � 1000 times). The results are summarized in Table 3. As
can be seen in Table 3, the obtained correlations in the empirical
data were significantly greater than correlations generated from
scrambled fMRI data (all p � 0.001). Therefore, these results
clearly support the crucial assumption that the weights of classi-
fiers were indeed preserved across subjects at the voxel level.

Even though the neural populations (e.g., cortical columns)
calculating the prediction and prediction errors operate at a
much finer spatial scale than the spatial resolution of fMRI, pre-
vious MVPA studies have shown that the voxel-level fMRI re-
sponse is sensitive to changes in columnar level neural activity in
the EVC and can thus be used to decode orientation in visual
stimuli (Haynes and Rees, 2005; Kamitani and Tong, 2005). In
the framework of predictive coding, the canonical microcircuits
model (Bastos et al., 2012) ties the conceptual roles of computing
prediction and prediction errors and the hierarchy of the predic-
tive coding framework to the functions and connectivity of cor-
tical columns. Following this logic, a match/mismatch between
expectations and bottom-up input could lead to different colum-
nar activity even for the same stimulus. Furthermore, given that
columns are tuned to respond to different features (e.g., specific
motion directions, specific colors), different columns may have
different neural responses to the same stimulus. As a result,
voxel-level fMRI activity may be modulated by the proportions of
cortical columns it samples and by expectation. Our control anal-
yses showed consistent fMRI activity patterns across subjects
(Tables 2, 3), which leads us to speculate that the distributions of
columnar responses may vary as a function of the spatial loca-
tions of the columns in the EVC at a spatial scale similar to the
spatial resolution of fMRI.

Discussion
Although it is widely assumed that visual cognition relies on pre-
dictive inference, the investigation of neurocomputational mech-
anisms underlying generative vision have thus far been limited to
impoverished toy scenarios in which only a single stimulus fea-
ture or category is subject to conditional expectations. Here, we
built on this work to tackle the more complex but realistic sce-
nario of the visual brain managing concurrent expectations for
multiple object features and to shed light on the transformation
from expectations concerning individual stimulus features to a
unified, object-level expectation. To develop and test formal hy-
potheses, we harnessed computational modeling in combination

with behavioral and neuroimaging data, which allowed us to ad-
judicate between rival possibilities concerning how different fea-
ture expectations (and attention) interact in driving perceptual
decisions and neural representations (Table 1). Behavioral data
(Fig. 1) and fMRI data (Figs. 4, 6) from two experiments unani-
mously supported predictions of a “reconciliation model” that
assumes PE mixing, or a spreading of surprise, across different
features of an object: when one feature expectation is violated, PE
spreads to other features, rendering the object as a whole unex-
pected. This PE contagion provides a mechanism to promote
object-level prediction and perceptual inference.

The dual-prediction modeling framework developed here is
grounded in basic tenets of predictive coding (Friston, 2005) and
attention (Reynolds and Chelazzi, 2004), as well as prior findings
on the nature of color and motion processing in visual cortex
(Gegenfurtner, 2003; Born and Bradley, 2005). The present fMRI
data confirmed all of the key model assumptions, including the
encoding of feature-selective color and motion expectations (Fig.
2B–D) in ventral and dorsal extrastriate visual cortex, respec-
tively, paired with mixed selectivity for color and motion expec-
tation (and their attentional modulation) in EVC. Moreover, all
of the simulated neural activity patterns predicted by the recon-
ciliation model (Table 1) were observed in fMRI activations pat-
terns in the EVC (Figs. 2B–F, 4D–G, 6C). This is precisely
consistent with our model implementation, in which the cross-
feature blending of PE occurs at the simulated EVC level, an
assumption that was based on prior demonstrations that neurons
in primary visual cortex are sensitive to both color and motion
information (Movshon and Newsome, 1996; Engel et al., 1997;
Johnson et al., 2001; Kamitani and Tong, 2006). At the micro-
scopic level, this PE mixing in EVC could stem from an intermin-
gling of parvocellular color-sensitive (Perry et al., 1984) and
magnocellular motion-sensitive (Wiesel and Hubel, 1966) inputs
from the lateral geniculate nucleus of the thalamus, which has
been documented in previous studies of V1 (for review, see Sin-
cich and Horton, 2005). Although our model clearly represents a
gross simplification of the rich interplay between early and later
stages of the visual system, it successfully captured some basic
neural population signatures of multifeature expectations while
adhering to a biologically plausible architecture and processing
principles.

Our main findings document that, rather than treating expec-
tations concerning different object features as independent or
promoting the assumption that expected and unexpected fea-
tures belong to different objects, the visual brain appears to
exchange PE between visual features to form object-level expec-
tations such that surprise in one feature spreads to other features
and ultimately renders the perception of all features of the object
unexpected. The idea of object-level selection has a long history
in the study of attention (Duncan, 1984), for which a number of
behavioral (Egly et al., 1994; He and Nakayama, 1995) and neural

Table 3. Results of the preservation of voxelwise weights in cross-subject fMRI

ROI name Contrast Random scramble z-value range z-value from real data p-value

EVC (Fig. 4E) Expectation consistent versus expectation inconsistent ��0.2307, 0.3049 0.6743 �0.001
aCos (Fig. 6A) Attentional classifier: color expected/motion unexpected ��0.4064, 0.4463 0.8935 �0.001
aCos (Fig. 6A) Attentional classifier: color expected/motion expected ��0.3426, 0.4587 0.8159 �0.001
MT� (Fig. 6B) Attentional classifier: color unexpected/motion expected ��0.3727, 0.3999 0.8720 �0.001
MT� (Fig. 6B) Attentional classifier: color expected/motion expected ��0.3816, 0.3960 0.7967 �0.001
EVC (Fig. 6C) Attentional classifier: color unexpected/motion unexpected ��0.2027, 0.2248 0.4898 �0.001
EVC (Fig. 6C) Attentional classifier: color expected/motion expected ��0.2128, 0.2366 0.7459 �0.001
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(Roelfsema et al., 1998; O’Craven et al., 1999) studies have shown
that attending to one location on, or feature of, an object confers
an attentional advantage to other locations and features of that
object. Importantly, the present data now show that objects,
rather than single features or spatial locations, represent the
default unit of selection, not only for relevance-driven (i.e., at-
tention), but also for probability-driven (i.e., expectation) en-
dogenous determinants of visual cognition. Furthermore, object-
level selection implied by the reconciliation model would also
predict that the mixed PE should increase the similarity between
the cue–feature associations learned from different features. This
similarity should in principle also facilitate the learning of a uni-
fied cue– object association across trials. Future studies are en-
couraged to test this prediction.

Interestingly, our findings also document an interaction be-
tween expectation and attention in the modulation of multifea-
ture processing. In particular, although attention generally
enhanced feature representations in higher visual regions (Fig.
6A,B) and in expectation-consistent conditions in the EVC
(CU/MU and CE/ME conditions; Fig. 6C), this attentional mod-
ulation effect was absent in EVC for expectation-inconsistent
conditions (CE/MU and CU/ME conditions; Fig. 6C). According
to the reconciliation model, this is because, in expectation-
inconsistent conditions, PE mixing results in attenuated neural
feature representations (Table 1), which in turn dampens their
attentional modulation. Conversely, the attention-modulated PE
enters the PE mixing process and spreads to unattended features
associated with the same object. In other words, PE mixing also
transfers the attentional modulation to unattended features,
which is again consistent with the above-mentioned spreading of
attention across object features.

Although our study and model were designed to focus on how
object-level expectation is implemented in visual cortical pro-
cessing of individual features, an important question to ask is
where the belief that these features belong to the same object
might originate. Possible answers to this question may be found
in the literature on feature binding (or “feature integration”),
which has long been considered integral to object perception
(Treisman and Gelade, 1980; Treisman, 1998) and proposed to
be an obligatory operation in human cognition (Ashby et al.,
1996; Hommel, 2004). Prior lesion and neuroimaging studies
have observed involvement of parietal cortex (Treisman, 1998)
and of both classic learning systems of the brain, the medial tem-
poral lobe/ hippocampus (Mitchell et al., 2000; Jiang et al., 2015)
and the striatum (Jiang et al., 2015), in the perceptual and mne-
monic binding of different event features. These regions there-
fore constitute prime candidates for generating the integrated,
object-level predictions that drive the effects we here docu-
mented in visual cortex; assessing the exact mechanisms by which
these or other more anterior regions (e.g., hippocampus, see
Hindy et al., 2016) impose top-down object-level expectations
represents a key goal for future studies.

Given the close relationship between attention and expecta-
tion (Summerfield and Egner, 2009, 2016), we took several mea-
sures to ensure that the present results were not due to attentional
mechanisms. First, in the experimental design, attention and
expectation were dissociated. Second, we conducted a key analy-
sis that compared expectation-consistent and expectation-
inconsistent classifiers (Fig. 4D–F) by collapsing across color and
motion target trials and performing this analysis on these two
types of trials separately. All three analyses revealed the same
results, thus strongly suggesting that attention to target features
cannot account for the current results. Third, we tested whether a

hypothesis that one unexpected feature attracts attention can ex-
plain some of the results. This hypothesis, along with the findings
of a significant main effect of attention in the EVC, would predict
significantly distinct fMRI activity patterns between CU/ME and
CE/MU trials as a result of an attentional effect (i.e., attention was
attracted to color and motion in CU/ME and CE/MU trials, re-
spectively). However, the CU/ME versus CE/MU classifiers did
not perform above chance level (Fig. 4F). Moreover, we con-
ducted another analysis that directly contradicted this hypothesis
by showing a significant attentional effect on EVC neural activity
patterns in CU/MU trials (Fig. 6C), which would not be expected
to show attentional effects under this hypothesis. Fourth, another
alternative hypothesis could be that violation of prediction in any
feature would result in reallocation of attention to both features.
Assuming that the BOLD signal reflects a joint effect of feature-
based attention from task instruction and the redistribution of
attention due to high PE this hypothesis would predict reduced
performance of attention classifiers in any condition with expec-
tation violation given that the redistribution of attention would
increase similarity in BOLD signal between color and motion
target trials. In fact, these predictions were consistent with
chance-level performance observed in CU/ME and CE/MU con-
ditions. Similarly, chance-level classifier performance should also
be expected in CU/MU conditions. However, this was not sup-
ported by the significant attentional effects in the CU/MU con-
dition in EVC (Fig. 6C). In general, compared with various
attentional mechanisms that may be able to explain only part of
the reported results, the reconciliation model provides a parsi-
monious account for all empirical findings in this study.

In conclusion, we have shown how the visual brain imple-
ments concurrent predictive coding of multiple stimulus fea-
tures. Our modeling and empirical data converge on the
conclusion that feature expectations interact to drive object-level
predictions: surprise from one unexpected feature spreads to
other features to render the object unexpected. These findings
constitute a major advance in our understanding of the neuro-
computational substrates of active vision in the human brain.
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