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Attention, the prioritization of goal-relevant stimuli, and expectation, the modulation of stimulus processing by probabilistic context,
represent the two main endogenous determinants of visual cognition. Neural selectivity in visual cortex is enhanced for both attended and
expected stimuli, but the functional relationship between these mechanisms is poorly understood. Here, we adjudicated between two
current hypotheses of how attention relates to predictive processing, namely, that attention either enhances or filters out perceptual
prediction errors (PEs), the PE-promotion model versus the PE-suppression model. We acquired fMRI data from category-selective
visual regions while human subjects viewed expected and unexpected stimuli that were either attended or unattended. Then, we trained
multivariate neural pattern classifiers to discriminate expected from unexpected stimuli, depending on whether these stimuli had been
attended or unattended. If attention promotes PEs, then this should increase the disparity of neural patterns associated with expected and
unexpected stimuli, thus enhancing the classifier’s ability to distinguish between the two. In contrast, if attention suppresses PEs, then
this should reduce the disparity between neural signals for expected and unexpected percepts, thus impairing classifier performance. We
demonstrate that attention greatly enhances a neural pattern classifier’s ability to discriminate between expected and unexpected stimuli
in a region- and stimulus category-specific fashion. These findings are incompatible with the PE-suppression model, but they strongly
support the PE-promotion model, whereby attention increases the precision of prediction errors. Our results clarify the relationship
between attention and expectation, casting attention as a mechanism for accelerating online error correction in predicting task-relevant
visual inputs.

Introduction
Visual attention increases neural selectivity for goal-relevant
stimuli in category-selective regions of ventral visual cortex
(Murray and Wojciulik, 2004; Yi et al., 2006; Mitchell et al.,
2009), allowing the identity of attended stimuli to be more readily
decoded from fMRI multivoxel patterns (Serences et al., 2009;
Jehee et al., 2011; Chen et al., 2012). Attention thus appears to
enhance the signal-to-noise ratio of neural population activity,
facilitating readout of task-relevant visual information at down-
stream processing stages. Aside from relevance, the contextual
probability of stimulus occurrence is also a key determinant of
successful recognition (Biederman, 1972; Bar, 2004). One class of
theory (“predictive coding”) argues that contextual facilitation
depends on reciprocal message passing between higher and lower
processing stages, with recognition occurring when expected in-

formation and observed information are reconciled (Mumford,
1992; Rao and Ballard, 1999; Friston, 2005). Accordingly, visual
regions would compute the prior probability of a stimulus (a
prediction) and how this prediction should be revised given new
sensory information (a prediction error [PE]; Friston, 2005). In
support of this hypothesis, conditionally probable stimuli elicit
reduced aggregate activity in sensory cortices (Näätänen et al.,
1987; Garrido et al., 2008; Summerfield et al., 2008; den Ouden et
al., 2009; Alink et al., 2010; Egner et al., 2010; Kok et al., 2012a)
and different visual neurons code for whether anticipated and
observed stimuli are matching or mismatching (Miller et al.,
1993; Meyer and Olson, 2011; Keller et al., 2012).

One outstanding question, however, is how these neural sig-
nals encoding predictions and their violation (PEs) are modu-
lated by visual attention (Summerfield and Egner, 2009). A
canonical view is that attention acts as a filter, suppressing
irrelevant information to focus on the most relevant signals
(Broadbent, 1958). For example, visual search is facilitated if un-
anticipated information is suppressed (Seidl et al., 2012). Accord-
ingly, attention might mitigate the influence of unexpected
information by dampening visual PE signals (Rao and Ballard,
2005), which would obviate the reconciliation of expected and
observed information, thus reducing the net disparity between
neural signals for expected and unexpected percepts (the PE-
suppression model). Because expected and unexpected stimuli
are associated with distinct fMRI multivoxel patterns (Kok et al.,
2012a; de Gardelle et al., 2013), the PE-suppression model pre-
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dicts that attention will impair our ability to decode whether a
stimulus was expected or unexpected. Another, complementary
view is that attention promotes learning about the statistical
structure of the world (Zhao et al., 2013), with classic theories
proposing that attention increases the rate at which stimulus-stimulus
associations are acquired (Rescorla and Wagner, 1972; Pearce
and Hall, 1980). Under this view, attention acts not to suppress
but to enhance PEs, acting as a multiplicative scaling factor on the
impact of PEs on subsequent predictions (Feldman and Friston,
2010), which should increase (rather than decrease) the disparity

of multivoxel patterns associated with ex-
pected and unexpected information (the
PE-promotion model).

Here, we characterized the manner in
which attention and predictive processing
interact by adjudicating between these
multivariate predictions of the PE-promo-
tion and PE-suppression accounts.

Materials and Methods
Participants. Twenty-one healthy, right-handed
volunteers (7 males, 14 females, mean age � 25
years) with normal or corrected-to-normal vi-
sion gave informed consent in accordance with
institutional guidelines.

Apparatus and stimuli. Stimulus delivery and
behavioral data collection were performed us-
ing Presentation (http://www.neurobs.com/).
Visual stimuli were presented on a back
projection screen viewed via a head coil mirror,
auditory stimuli were delivered via MRI-
compatible headphones, and responses were
collected using an MRI-compatible button
box. Visual stimuli consisted of black-and-
white photographs of four types: male faces,
female faces, outdoor scenes, and indoor
scenes (specifically, outside and inside views of
buildings). These four stimulus types were se-
lected to belong to two overarching stimulus
categories, faces and scenes. Each stimulus type
was represented by 60 unique photographs.
Face images were aggregated from various da-
tabases (Egner et al., 2010). Scene stimuli were
acquired from real estate websites, then
cropped and adjusted to match the sizes and
luminance of face stimuli (all stimuli subten-
ded �3° of horizontal and 4° of vertical visual
angle). Auditory stimuli consisted of two tones
(725 ms duration) composed of four consecu-
tive notes (261.63, 392.44, 588.67, and 883.00
Hz) that were presented in ascending (“rising
tone”) or descending order (“falling tone”).

Procedure. We independently manipulated
feature-based attention to (i.e., relevance) and
expectations of (i.e., probability) different
stimulus categories (faces vs scenes). To ma-
nipulate attention, the protocol was designed
as a rare target detection task. Specifically, the
task was divided into five runs of six blocks
each. At the beginning of each block, an in-
struction screen was shown for 4 s asking sub-
jects to detect specific visual target stimuli
(indicated by a button press). Target stimuli
for a given block consisted of one of the four
stimulus types (male faces, female faces, indoor
scenes, outdoor scenes) and determined the
stimulus features or category (faces, scenes)
that the subject would pay attention to during

that block. The instruction screen was followed by 16 nontarget trials and
one to three target trials (mean, two) per block, randomly intermixed.
Each trial consisted of a 725 ms auditory cue followed by 500 ms presen-
tation of a visual face or scene stimulus (Fig. 1A). Trials were separated by
exponentially jittered intertrial intervals (range � 3–5 s, step size � 1 s)
during which a central fixation cross was displayed. As a reminder, the
current target stimulus type was continuously displayed at the bottom of
the screen.

In each block, the 16 nontarget trials (the focus of our analyses) con-
sisted of eight stimuli belonging to the same category as the targets (e.g.,

Figure 1. Experimental protocol and predictions. A, Timeline of an example nontarget trial. An auditory cue preceded each
visual stimulus (face or scene), followed by a jittered intertrial interval. A reminder of the current target category (here: outdoor
scenes) remained on screen throughout each block. B, Two versions of tone-picture associations were used, with each subject
experiencing one version only. In version 1 (Ver. 1), a rising (falling) tone indicated a probability of 75% that the forthcoming
nontarget stimulus was a male face (outdoor scene), respectively. In version 2 (Ver. 2), a rising (falling) tone indicated a probability
of 75% that the forthcoming nontarget stimulus was an indoor scene (female face), respectively. C, Schematic illustration of model
predictions: each disk represents the multivariate voxel pattern associated with a given experimental condition and the overlap
between disks represents the degree of pattern similarity. If attention promotes error signals, then this should render the repre-
sentations of unexpected stimuli more different from those of expected stimuli (left cluster), whereas the opposite would hold for
attentional suppression of prediction errors (right cluster).
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male faces in a block where female faces are targets) and eight stimuli of
one type of the opposing category (e.g., outdoor scenes). In this manner,
nontarget trials in each block could be classified as being either a face or
scene stimulus and as being either attended (e.g., male faces in a block
where female faces are targets) or unattended (e.g., scenes in a block
where faces are targets). To avoid target stimuli from one block proving
distracting as nontargets in a different block, a given target stimulus type
(e.g., female faces) was never used as a nontarget in other blocks. Specif-
ically, for each subject, only one face stimulus type (either male or fe-
male) and one scene stimulus type (either indoor or outdoor) was used as
a target and the other two stimulus types served as nontargets throughout
the task; and targets and nontargets were counterbalanced across sub-
jects. Face and scene target blocks were interleaved.

The manipulation of expectations consisted of probabilistic auditory
tone-to-visual stimulus associations. For nontarget trials, one of the au-
ditory cues (e.g., the rising tone) implied a 75% probability that the
incoming stimulus was a face and the other cue (e.g., the falling tone)
indicated a 75% probability that the forthcoming stimulus was a scene.
This cue manipulation created expected (probable) and unexpected (im-
probable) nontarget trials. The specific cue-stimulus associations were
consistent within subjects across blocks, but counterbalanced across sub-
jects (Fig. 1B). For target trials, the cue-stimulus association was nonin-
formative (50% probability), which was pointed out explicitly before the
experiment. Subjects received two practice blocks (one for each target
category) of prescan training. The above manipulations resulted in a 2
(stimulus: face vs scene) � 2 (attention: attended vs unattended) � 2
(expectation: expected vs unexpected) factorial design for nontarget tri-
als. Trial counts for expected and unexpected stimuli were 90 and 30,
respectively, for each of the attended and unattended conditions. Note,
though, that the differential trial count was controlled for in the multi-
voxel pattern analysis (MVPA) described below because the number of
features representing expected versus unexpected stimuli were equated.

Image acquisition and preprocessing. Images were acquired parallel to
the AC-PC line on a 3T scanner (General Electric). Structural images
were scanned using a T1-weighted SPGR axial scan sequence (120 slices,
slice thickness � 1 mm, TR � 8.124 ms, FoV � 256 mm * 256 mm,
in-plane resolution � 1 mm * 1 mm). Functional images were scanned
using a T2*-weighted single-shot gradient EPI sequence of 36 contiguous
axial slices (slice thickness � 3 mm, TR � 2 s, TE � 28 ms, flip angle �
90 °, FoV � 192 mm * 192 mm, in-plane resolution � 3 mm * 3 mm).
Functional data were acquired in 5 runs of 226 images each. Preprocess-
ing was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Af-
ter discarding the first five scans of each run, the remaining images were
realigned to their mean image and corrected for differences in slice-time
acquisition. Each subject’s structural image was coregistered to the mean
functional image and normalized to the Montreal Neurological Institute

(MNI) template brain. The transformation parameters of the structural
image normalization were then applied to the functional images.

Univariate image analyses. For each subject, a task model was created
via vectors of visual stimulus onsets corresponding to the eight nontarget
trial types, along with vectors for target trials, errors, head-motion pa-
rameters, and grand means of each run. Vectors were convolved with
SPM8’s canonical hemodynamic response function to produce a design
matrix, against which the BOLD signal at each voxel was regressed. To
relate MVPA findings to conventional functional definitions of the fusi-
form face area (FFA; Kanwisher et al., 1997) and parahippocampal place
area (PPA; Epstein and Kanwisher, 1998), we computed univariate con-
trasts for face � scene stimuli (and vice versa) and determined single-
subject peak activations within the fusiform gyrus (FFA) and
parahippocampal gyrus (PPA; Fig. 2B) based on anatomical masks from
the automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002). For these conventional analyses, normalized functional images
were resampled to a resolution of 2 mm � 2 mm � 2 mm and smoothed
using an 8 mm Gaussian kernel.

Multivariate image analyses. We performed MVPA on data from fusi-
form, parahippocampal, and inferior temporal gyri using an iterative
leave-one-subject-out cross-validation scheme (Clithero et al., 2011;
Haxby et al., 2011), gauging whether a classifier trained on fMRI data
from all-but-one subjects could successfully decode neural responses in
the left-out subject. This between-subject approach imposes additional
constraints and is thus more conservative than the more commonly used
within-subject MVPA. Although in the latter, a significant group finding
for a given brain region can be obtained even if the individual subjects
display completely distinct (including opposite) activation patterns, the
former will only identify regions where multivariate patterns are replica-
ble across subjects, thus ensuring the generalizability of our findings
(Clithero et al., 2011; Haxby et al., 2011). In addition to the advantage of
generalizability, unlike within-subject MVPA, the between-subjects ap-
proach also allowed us to collapse over male and female faces and indoor
and outdoor scenes in the classification analyses. Therefore, the between-
subject MVPA results also reflected more generalizable patterns with
respect to stimulus types (faces vs scenes) than would have been achieved
in a within-subject MVPA (where in a given subject, classifiers would be
trained only on, e.g., male faces vs outdoor scenes or female faces vs
indoor scenes).

To extract multivariate information content, the same models were fit
to unsmoothed preprocessed images in their native resolution to reduce
the blending of information patterns in the raw fMRI data. Then, for each
trial type in each subject, a one-sample t test across runs was performed to
produce a t-image. The t-images were further normalized across trial
types by removing from each condition the cross-condition mean and
dividing the resulting values by the cross-condition SD. This normaliza-

Figure 2. Category selectivity is enhanced by both attention and expectation. A, Searchlight MVPA ( p � 0.05, corrected) identified regions in right fusiform gyrus (upper brain slice) and right
parahippocampal gyrus (lower brain slice), where attention enhanced the discrimination between face and scene stimuli. B, For comparison, the upper and lower brain slices display single-subject
activation peaks (one color per subject) in fusiform and parahippocampal gyri, respectively, as based on conventional functional definition of the FFA (univariate contrast of faces � scenes) and PPA
(univariate contrast of scenes � faces). C, Searchlight MVPA ( p � 0.05, corrected) identified regions in right fusiform gyrus (upper brain slice) and right parahippocampal gyrus (lower brain slice)
where expectation enhanced the discrimination between face and scene stimuli. *p � 0.05; **p � 0.001; ***p � 0.0001.
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tion removed trial-type-independent, individual baseline activity that
may confound the leave-one-subject-out cross-validation while retain-
ing the activation differences between trial types. As a result, for each
subject, we obtained one pattern (i.e., one t-image) for each nontarget
trial type. Therefore, although there was a higher total number of expected
than unexpected trials, these trial types equally contributed a single t-image
per subject to the pattern classification analyses, so this analysis was not
biased by unbalanced data points between trial types. The resulting t-images
were defined as features containing task-relevant information (Jiang and
Egner, 2013) on which a searchlight MVPA (Kriegeskorte et al., 2006) was
conducted. Each searchlight was a spherical cluster with a radius of 2 voxels
(6 mm) and contained up to 33 cortical voxels. A linear support vector
machine (SVM) was used as the classifier and a default constrain value of 1
was used for all SVMs. The performance of SVMs was evaluated with an
iterative leave-one-subject-out cross-validation procedure. After searchlight
MVPA, a group classification accuracy image was obtained, in which each
gray matter voxels encoded the average classification accuracy of the search-
light centered at that voxel.

Using this procedure, we first investigated the modulation of attention
on the distinction between face and scene representations. If attention
enhances the neural selectivity toward preferred categories in ventral
visual regions, then face and scene stimuli should be more easily discrim-
inated, resulting in higher classification accuracy in attended compared
with unattended conditions (Serences et al., 2009; Chen et al., 2012).
Therefore, the modulation of category selectivity by attention can be
tested by comparing classification accuracy (faces vs scenes) between
attended and unattended conditions. Compared with a typical two-way
ANOVA approach for testing this type of interaction in univariate anal-
yses, the present approach tests not just the effect of interaction (modu-
lation), but also the “directionality” of the interaction (i.e., factor A’s
modulation on factor B or vice versa), which represents an additional
advantage of using MVPA in this context.

Specifically, one set of classifiers were trained to classify face versus
scene trials (or features) using only unattended trials and a second set of
classifiers were trained to classify face versus scene trials using only at-
tended trials. Therefore, for each searchlight we obtained 2 independent
observations of accuracy, O1 and O2, for unattended and attended trials,
respectively. A challenge here is that for each condition, between-subject
MVPA produces only a single classification accuracy value for all sub-
jects. Therefore, we cannot simply apply a paired t-test for drawing sta-
tistical inferences. To test the differences between classification results
statistically, we therefore used a Bayesian approach: a null hypothesis of
no modulation of attention on expectation can then be formulated as O1

and O2 being based on the same information content x, which is quanti-
fied in classification accuracy (i.e., the “true” classification accuracy for
that searchlight). Therefore, given O1, the probability of observing a
classification accuracy O can be calculated as follows:

p�O�O1� � � p�O�x� p� x�O1�dx

Here, p�O�O1� was calculated by iterating all possible values of the
underlying true classification accuracy x. For each value of x, we first
calculated the belief of x being the true classification accuracy given
the observation O1 or p� x�O1�. We then applied this belief to calculate
the probability of observing O using p�O�x�. The computation of p
�O�x� can be derived from a binomial distribution as follows:

p�O�x� � CN
NOxNO�1 � x�N�1	O�

where N is the number of cases in MVPA (e.g., 21 subjects � 2 classes �
2 cases [e.g., attended vs unattended trials and/or expected vs unexpected
trials]). p�x�O1� can be calculated using Bayes’ rule as follows:

p� x�O1� �
p�O1�x� p� x�

p�O1�

where p�O1� is a constant and can be replaced by normalizing p�O�O1� in
the final step. p(x) is the distribution of the true classification accuracy.

Assuming that the observations were unbiased estimates of x, p(x) can be
approximated by the distribution of O1 and O2 across the whole brain.
Using p�O�O1�, we then tested the null hypothesis by calculating the
probability of observing an accuracy that is no less than O2 (if O2 � O1; or
no greater than O2 if O2 � O1), given O1 and the assumption that O1 and
O2 were derived from the same x. The probability of observing an accu-
racy of no less than O2 can be calculated as follows:

p�O � O2�O1� � �
O�O2

N

p�O�O1�

The p-value for the “no greater than” case can be calculated correspond-
ingly. Given our focus on face- and scene-selective regions, we con-
strained these analyses to a mask of the ventral visual cortex, defined as a
conjunction of the bilateral fusiform, parahippocampal, and inferior
temporal gyri, as delineated in the AAL template (Tzourio-Mazoyer et
al., 2002). This mask was further dilated by 2 voxels (6 mm) to account
for potential discrepancy of gray matter classification between the AAL
template and our analyses. All MVPA results we report were corrected for
multiple comparisons at p � 0.05 for combined searchlight classification
accuracy and cluster extent thresholds, using the Analysis of Functional
NeuroImages AlphaSim algorithm (http://afni.nimh.nih.gov/). A total of
5000 Monte Carlo simulations determined that an uncorrected search-
light accuracy p-value threshold of �0.01 in combination with a search-
light cluster size 6 –7 searchlights ensured a false discovery rate of �0.05.
In addition, for MVPA ROI-based analysis, we investigated whether a
given mean ROI classification accuracy OROI differed from chance level
(50%) using a two-tailed test as follows:

P � p�O � max
OROI�1 � OROI��x � 0.5�

� p�O � min
OROI�1 � OROI��x � 0.5�

Note that due to the nature of this between-subject classification analysis,
the sample only contained a single observation in each ROI-mean clas-
sification accuracy analysis, and therefore no estimates of variance across
observations (i.e., error bars) are displayed in the corresponding figures
(Figs. 2 A, C, 3 A, B, and 4D). Instead, to indicate the classification accu-
racies’ positions with respect to the variance of the null distributions, we
cite z-scores of the classification accuracies. After the test of attentional
modulation of category selectivity, we reiterated the same analyses to
gauge the effects of expectation on category selectivity, training one set of
classifiers to discriminate face versus scene features using only unex-
pected trials and a second set using only expected trials, and then identi-
fying searchlights in which the latter was more successful than the
former. Note that given the above approach to statistical inference, it was
not feasible to conduct a three-way interaction test with the factors of
attention, expectation, and stimulus category. Probing this type of three-
way interaction would involve four classification accuracy estimates, re-
quiring a 4D null distribution of �3,400,000 (43 4) data cells. Given that
the fMRI images contained only �45,000 gray matter searchlights, it was
impractical to sample a robust null distribution at this level.

To determine whether attention and expectation boosted category selec-
tivity by shared or distinct mechanisms, we trained searchlights that dis-
played attentional enhancement of category selectivity in the above analysis
to discriminate between attended face and scene stimuli and then tested
these classifiers’ ability to discriminate these categories in unattended/ex-
pected and unattended/unexpected trials. The converse analysis was also
performed, training searchlights of significant expectation-enhanced
category selectivity on expected trials and testing their ability to discrim-
inate attended or unattended unexpected stimuli. Finally, we tested the
modulation of attention on the effects of expectation. Here, instead of
classifying between face and scene stimuli, we trained classifiers to dis-
tinguish between expected and unexpected stimuli. Then, we used the
same approach as above to test whether expected stimuli could be distin-
guished from unexpected stimuli with higher accuracy under attended
than unattended conditions or vice versa. To assess categorical stimulus
specificity of the FFA/PPA, two MVPAs were conducted, one using only
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face trials and one using only scene trials. All MVPA results were cor-
rected for multiple comparisons at p � 0.05 (see above).

To determine whether superior distinction between expected and un-
expected stimuli under attention (Fig. 3 A, B) was attributable to multi-
variate signals, we repeated the above analyses on univariate FFA/PPA
data by substituting each searchlight’s multivariate signal pattern with its
mean univariate t-value (Jiang and Egner, 2013). In addition, we ran
standard ANOVAs involving the factors of stimulus category, attention,
and expectation on these mean values (collapsed across FFA and PPA;
Fig. 4A). Moreover, we addressed the possibility that our initial classifi-
cation results were driven by a single, outlying condition (the attended/
expected condition; Fig. 4C). In other words, perhaps attention and
expectation would jointly make activation patterns more distinct from
the unattended/unexpected conditions. It follows from this hypothesis
that, in expected trials, attended and unattended stimuli should be dis-
tinguished with higher accuracy than in unexpected trials. To rule out
this possibility we tested the ability of classifiers trained on FFA/PPA
voxels to decode whether a stimulus was attended or unattended in ex-
pected compared with unexpected conditions using the same methods
described above (Fig. 4D). Finally, we visualized univariate effects by
running a one-sample t test on attention � expectation interaction con-
trasts for the FFA and PPA voxels that had been identified in the atten-
tion � expectation MVPA (Fig. 4B).

Results
We adjudicated between the PE-promotion and PE-suppression
models of attention-expectation interaction by applying a
between-subjects (Clithero et al., 2011; Haxby et al., 2011)
searchlight MVPA (Kriegeskorte et al., 2006; see Materials and
Methods) to fMRI data acquired from the category-selective vi-
sual regions, the FFA and the PPA, during a task that indepen-
dently manipulated attention to, and expectation of, face and
scene stimuli (Fig. 1A,B). In alternating blocks, participants
searched for rare female face targets (face attention blocks) or

rare outdoor scene targets (scene attention blocks) in a stream of
frequent male face and indoor scene nontarget stimuli (target/
nontarget category assignments were counterbalanced across
subjects, see Materials and Methods). Each stimulus was pre-
ceded by an auditory cue (Fig. 1A) that was 75% predictive of the
forthcoming stimulus category (face vs scene; Fig. 1B). Therefore,
nontarget faces and scenes (the foci of our analyses) could be
classified as either attended (e.g., male faces in a block where
female faces are targets) or unattended (e.g., scene stimuli in a
block where face stimuli are targets) and as being either expected
or unexpected (i.e., probable or improbable in relation to the
auditory cue). This design allowed us to assess whether, under
attended (vs unattended) conditions, neural pattern classifiers
could distinguish expected from unexpected stimuli with greater
accuracy (PE-promotion hypothesis; Feldman and Friston, 2010)
or reduced accuracy (PE-suppression hypothesis; Rao and Bal-
lard, 2005; Fig. 1C). Subjects (n � 21) detected targets with very
high accuracy (mean target detection � 99%; mean false alarm
rate � �1%), suggesting that they performed the task as
instructed.

In the following fMRI analyses, we first seek to establish that
our manipulations of attention and expectation were successful
by attempting to replicate previously reported effects of attention
and expectation on category selectivity in ventral visual cortex.
This is followed by additional, novel analyses gauging whether
these effects are mediated by the same underlying mechanisms.
The results of these first sets of analyses provide a solid founda-
tion on which to base the test of our main question of interest:
how attention modulates the effects of expectation on stimulus
processing. Finally, the results of that analysis are then subjected
to a number of control analyses.

Figure 3. Attention enhances the distinction between unexpected and expected stimuli. A, B, Searchlight MVPA ( p � 0.05, corrected) identified regions in right fusiform gyrus (A) and right
parahippocampal gyrus (B) where attention enhanced the discrimination between expected and unexpected faces and scenes, respectively. C, D, The (univariate) attentional modulation of expected
versus unexpected stimuli for each individual FFA/PPA voxel ( y-axis) is plotted against the voxels’ SVM classifier weight in the attended condition. C, FFA voxel weights for classifying face stimuli
(“FFA-face,” left) and scene stimuli (“FFA-scene,” right). D, PPA voxel weights for classifying face stimuli (“PPA-face,” left) and scene stimuli (“PPA-scene,” right). **p � 0.001.
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Attention enhances the neural distinction between
stimulus categories
We began by verifying that attention enhanced selectivity for
object categories, as described previously (Serences et al., 2009;
Jehee et al., 2011; Chen et al., 2012). Separate multivariate classi-
fiers were trained on fMRI data from ventral visual cortex
(fusiform, parahippocampal, and inferior temporal gyri; see Ma-
terials and Methods) to discriminate between face and scene
stimuli under attended and unattended conditions, respectively.
We then identified searchlights where the distinction between
face and scene stimuli was significantly enhanced under attention
(these analyses collapsed across expected and unexpected stim-
uli). As shown in Figure 2A, attention to face stimuli resulted in
significantly improved classification accuracy between faces and
scenes in the right fusiform gyrus (2-way interaction, p � 0.05,
corrected; mean attended accuracy � 74%, z � 4.4, above chance
at p � 0.0001; mean unattended accuracy � 56%, z � 1.1, p �
0.1), whereas attention to scene stimuli significantly improved
this discrimination in the right parahippocampal gyrus (2-way in-
teraction, p � 0.05, corrected; mean attended accuracy � 79%, z �
5.3, above chance at p � 0.0001; mean unattended accuracy � 61%,
z � 2.0, above chance at p � 0.05). As an anatomical reference,
Figure 2B displays single-subject activation peaks in fusiform and

parahippocampal gyri based on conven-
tional functional definition of the FFA (uni-
variate contrast of faces � scenes) and PPA
(univariate contrast of scenes � faces), re-
spectively. It can be seen that the ventral
visual regions sensitive to attentional en-
hancement of category selectivity over-
lapped closely with the FFA and PPA
territories as defined by conventional
within-subject category contrasts.

Expectation enhances the neural
distinction between stimulus categories
Next, we performed a corresponding
analysis to assess whether expectation
may also boost category selectivity. Such a
benefit is implied by behavioral facilita-
tion effects and has found support in a
recent study of multivoxel patterns in pri-
mary visual cortex (Kok et al., 2012a), but
has not been tested previously for higher-
level object categories. Collapsing across
the attention factor, we trained separate
classifiers to discriminate between face
and scene stimuli under expected and un-
expected conditions, respectively, and
then located searchlights where this dis-
crimination was significantly enhanced
for expected stimuli. As shown in Figure
2C, discrimination between face and
scene stimuli in right fusiform gyrus and
parahippocampal gyrus sites was more ac-
curate for expected than for unexpected
stimuli (FFA: 2-way interaction, p � 0.05,
corrected; mean expected accuracy �
75%, z � 4.6, above chance at p � 0.0001;
mean unexpected accuracy � 62%, z �
2.2, p � 0.05; PPA: 2-way interaction, p �
0.05, corrected; mean expected accu-
racy � 81%, z � 5.7, above chance at p �

0.0001; mean unexpected accuracy � 69%, z � 3.5, above chance
at p � 0.001). The clusters identified in this analysis (Fig. 2C)
were again located in the same territory as those identified by
conventional FFA/PPA definition (Fig. 2B) and by the attentional
modulation analysis (Fig. 2A). Note that we did not conduct a
three-way interaction test for attention, expectation, and stimu-
lus category because sampling a robust null distribution to test
this interaction against was not feasible in our analysis scheme
(see Materials and Methods).

Attention and expectation boost category selectivity via
distinct mechanisms
Even though attention and expectation were manipulated or-
thogonally in our design, the fact that both factors enhanced
category selectivity ultimately raises the question of whether they
do so via the same mechanism (Rao, 2005; Yu and Dayan, 2005)
or via distinct mechanisms (Kok et al., 2012a; Wyart et al., 2012).
To address this question in the current dataset, we trained search-
lights that displayed significant attentional enhancement of cat-
egory selectivity in the above analysis to discriminate between
attended face and scene stimuli. We then tested these classifiers’
ability to discriminate stimulus categories in unattended/ex-
pected and unattended/unexpected trials. If attention and expec-

Figure 4. Control analyses. A, Univariate fMRI effects of attention, expectation, and stimulus categories (preferred vs nonpre-
ferred, collapsed across FFA and PPA). The bar graphs show group mean activation estimates in MVPA feature values (t-values of
activation normalized across experimental conditions within each subject) plotted as a function of the attention, expectation, and
stimulus category conditions. The FFA and PPA ROIs over which these data are collapsed were defined by the clusters reported in
our analysis of attentional modulation on expectation (Fig. 3 A, B). B, Voxelwise t-values for the univariate attention � expecta-
tion interaction group contrast in voxels of the FFA (top) and PPA (bottom) as defined by MVPA results in Figure 3, A and B. C,
Schematic illustration of how MVPA results could in theory be driven by a single distinct multivariate pattern in the attended/
expected stimulus condition. Each disk represents the multivariate voxel pattern associated with a given experimental condition
and the overlap between disks represents the degree of pattern similarity. D, MVPA results for classifiers attempting to distinguish
attended from unattended preferred stimuli, plotted as a function of expectation.
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tation operate via shared mechanisms, then these searchlights
should display better classification of expected trials because ex-
pected stimuli should have a similar neural signature to the at-
tended stimuli that comprised the training data. Contrary to this
prediction, however, only two of the 105 searchlights in the PPA
(and none in the FFA) showed significantly greater classification
accuracy (p � 0.01) in expected compared with unexpected un-
attended stimuli (vs three searchlights showing the opposite ef-
fect). Similarly, in the converse analysis, training searchlights of
significant expectation-enhanced category selectivity on ex-
pected trials and testing their ability to discriminate attended or
unattended unexpected stimuli, only five of the 120 searchlights
in the PPA (and none in the FFA) showed greater classification
accuracy for attended compared with unattended unexpected
stimuli (vs 14 searchlights showing the opposite effect). In other
words, voxel patterns that allowed faces and scenes to be discrim-
inated most effectively under attention were quite different from
those that allowed maximal discrimination under expectation.
These data support the view that attention and expectation boost
category selectivity via different underlying mechanisms.

The results so far replicate previous findings of attentional
(Serences et al., 2009; Jehee et al., 2011; Chen et al., 2012) and
expectation-driven (Kok et al., 2012a) enhancement of (multi-
variate) category selectivity in the ventral visual stream and also
suggest that these effects are mediated by distinct underlying
mechanisms (Kok et al., 2012a; Wyart et al., 2012). This sets the
stage for our prime analysis of interest: to determine how atten-
tion may modulate the neural distinction between expected and
unexpected faces and scenes in FFA and PPA.

Attention enhances the neural distinction between expected
and unexpected stimuli
To adjudicate between the PE-promotion and PE-suppression
hypotheses of attention-expectation interactions, we estimated
whether attention improves (PE-promotion model) or dampens
(PE-suppression model) the classification of expected versus un-
expected stimuli from multivoxel data in ventral visual cortex
(Fig. 1C). Adopting a comparable strategy to the preceding anal-
yses, we began by training classifiers on searchlights from ventral
visual cortex to distinguish expected from unexpected stimuli
under attended and unattended conditions, respectively, per-
forming these analyses separately for face and scene stimuli. We
then identified searchlights where attention significantly modu-
lated the classification accuracy for distinguishing expected from
unexpected stimuli. Note that because of our factorial design,
these analyses are orthogonal to the analyses on attention- and
expectation-based modulation of category selectivity reported
above.

As can be seen in Figure 3A, attention greatly enhanced the
distinction between expected and unexpected faces in the FFA
(2-way interaction: p � 0.05, corrected), raising discrimination
performance from chance (50% accuracy, z � 0) to 75% (z � 3.2,
above chance at p � 0.001). However, the same FFA searchlights
were incapable of classifying expected versus unexpected scenes
regardless of attention (unattended scenes accuracy � 0.57, z �
0.9, attended scenes accuracy � 0.60, z � 1.3; neither different
from chance, ps � 0.1). Similarly, attention amplified the dis-
crimination between expected and unexpected scenes in the PPA
(Fig. 3B, 2-way interaction: p � 0.05, corrected), from chance
(accuracy � 0.42, z � 	1.0, no different from chance, p � 0.1) to
75% accuracy (z � 3.2, above chance at p � 0.001), but the same
searchlights were unable to classify faces regardless of attention
(PPA unattended faces accuracy � 0.49, z � 	0.1, PPA attended

faces accuracy � 0.60, z � 1.3; neither different from chance,
ps � 0.1). Both the fusiform and parahippocampal searchlight
clusters identified in these analyses coincide closely with the ter-
ritories obtained in the MVPA on attention- and expectation-
based modulation of stimulus category selectivity (above), as well
as with the conventional, univariate FFA and PPA definitions (cf.
Fig. 2).

To provide an intuition of how individual voxels contributed
to these results, in Figure 3, C and D, we regressed the univariate
attentional modulation of expected versus unexpected stimuli for
each individual FFA/PPA voxel against the corresponding classi-
fier weight in the attended condition. Consistent with the ratio-
nale for our MVPA, voxels displaying stronger attentional
modulation also carry greater weight in contributing to classifi-
cation (in a stimulus category-selective fashion), driving a posi-
tive correlation. In sum, these data indicate that attention
facilitates the neural distinction between expected and unex-
pected stimuli in category-specific regions of the ventral visual
stream. This result is compatible with a PE-promoting, but not a
PE-suppressing, role of attention.

Are these results attributable to multivariate or
univariate effects?
The above results document that attention facilitated the neural
distinction between expected and unexpected stimuli, but what
exactly underlies this effect? Predictive coding proposes that
computations underlying predictions and error-driven adjust-
ments cooccur in local neural circuits (Rao and Ballard, 1999;
Friston, 2005; Bastos et al., 2012). Although a given fMRI voxel in
the FFA/PPA can then be assumed to contain an intermingled set
of predictive and error signals, these may, due to random
sampling, be biased to respond preferentially to expected or un-
expected stimuli in a manner akin to, for example, biased orien-
tation selectivity in voxels of primary visual cortex (Kamitani and
Tong, 2005). Strong support for this contention can be found in
a recent fMRI study showing intermingled voxels in the FFA that
consistently (across scanner runs) respond to repeated face stim-
uli with either a suppressed or enhanced signal (de Gardelle et al.,
2013). Given this scenario, the present results can be parsimoni-
ously interpreted as attention promoting error signals (and thus
activity in error-biased voxels), thereby rendering the multivoxel
patterns associated with unexpected stimuli more distinct from
those elicited by expected stimuli.

However, the mere fact that MVPA was more successful at
decoding expected versus unexpected stimuli under attended
conditions does not imply that the signals exploited by the clas-
sifiers for this discrimination were actually multivariate in nature
nor that they relied on interspersed voxels of differential sensitiv-
ities to prediction and prediction error signals. Instead, our re-
sults might simply reflect a univariate (mean signal) advantage
for the attended/expected or attended/unexpected conditions in
category-specific brain regions. To rule out this possibility, we
explored the data at the univariate level. First, we analyzed acti-
vation estimates (collapsed across FFA and PPA) in terms of
mean MVPA feature values (i.e., t-values of activation normal-
ized across experimental conditions within each subject) in a
conventional ANOVA involving the factors of stimulus category,
attention, and expectation (Fig. 4A). We observed a main effect of
stimulus category (F1,20 � 117.6, p � 0.001), due to higher acti-
vation to preferred than nonpreferred stimuli, and a main effect
of attention (F1,20 � 5.9, p � 0.05), due to higher activation when
stimuli were attended than unattended. These effects were qual-
ified by a marginally significant interaction between attention
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and stimulus category (F1,20 � 4.3, p � 0.052), reflecting a greater
effect of stimulus category for attended than unattended stimuli,
although category effects were robust in either condition (at-
tended: F1,20 � 74.6, p � 0.001; unattended: F1,20 � 29.2, p �
0.001). Crucially, no attention by expectation interaction effect of
the kind we detected in the multivariate analyses was observed.
To ensure that these differences between multivariate and uni-
variate results were not attributable to univariate data being ex-
tracted from ROIs based on the multivariate findings, we reran
these analyses based on ROIs defined by univariate face versus
scene stimuli contrasts. The results were qualitatively equivalent
to those seen in Figure 4A (data not shown).

Second, to ensure maximum comparability with multivariate
analyses, we reran the above classification analysis substituting
each searchlight’s multivariate signal pattern with its mean
t-value (Jiang and Egner, 2013). Based on these data, however,
FFA and PPA searchlights could neither distinguish expected
from unexpected stimuli at above chance levels in the attended
condition (FFA attended faces accuracy � 0.58, z � 1.0; PPA
attended sense accuracy � 0.57, z � 0.9; neither different from
chance, ps � 0.2) nor in the unattended condition (FFA unat-
tended faces accuracy � 0.54, z � 0.5; PPA unattended sense
accuracy � 0.44, z � 	0.8; neither different from chance, ps �
0.2), with no difference between conditions. In an additional
analysis, we selected all of the FFA/PPA searchlights that dis-
played a significant interaction effect between attention and ex-
pectation in the multivariate analyses (all ps � 0.01) and tested
whether they would also show this effect when considering only
their mean signal. This was the case for only 18% of those search-
lights, indicating that the multivariate results cannot be ac-
counted for by univariate signals alone.

To further corroborate the assumption that the classifiers cap-
italized on multivariate, functionally heterogeneous responses
within these ventral visual stream regions (that were nevertheless
stable across subjects), we computed voxelwise t-values for the
univariate attention � expectation interaction group contrast in
FFA and PPA. Consistent with this premise, we observed inter-
spersed positive and negative voxelwise t-values for this interac-
tion effect in both the FFA and PPA (Fig. 4B). These data support
the idea that perceptual inference relies on regionally intermin-
gled expectation and error signals in visual cortex (Rao and Bal-
lard, 1999; Friston, 2005; Bastos et al., 2012). This data pattern
also indicates that mean population signals from standard uni-
variate analyses can obscure interactions between expectation
and attention (cf. Fig. 4A).

Are these results driven by a single outlier condition?
A second concern is that better classification under attended con-
ditions could be driven by a unique multivariate signature for the
attended/expected condition, rather than enhanced classification
of expected and unexpected signals under attention per se (cf.
Figs. 4C, 1C). If this were the case, then we should not only
observe enhanced decoding sensitivity for expected versus unex-
pected stimuli under attended conditions, but also enhanced de-
coding sensitivity for attended versus unattended stimuli in the
expected condition (Fig. 4C). To rule out this alternative, we
tested the ability of classifiers trained on FFA/PPA voxels (as
defined by the above MVPA results; Fig. 3A,B) to decode
whether a stimulus was attended or unattended in expected com-
pared with unexpected conditions. This control MVPA estab-
lished that the performance of attention classifiers did not vary as
a function of expectation condition (Fig. 4D; mean accuracy gain
on decoding attention status [expected 	 unexpected] � 0.01/

0.04 for FFA/PPA respectively, both zs � 0.5, both ps � 0.33).
Therefore, our findings of an attention-enhanced neural distinc-
tion between expected and unexpected stimuli cannot be attrib-
uted to the modulation of expectation on attention and are more
parsimoniously accounted for by attentional enhancement of
PEs.

Discussion
Task relevance and contextual probability are both known to
enhance the recognition of, and neural selectivity for, visual stim-
uli. However, the functional relationship between these key de-
terminants of visual cognition is uncertain (Summerfield and
Egner, 2009). We adjudicated between two rival hypotheses. The
first hypothesis is that attention could filter out the processing of
unexpected stimuli (Rao and Ballard, 2005), suppressing neural
error signals and obviating reconciliation between predicted and
observed percepts, thereby rendering neural representations of
expected and unexpected stimuli more similar. The second hy-
pothesis is that attention could enhance the processing of surpris-
ing stimuli, promoting neural error signaling and prediction
updating (Feldman and Friston, 2010), thereby rendering neural
representations of expected and unexpected stimuli more dis-
tinct. In strong support of the latter theory, we found that atten-
tion greatly boosted our ability to distinguish between multivoxel
patterns of expected versus unexpected stimuli. This finding is
consistent with attention enhancing perceptual PEs, potentially
promoting both rapid online belief updating and longer-term
learning about the statistical structure of goal-relevant properties
of the environment (Chun and Turk-Browne, 2007). In other
words, although expectations supply prior beliefs about the most
likely causes for a percept, attention may determine the rate and
efficacy with which these predictions are adjusted to reflect the
most probable state of the world (Summerfield and Egner, 2013).

Our findings concur with the emerging view that attention
enhances the precision (inverse of variance) of PEs by increasing
the gain of error processing in a multiplicative fashion (Feldman
and Friston, 2010). This perspective draws support from a num-
ber of recent findings. First, psychophysical data in humans in-
dicate that stimulus relevance, when de-confounded from
stimulus probability, leads to a reduction in internal processing
noise (Wyart et al., 2012) equivalent to enhanced precision of
bottom-up (error) signals in the predictive coding framework.
Second, the claim that attention acts via internal noise reduction
is also supported by monkey electrophysiological studies demon-
strating that attentional facilitation of neuronal signaling in vi-
sual cortex is attributable primarily to the suppression of noise
correlations (shared variability) across local neuronal popula-
tions, rather than to enhanced neuronal firing rates (Cohen and
Maunsell, 2009; Mitchell et al., 2009). Finally, the present results
tie attention intimately to learning processes, because the promo-
tion of PEs should lead to accelerated online error correction
(belief updating) in interpreting task-relevant visual inputs. This
proposition is highly compatible with the well established effects
of attention in promoting memory encoding (Craik et al., 1996)
and robust long-term memory benefits (Chun and Turk-
Browne, 2007).

Our study shares similarities with recent work by Kok et al
(2012a) in which enhanced decoding of grating orientations was
observed in V1 when orientations were validly cued (i.e., ex-
pected). Notably, that study found independent, noninteracting
decoding benefits of attention and expectation, whereas we here
report the decoding of expected versus unexpected stimuli to be
enhanced by attention. Although these results are superficially

Jiang et al. • Attention Enhances Precision of Prediction Errors J. Neurosci., November 20, 2013 • 33(47):18438 –18447 • 18445



contradictory, the two studies addressed distinct questions: Kok
et al. (2012a) were interested in decoding the identity of particu-
lar gratings rather than decoding their status of being expected or
unexpected. In contrast, we investigated whether the neural dif-
ferentiation between expected versus unexpected stimulus cate-
gory members would be enhanced or suppressed by attention.
Although the two studies’ implications for attention-expectation
relations are therefore not directly comparable, the current study
nevertheless extends Kok et al.’s findings of expectation-based
enhancement of category selectivity from simple stimulus fea-
tures in early visual cortex to complex object representations at
higher levels of the ventral visual stream. Specifically, Kok et al.
(2012a) found that expectation benefited the decoding of grating
orientations in V1, but not in areas V2 and V3. The investigators
proposed two potential explanations: either improved decoding
in V1 reflected that region’s preference for simple oriented stim-
uli or higher visual regions are generally less susceptible to pre-
dictive processing. Our results argue against the latter possibility,
because expectation greatly enhanced classification accuracy in
high-level areas of the ventral visual stream. Therefore, enhanced
selectivity for expected features appears to be a general purpose
mechanism by which context modulates perception across the
visual hierarchy.

The present study used a multivariate analysis approach ide-
ally suited to addressing how the category selectivity of large-scale
neural population activity is modulated by stimulus relevance,
stimulus probability, and their interaction. An additional merit
of this strategy is that it facilitated a clean juxtaposition of clearly
distinct predictions derived from PE-promotion versus PE-
suppression views of attention’s role in perceptual inference,
which may be more difficult when considering mean (mass-
univariate) neural population signal. First, prior univariate fMRI
studies on the interaction between attention and expectation
have produced ambivalent results. For example, in one study, the
suppression of visual neural responses to expected relative to
unexpected stimuli was only observed when those stimuli were in
the focus of attention (Larsson and Smith, 2012), whereas in
another study, attention actually led to a greater neural response
to expected compared with unexpected stimuli (Kok et al., 2012b,
but see Kok et al., 2012a), a data pattern that, descriptively, was
also found in the present univariate analysis (Fig. 4A). Second,
although, prima facie, the PE-promotion model appears to imply
larger prediction errors under attention, the model has at times
been construed as predicting a relative suppression of mean neu-
ral population responses to unexpected relative to expected stim-
uli under attention (Kok et al., 2012b), a data pattern that would
similarly be anticipated by the PE-suppression model. In con-
trast, the multivariate predictions under the two models are
clearly divergent.

It is important to emphasize that the present classification
results were obtained using a between-subject MVPA approach,
in which neural responses in a given participant are decoded on
the basis of classifiers trained on data from all other participants
(Clithero et al., 2011; Haxby et al., 2011). This approach is more
conservative than typical within-subjects MVPA because it im-
poses the additional constraint of the patterns in question being
replicable over subjects, thus testing for neuroanatomically stable
functional organization of responses, which ensures the general-
izability of results. Cross-subject reliability of multivariate neural
signals has been demonstrated previously in ventral visual cortex
for a variety of complex visual stimuli (Haxby et al., 2011); how-
ever, the present results are the first to show that the attentional
and contextual top-down biasing of such stimulus category selec-

tivity, and the attentional promotion of perceptual PEs, is also
anatomically replicable across participants. This implies a high
degree of similarity over subjects in the anatomical organization
of predictive and PE signaling units, at least at the macroscopic
level of voxel-based signals, and represents an important exten-
sion of previous data documenting temporally stable prediction/
error signaling for single FFA voxels within subjects (de Gardelle
et al., 2013). An important question for future studies is at which
level of spatial resolution between-subject similarities in func-
tional neuroanatomy can be observed and at which level (smaller
or larger than the present scale) they may break down.

Finally, a perhaps surprising feature of our results is that classifi-
cation of unattended expected versus unexpected stimuli was at
chance, suggesting attention to be a precondition for discriminating
expected from unexpected stimuli. The prior literature on this is
mixed, with some studies suggesting expectation-based effects to be
strongly dependent on attention (Larsson and Smith, 2012) and oth-
ers report robust learning of statistical structure in the absence of
attention and even awareness (Fischer et al., 1999; Brázdil et al., 2001;
Turk-Browne et al., 2009). An important mediating factor may be
the level at which expectations are acquired and expressed. For ex-
ample, violations of local, low-level regularities can be detected in
early sensory processing in the absence of attention, whereas those
concerning more global regularities, requiring longer temporal inte-
gration over stimulus events, are detected at later processing stages
and dependent on attention (Bekinschtein et al., 2009). The present
design likely involved relatively “global” expectations, because they
were based on the frequency of cue-stimulus pairings observed
across trials. Moreover, the null effect in question was obtained in the
context of a between-subject classification analyses. A parsimonious
interpretation of this observation is that there exists a large degree of
variance in error signaling across subjects when stimuli are unat-
tended (thus thwarting classification attempts), but that attentional
enhancement of the precision of PE signals substantially reduces this
source of noise (thus enabling successful between-subject classifica-
tion). One way of testing this interpretation would be to contrast
within- and between-subject classification performance directly
(Clithero et al., 2011). However, due to a small number of runs and
a relatively low count of expected and unexpected trials per stimulus
category per attentional condition within each run, the present study
design is suboptimal for within-subject MVPA, so an appropriate
comparison between within- and between-subject analytic sensitiv-
ity must be left for future study.

In conclusion, our data provide robust support for an emerging
view of visual cognition in which learned predictions of probable
inputs are used to “explain away” expected bottom-up signals and
attention serves to boost the precision of unexpected stimulus infor-
mation. This facilitates the reconciliation of that information with
predictions concerning the most probable cause of a current percept
and promotes longer-term learning about the statistical structure of
goal-relevant properties of the environment.
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