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“Predictive coding” models posit a key role for associative learning in visual cognition, viewing
perceptual inference as a process of matching (learned) top-down predictions (or expectations) against
bottom-up sensory evidence. At the neural level, these models propose that each region along the visual
processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and
another set computing mismatches (prediction error or surprise) between predictions and evidence. This
contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In
support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, &
Summerfield, 2010) showed that neural population responses to expected and unexpected face and house
stimuli in the “fusiform face area” (FFA) could be well-described as a summation of hypothetical
face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer
simulations to test whether these imaging data could be formally explained within the broader framework
of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results
show that FFA responses could be fit very closely by model variables coding for conditional predictions
(and their violations) of stimuli that unconditionally activate the FFA. These data document that neural
population signals in the ventral visual stream that deviate from classic feature detection responses can
formally be explained by associative prediction and surprise signals.
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Building on Helmholtz’ pivotal insight that visual cognition
necessitates a contextually informed “unconscious inference” re-
garding the most likely explanation for a given percept (Helm-
holtz, 1876), a number of modern-day models have proposed a
central role for learned associations in actively informing the
interpretation of visual signals (Grossberg, 1980). Specifically,
“predictive coding” models assert that perceptual inference pro-
ceeds as an iterative matching process of top-down predictions
against bottom-up evidence along the visual cortical hierarchy
(Friston, 2005; Lee & Mumford, 2003; Mumford, 1992; Rao &
Ballard, 1999; Spratling, 2008). To implement this matching pro-
cess, each visual processing stage is thought to harbor two com-
putationally distinct classes of neural processors. First, represen-
tational units encode the conditional probability of a stimulus
(“expectation”) and provide predictions regarding expected inputs
to the next lower level. Second, prediction error units encode the
mismatch between predictions and bottom-up evidence (“sur-
prise”) and forward this error to the next higher level, where
representations are adjusted accordingly (Friston, 2005, 2010).

Thus, predictive coding models suggest that neural processing in
visual cortex is driven largely by top-down information derived
from associative learning, a position that contrasts with traditional
views of visual neurons acting solely as bottom-up feature-
detectors (e.g., Hubel & Wiesel, 1965; Riesenhuber & Poggio,
2000). In support of the central tenet of the predictive coding
hypothesis, a number of recent functional MRI (fMRI) studies in
human participants have shown that neural population responses in
visual cortex are indeed susceptible to manipulations of expecta-
tion and surprise (Alink, Schwiedrzik, Kohler, Singer, & Muckli,
2010; den Ouden, Daunizeau, Roiser, Friston, & Stephan, 2010;
den Ouden, Friston, Daw, McIntosh, & Stephan, 2009; Egner et
al., 2010; Summerfield et al., 2006; Summerfield & Koechlin,
2008; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008).

In one study that directly pitted the traditional feature-detector
view against the predictive coding perspective, Egner and col-
leagues (Egner et al., 2010) acquired fMRI data from the “fusiform
face area” (FFA), a region of the ventral visual stream that spe-
cializes in face processing (Kanwisher, McDermott, & Chun,
1997), while independently varying physical stimulus features
(faces vs. houses) and participants’ perceptual expectations regard-
ing those features (low vs. medium vs. high face expectation) by
means of probabilistic cues. At the same time, the study attempted
to control for differential allocation of attention across these con-
ditions by occupying participants with an incidental task. Accord-
ing to predictive coding, FFA activity should reflect the summa-
tion of face expectation (high � low) and face surprise
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(unexpected � expected faces). This would result in an interaction
between stimulus and expectation factors whereby FFA responses
to face and house stimuli should be similar under high face
expectation, because both of these conditions would be associated
with activity related to face expectation but no activity related to
face surprise. FFA responses to faces and houses should be max-
imally differentiated under low face expectation, because faces
would here be associated with activity related to face surprise
while houses would not. By contrast, the feature-detection model
would predict only a main effect of stimulus type (faces � houses).

The neural data displayed a stimulus by expectation interaction
effect (Figure 2a), a pattern of results that, qualitatively, matches
the hypotheses of the predictive coding account. However, even
though this FFA data pattern provides a descriptive match to the
type of result anticipated on the basis of the predictive coding
hypothesis, it is not certain whether these data could be explained
quantitatively by the assumed underlying mechanisms of learned
cue-stimulus associations (and violations thereof). Here, we ap-
plied such a stringent, quantitative test of the predictive coding
account: If the predictive coding view were accurate, it should be
possible to explain the neural FFA responses via formal associa-
tive learning variables derived from trial-by-trial estimation of
cue-stimulus probability distributions in individual participants,
analogous to the way that neural responses in the striatum can be
modeled by reinforcement learning variables encoding reward
prediction and reward prediction error signals (O’Doherty et al.,
2004). Thus, we here tested whether the FFA data could be fit by
variables of a formal, mathematical neural network model of
associative learning, as represented by the Schmajuk, Lam and
Gray (SLG) model (Schmajuk, 2010; Schmajuk et al., 1996),
which has previously proved effective in explaining fMRI data
patterns related to fear learning (Dunsmoor & Schmajuk, 2009). In
the context of the SLG model, we assumed that the FFA signal
reflects two variables: (1) the conditioned response (CR), which is
proportional to the prediction of a face based on the association
between Frame Color (considered a conditioned stimulus, CS) and
Face (considered the unconditioned stimulus, US), and (2) the
error of that prediction, given by the occurrence of a Face minus
the prediction of a face by the Frame Color (Figure 1). In the
model, the CR on each trial depends on the attention paid to the CS
and its prediction of the US. We thus used the CR as an estimate of

the neural expectation signal of the predictive coding hypothesis, and
putative surprise signals were approximated by the error between this
prediction and the presence or absence of the US (face).

Our goals were twofold: first, we aimed to test whether the SLG
model could produce a close fit of the empirical data, which would
provide formal support for the idea that visual neural population
activity can be viewed as reflecting an additive mixture of predic-
tion and surprise signals. Second, the fact that the SLG model
entails a node that explicitly models the level of attention allocated
to incoming stimuli allowed us to test whether differential alloca-
tion of attention would be required for the SLG model to fit the
fMRI data. Specifically, while Egner et al. (2010) had rendered
cue-stimulus associations irrelevant to the participants’ task (and
thus assumed to have held attention constant across conditions), it
is nevertheless possible that attention played a role in mediating
effects of predictions or prediction errors, and some authors have
in fact proposed that attention is an integral component of predic-
tive coding (Feldman & Friston, 2010; Friston, 2010; Spratling,
2008). We were thus also interested in determining whether and in
what way attention in the SLG model would vary with the asso-
ciative learning variables in fitting the FFA fMRI data.

Method

Experimental Protocol

The fMRI acquisition and analysis parameters and the results
are described in detail in Egner et al. (2010). Briefly, 16 healthy
volunteers (mean age � 25.3ys) underwent conventional fMRI
scanning while viewing black and white images of faces and
houses, displayed centrally on a gray background. The goal of the
experiment was to induce perceptual expectations (and violations
thereof) regarding the presentation of face and house image stim-
uli. This was done by pairing face and house stimuli with colored
frames (green, yellow, blue) whose colors were probabilistically
predictive of the type of accompanying stimulus. On each trial, a
colored frame (CS) was first shown for 250 ms by itself, and then
a face or house image (US) was added inside the frame for 750 ms,
after which both stimulus components were removed from the
screen and replaced by a white central fixation cross for a jittered
intertrial interval of 2–4 s.

It was the participants’ task to monitor the sequence of stimuli
to perform a speeded button press with their right index finger
whenever they spotted an occasional “target” stimulus. Targets
comprised 10% of all stimuli and consisted of inverted (upside-
down) face and house images. To control for attention effects, this
task was orthogonal to the manipulation of perceptual expecta-
tions, as the colored frames were not predictive of occurrence or
type of target stimuli. However, frame color was predictive of the
stimulus type for the other 90% of regular nontarget (upright)
stimulus trials. Specifically, one frame color (e.g., green) was
accompanied by face stimuli 75% of the time and by house stimuli
25% of the time (high face expectation), another frame color (e.g.,
yellow) was accompanied by face stimuli 50% of the time and by
house stimuli 50% of the time (medium face expectation), and the
remainder frame color (e.g., blue) was accompanied by face stim-
uli 25% of the time and by house stimuli 75% of the time (low face
expectation). Subsequent to this task, participants were scanned on
a standard localizer task to define the “fusiform face area” (FFA)

Figure 1. A simplified diagram of the SLG model applied to describing
neural activity in the fusiform face area (FFA) in relation to the study of
Egner et al. (2010). We assume that activity in the FFA reflects two
variables in the model: (1) the CR, which is proportional to the prediction
of a face based on the association between Frame Color (the CS) and Face
(the US), and corresponds to the output of node 3, which is a regularized
version of face prediction (PreUS); (2) the error of that prediction, given by
the occurrence of a face minus the prediction of a face, ErrUS � StrengthUS

� PreUS, that is, the Face prediction error modulating node 3 activity.
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(Kanwisher et al., 1997). The main data analyses then concerned
the fMRI signal recorded from the FFA pertaining to the main task
manipulation for regular (nontarget) trials, that is, the FFA data
were analyzed according to a 2 (stimulus: face vs. house) � 3 (face
expectation: low vs. medium vs. high) ANOVA. In line with the
predictive coding model (see Introduction), FFA responses dis-
played a main effect of stimulus features, as face stimuli elicited
higher mean activation than house stimuli, and an interaction
between stimulus and expectation factors, as the strength of the
stimulus feature effect varied with expectation conditions (Figure
2a). Here, we tested whether this pattern of responses can be
formally accounted for within the framework of the SLG model of
associative learning.

The SLG Model

The Schmajuk, Lam, & Gray model (SLG, 1996) is an
attentional-associative model of classical conditioning (for a more
detailed description, please refer to the Appendix). The network

incorporates (a) a mechanism that modulates the efficacy of the
processing (via attention) of the conditioning stimuli (CSs) in
proportion to the total novelty detected in the environment, and (b)
a network that forms CS–CS and CS–US excitatory and inhibitory
associations, according to a real-time competitive rule. The model
assumes that total novelty increases when (a) a predicted CS or
predicted US is absent, or (b) an unpredicted CS or unpredicted US
is present. Figure 1 shows a simplified diagram of the model as
applied to the present data set, illustrating the different mecha-
nisms involved in the generation of a conditioned response (CR,
proportional to Face Prediction) when a given CS (Frame Color) is
presented. Node 1 receives input from a short-term memory (STM)
trace of the Frame Color and the prediction of that Frame Color by
the context (CX). To modulate Attention to Frame Color process-
ing in proportion to the novelty detected in the environment, the
output of Node 1, (Frame Color � Frame Color Prediction),
becomes associated (with the association represented by the first
triangle) with the normalized value of the total novelty detected in
the environment, Novelty�. Node 3 receives input from Node 2,
(Frame Color � Frame Color Prediction) * Attention to Frame
Color, as well as from the error term (Face prediction error). The
synaptic weight connecting Node 2 to Node 3 reflects the (excit-
atory or inhibitory) association between the Frame Color with a
Face. Changes in Frame Color–Face associations are proportional to
an error term (Face prediction error), which reflects the difference
between the predicted (PreUS) and the real value of the Face
(StrengthUS). Presentation of a Frame Color activates Node 1, which
activates Node 2 through the Attention connection, and the output of
Node 2 activates Node 3 through the Frame Color-Face association.

Simulations

The simulations comprised two steps: (1) simulating face pre-
diction and prediction errors using the SLG model and (2) using
them to fit the FFA activation observed in the fMRI data. The
simulation parameters used in the first step (the salience of the CX
and the CS, and strength of the US) were fixed and based on values
employed in recent application of this model to behavioral condi-
tioning experiments (Schmajuk & Kutlu, 2011; Kutlu & Schma-
juk, 2012). Specifically, the salience of the CX (SalCX) was set to
0.1, the salience of the CSs (SalCS) was set to 1, and the strength
of the US (StrengthUS) was set to 1. The SLG model simulated face
prediction and prediction errors using the actual trial sequences
that participants were exposed to in the empirical study. For the
current application, the onset times and condition specifications of
each trial of the Egner et al. (2010) experiment were used as input
to the SLG model, which estimated predictions and error terms for
each trial. Specifically, for each participant, a trial sequence file
was generated that reflected the trial sequence experienced by that
participant. Each trial had a duration of 30 time units (t.u) and was
modeled with three stimuli, namely, a CX,1 a CS (the colored
frames), and a US (face stimuli). The CX, simulating the experi-
ment environment, was presented throughout the whole simulated
trial (from 1 t.u to 30 t.u for every trial). Cues were simulated using

1 The CX can be regarded as an additional CS and sets the context in
which the conditioned and unconditioned stimuli are presented. In our set
up, this context was constant and CX was the same for all trials.

Figure 2. Empirical data and simulation results. a, Neural responses
(mean beta weights � SEM) in the FFA are plotted as a function of
stimulus (faces vs. house) and expectation for face stimuli, and best-fit
simulated values derived from the SLG model are overlaid on the empirical
data. b, Mean (� SEM) simulated activation values related to face expec-
tation are plotted as a function of experimental conditions (Low-face �
low face expectation, face stimulus; Low-house � low face expectation,
house stimulus; etc.). c, Mean (� SEM) simulated activation values related
to surprise (prediction error) in response to face stimuli are plotted as a
function of face expectation. d, Mean (� SEM) simulated activation values
in the SLG model’s Attention node are plotted as a function of face
expectation.
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3 different CSs (one for each frame cue color that indicated the
three different levels of face probability) and presented from 5 t.u
to 25 t.u, to approximate the timing of cue presentation in the fMRI
experiment. In each trial, one CS was presented, based on the trial
sequence from the fMRI experiment. All CSs shared the same
salience. Face stimuli were simulated using a US, presented from
10 t.u to 25 t.u., again in line with the timing of the fMRI
experiment. Because we were interested in simulating the activa-
tion pattern of the FFA, which responds specifically to face stim-
uli, we only presented the US when a face was presented in a given
trial, whereas presentation of a house stimulus was represented by
the absence of a US. To quantify model based predictions, face
expectation was approximated by using the conditioned response
(CR) of the SLG model measured at 9 t.u., that is, the level of face
expectation just prior to US onset. We used the CR instead of
PreUS to simulate face expectation because this study simulates
fMRI activations rather than pure prediction values. By contrast,
face surprise (prediction error) was approximated by StrengthUS—
PreUS, where StrengthUS reflects the potency of the unconditioned
stimulus and PreUS is the prediction value of the US measured in
the SLG model (see Appendix). The prediction error term was
assessed upon the onset of US presentation at 10 t.u. and did not
incorporate the updating of predictions based on the appearance of
the US, which would, however, affect the estimates in the subse-
quent trial.

In the second step, the simulated face expectation and prediction
errors were used to fit the FFA activations using the linear model:

�i � w1CRi � 	iw2Erri � C1 � 	iC2 (1)

Where �i is the averaged fMRI activation of trial type i (defined
by the combination of the stimulus category and the frame) and
where CRi and Erri are the sample mean of simulated face expec-
tation and prediction error of trial type i, respectively. 	i is 1 when
this trial type contains face stimuli, 0 otherwise. This parameter is
used to simulate face specific activation of error terms in the FFA.
w1 and w2 are the scaling coefficients for face expectation and
prediction errors, respectively. C1 and C2 represent the constant

part of the FFA activity related to face expectation and prediction
errors, respectively. Thus, the six observations from the 2 � 3
design of the fMRI study were modeled using four independent
coefficients (w1, w2, C1, C2).

Results

The SLG model produced a sum of squared error of 0.0174,
indicating an excellent fit to the data (see below). Figure 2a
displays the empirical data and the fit of the current simulation
results based on modeling trial-by-trial associative learning of
cue-stimulus events within the SLG model. Figure 2b and 2c
displays face expectation (prediction) and surprise (error term)
model values for different trial types, averaged across trials and
participants. Figure 3 unpacks the averaged prediction values by
plotting face expectation terms as a function of time over the
course of the experiment (Figure 3a), averaged across all different
trial sequences. It can be seen that for all conditions, face predic-
tion starts at zero (no expectation for faces) but in the course of the
first 5–10 trials, the values for the three different frame conditions
start to diverge (Figure 3b). This documents that the SLG model
learned the cue–stimulus probability distributions within a rela-
tively short period of time and sustained them robustly thereafter.
Because in our model prediction (CR) was measured before the
onset of a US, the category of the presented stimulus (face vs.
house) has no effect on face expectation per se during the ongoing
trial (but it does of course affect predictions for forthcoming trials).
In addition, as expected, face expectations rose with increased
cued probability of a forthcoming face stimulus, reflecting the
model’s associative learning of the CS–US contingencies across
the experiment. By contrast, the prediction error term (face sur-
prise) elicited by an unanticipated US decreased with increasing
face probability (Figure 2c).

The SLG model captures the data very well, with all of the
best-fit values falling within one mean standard error of the em-
pirical data points (Figure 2a), thus providing support for the
central tenet of the predictive coding view of visual processing,

Figure 3. Temporal evolution of simulated face-prediction responses in the FFA across experimental trials.
Shown are mean simulated time-courses (averaged across all different trial sequences) of FFA conditioned
responses (CRs, Figure 1), that is, predictions of face stimuli, as elicited by each of the three types of
conditioning stimuli (CSs; i.e., the different frame colors associated with 25%, 50% and 75% likelihood of the
occurrence of a face stimulus). Face prediction values are displayed for the entire experiment time course in A,
whereas B zooms in on the first 20 trials, to highlight initial learning by the SLG model. At the start of the
experiment, expectations for faces are at zero for all three conditions, but within the first 5–10 trials, the
conditioned responses produced by the different CS types start to diverge markedly due to rapid learning of the
CS–US associations by the model.
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namely, that visual processing is primarily driven by internally
generated predictions regarding forthcoming stimulation and their
interaction with that stimulus, rather than by bottom-up stimulus
features alone. Finally, as the original fMRI study design sought to
control for differential recruitment of attention across the experi-
mental conditions (Egner et al., 2010), we also assessed whether
the Attention node of the SLG model was differentially activated
in the different cue conditions in the current simulations. As shown
in Figure 2d, and in apparent contrast to the assumptions of the
original paper (Egner et al., 2010), Attention node activation
actually displayed a positive association with levels of face expec-
tation (One-way ANOVA, F(2, 45) � 19.1, p 
 .00001), with low
face prediction associated with less Attention than medium,
t(15) � 2.15, p 
 .05 or high face prediction, t(15) � 6.56, p 

.00001, and medium face prediction associated with less Attention
than high face prediction, t(15) � 5.44, p 
 .0001.

Discussion

Egner et al. (2010) reported neural population signals in the
human FFA as a function of independently manipulated stimulus
features (face vs. house stimuli) and participants’ expectations for
those features. The data pattern produced by these manipulations
qualitatively matched predictions derived from a predictive coding
model of visual cognition, where FFA signal would be driven by
learned cue-stimulus associations and prediction error. However,
that study did not incorporate a formal test of whether an associa-
tive learning model acquiring trial-by-trial cue-stimulus associa-
tions could in fact provide a quantitative account for these data.
Here, we performed such a test and showed that expectation and
prediction error signals derived from an associative learning model
created to account for behavioral conditioning phenomena can
explain the FFA population responses very closely.

Specifically, by applying the attention-associative SLG model
(Schmajuk et al., 1996) to simulate the fMRI data, we obtained two
main findings. First, we found that SLG model variables express-
ing learned expectation (CR) of face stimuli, and the violation of
these expectations (prediction error), together provided a very
close fit to the empirical data, thus showing that neural population
signals in the ventral visual stream can be formally accounted for
in terms of associative learning variables. Specifically, before
stimulus presentation, FFA activity is driven by acquired expec-
tations regarding the likely appearance of a face stimulus. In the
case of high face expectation, presentation of a face stimulus elicits
little or no prediction error, and thus little or no additional FFA
activation occurs. On the other hand, if faces are unexpected, the
presentation of a face stimulus elicits a large prediction error
response, thus producing additional activity in the FFA. This
provides strong formal support for the basic tenets of the predictive
coding perspective on visual cognition; namely, that processing at
a given stage of the visual hierarchy reflects a summation of
expectation and surprise responses associated with a particular
visual stimulus or feature, rather than being driven by the mere
physical presence of that feature (Friston, 2005; Lee & Mumford,
2003; Mumford, 1992; Rao & Ballard, 1999; Spratling, 2008;
Summerfield & Egner, 2009). While our results are in line with
these basic hypotheses derived from predictive coding models, we
are not in a position to conduct any formal model comparisons, as
these models were not designed to simulate the acquisition of

cue-stimulus associations of the type we modeled in the current
study.

Second, these prediction and surprise signals in the ventral
visual stream appear to be partly mediated by attention, as the SLG
model’s Attention node activation scaled positively with face
prediction in producing the fMRI data fit. This finding suggests
that, even though Egner and colleagues (2010) sought to equate
attention across conditions by rendering the experimental manip-
ulations incidental to the participants’ task, predictive processing
in the FFA may nevertheless have interacted with attention,
whereby cues signaling a higher likelihood of face occurrence
resulted in greater attentional activation. Specifically, CSs that
signaled a higher probability of face occurrence were associated
with greater attention. In the model, this would in turn enhance
face prediction activity and, in the case where predictions are
violated, elicit a larger prediction error response. The positive
association between expectation and attention in the present sim-
ulations appears broadly consistent with recent proposals that view
attention as an inherent consequence of expectations in the pre-
dictive coding framework (Feldman & Friston, 2010; Friston,
2010). These findings also highlight the importance of addressing
the precise relationship between expectation and attention explic-
itly in future empirical investigations, ideally by manipulating
variables affecting stimulus probability and stimulus relevance in
an orthogonal fashion (Summerfield & Egner, 2009; Wyart, No-
bre, & Summerfield, 2012).

Conclusion

We showed that neural population responses in the ventral
visual stream can be quantitatively explained by formal associative
learning parameters coding for predicted percepts and mismatches
between predictions and percepts (prediction error), thus providing
strong support for predictive coding models of visual cognition.
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Appendix

SLG Model Details

The Schmajuk, Lam, and Gray (1996) Model

Here, we offer a summarized description of the SLG model, a
neural-network theory that describes (and has successfully pre-
dicted) many features that characterize classical conditioning (Lar-
rauri & Schmajuk, 2008; Schmajuk, 2009; Schmajuk & Kutlu,
2011; Schmajuk & Larrauri, 2006). In the SLG model, the learning
process is accounted for jointly by an attentional mechanism and
an associative mechanism. Note that because the CX works in the
same way as the CS (except that the CX is presented throughout
the experiment), the following equations only model the variables
related to the CS to reduce repetition. Those equations can be
extended to describe the CX related variables by replacing CS
related variable with the corresponding CX related variables.

Attentional Mechanism

The model assumes that presentation of a conditioning stimulus
(CS) activates a STM trace, �CS. The dynamics of �CS is modeled
by:

d�CS

dt
� K1 �SalCS � �CS (A1)

This STM trace, �CS, is added to PreCS, defined as the prediction
of the CS by other CSs, the context (CX), and the CS itself. The
sum of �CS and PreCS, (�CS � PreCS), activates a synaptic weight
proportional to the positive value of attention, zCS. The value of zCS

is computed as the association between (�CS � PreCS) with the
value of Novelty�. Changes in zCS during 1 time unit (t.u.) are
given by

dzCS

dt
� ��CS � PreCS�Novelty��1 � zCS � �1 � zCS (A2)

where Novelty� is proportional to the sum of the novelties of all
stimuli present or predicted at a given time. The novelty of a given
CS, CX, or the unconditioned stimulus (US) is computed as the
absolute value of the difference between the average observed
value of the CS, CX, or the US, and the average of their corre-
sponding predicted value. By Equation [A2], zCS increases to �1
when Novelty� is relatively large, and decreases to �1 otherwise.

The attention-modulated representation of the CS (XCS) is given by

XCS � �zCS � K5��CS � PreCS (A3)

where K5 represents a nonmodifiable connection between (�CS �
PreCS) and XCS, and zCS assumes only positive values.

Associative Mechanism

Changes in the excitatory or inhibitory association (VCS�US),
between XCS and the US, are proportional to

dVCS�US

dt
� XCS�StrengthUS � PreUS�1 � �VCS�US�) (A4)

where StrengthUS is the strength of the US, PreUS is the aggregate
prediction of the US by all X’s active at a given time, StrengthUS �
PreUS) is the prediction error term, and the individual error term
(1 � �VCS�US�) constrains VCS�US, �1 
 VCS�US 
 �1. Asso-
ciations VCS�US increase when the prediction error term is positive
and decrease when it is negative.

Because presentation of a conditioned inhibitor does not de-
crease its inhibitory power (Zimmer-Hart & Rescorla, 1974), the
model assumes that when PreUS 
 0 then PreUS � 0, and when
PreCS 
 0 then PreCS � 0 (see also McLaren & Mackintosh,
2000). Most importantly, this assumption correctly predicts that a
neutral stimulus does not become excitatory when presented with
an inhibitory stimulus (Baker, 1974).

Performance

The aggregate prediction of the US by all CSs with representa-
tions active at a given time, PreUS, is given by

PreUS � �XCSVCS�US (A5)

The strength of the CR is given by

CR �
PreUS

2

�PreUS
2 � K11

2 
(A6)

where K11 represents a nonmodifiable parameter that constrains
CR within the range of 0 and 1.

Notice that attention zCS and XCS (Equations A2 and A3) control
the formation of VCS�US and CS-CS (VCS�US) associations during
conditioning (Equation A4), and the activation of VCS�US (Equation
A5) and the CR (Equation A6).

Parameter Values

A detailed description of the model’s differential equations is
offered in Schmajuk, Lam, and Gray (1996). The present simula-
tions use parameter values identical to those used in previous
publications (Schmajuk & Larrauri, 2008; Schmajuk & Larrauri,
2006), which have been applied to a vast number of classical
conditioning paradigms: K1 � .2, K5 � .02 and K11 � .15 (values
of all parameters can be found in Schmajuk et al.1996). In the
present study, face prediction was simulated by CR; prediction
error was simulated using StrengthUS � PreUS; and attention was
simulated by zCS.
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