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Resolving conflicting sensory and motor representations is a core
function of cognitive control, but it remains uncertain to what
degree control over different sources of conflict is implemented by
shared (domain general) or distinct (domain specific) neural re-
sources. Behavioral data suggest conflict–control to be domain
specific, but results from neuroimaging studies have been ambiva-
lent. Here, we employed multivoxel pattern analyses that can
decode a brain region’s informational content, allowing us to dis-
tinguish incidental activation overlap from actual shared information
processing. We trained independent sets of “searchlight” classifiers
on functional magnetic resonance imaging data to decode control
processes associated with stimulus-conflict (Stroop task) and ideo-
motor-conflict (Simon task). Quantifying the proportion of domain-
specific searchlights (capable of decoding only one type of conflict)
and domain-general searchlights (capable of decoding both conflict
types) in each subject, we found both domain-specific and domain-
general searchlights, though the former were more common. When
mapping anatomical loci of these searchlights across subjects,
neural substrates of stimulus- and ideomotor-specific conflict–
control were found to be anatomically consistent across subjects,
whereas the substrates of domain-general conflict–control were
not. Overall, these findings suggest a hybrid neural architecture of
conflict–control that entails both modular (domain specific) and
global (domain general) components.
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Introduction

A fundamental challenge to goal-directed behavior is that a
multitude of stimuli vie for control over our actions. “Conflict–
control”, the ability to resolve this competition in line with an
organism’s current goals, is therefore considered a core execu-
tive function (Norman and Shallice 1986; Desimone and
Duncan 1995; Botvinick et al. 2001; Miller and Cohen 2001).
A key question in this regard is whether the brain is co-opting
a singular, central resource for dealing with different types of
conflicting representations (domain-general conflict–control),
or whether we have evolved distinct adaptations to confront
the specific challenges posed by competition in different pro-
cessing pathways (domain-specific conflict–control; Egner
2008). For instance, would conflict that arises from activation
of competing stimulus representations be resolved by the
same resource as conflict that emanates from coactivation of
competing response codes? Recent behavioral evidence indi-
cates that conflict–control displays a modular, domain-specific
organization (Wendt et al. 2006; Egner et al. 2007; Funes et al.
2010), with separate conflict–control mechanisms being
responsive to distinct domains and capable of running in
parallel with each other (Egner 2008). On the other hand,
functional magnetic resonance imaging (fMRI) studies

manipulating either different conflict sources or components
have produced ambivalent results, ranging from complete
domain specificity (van Veen and Carter 2005; Liston et al.
2006; Egner et al. 2007) to a mix of domain-specific and
domain-general activations (Milham et al. 2001; Fan et al.
2003; Liu et al. 2004; Kim et al. 2010, 2011) to completely
overlapping activations across conflict domains (Peterson
et al. 2002).

However, the degree to which regional activation overlap
across conflict domains assayed in previous fMRI studies accu-
rately describes shared conflict–control processes is uncertain.
First, the amount of activation overlap across domains
depends on arbitrary statistical thresholding. Secondly, it is
unknown whether regions of shared activations carry essen-
tial information about the conflict–control process itself or
serve incidental functions. Thirdly, common regional fMRI
signal may reflect distinct contributions from interspersed,
domain-specific neuronal populations. Fourthly, voxel ensem-
bles that do not display mean activation differences between
conditions may nevertheless code for essential information,
such that key regions engaged in domain-general or -specific
conflict–control could pass undetected in traditional (univari-
ate) fMRI analyses. Conversely, higher mean activation in one
condition compared with another does not necessarily trans-
late into higher informational content (Kok et al. 2012).

In order to overcome these limitations, we turned to fMRI
multivoxel pattern analysis (MVPA), which harnesses multi-
variate activity patterns over spatially distributed voxels to train
classifiers decoding whether a particular brain region carries
diagnostic information about specific stimuli or cognitive pro-
cesses (Haxby et al. 2001; Haynes and Rees 2006; Kriegeskorte
et al. 2006; Norman et al. 2006). MVPA operates in reference to
a nonarbitrary threshold (chance-level classification); it in-
creases effective spatial resolution, thus allowing for the detec-
tion of interspersed neuronal populations of varying functional
characteristics (Kamitani and Tong 2005; Esterman et al. 2009);
and it enables the detection of task-relevant population codes
that are not characterized by mean activation differences
between conditions (Howard et al. 2009).

We therefore combined whole-brain searchlight MVPA
(Kriegeskorte et al. 2006; Haynes et al. 2007) with a task that
independently varied “stimulus-conflict”, the competition
between task-relevant and -irrelevant perceptual or semantic
stimulus features (Kornblum et al. 1990), and “ideomotor-
conflict”, the competition between a (task-irrelevant) motor
affordance of a stimulus and the motor act that is required in
response to that stimulus (Shin et al. 2010). Using indepen-
dent classifiers trained on multivoxel signal patterns, we
defined domain-general conflict–control regions as search-
lights that are capable of decoding both stimulus- and
ideomotor-conflicts, whereas domain-specific control–control
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regions were defined as searchlights that could only success-
fully decode one type of conflict. Subsequently, we quantified
the proportion of domain-general versus domain-specific pro-
cessors in each subject and mapped the anatomical loci of
these searchlights across subjects. The results produced evi-
dence for both domain-specific and domain-general proces-
sing, though with a substantial preponderance of the former.
Moreover, whereas anatomical locations of stimulus- and
ideomotor-conflict–control searchlights were consistent across
subjects, regions supporting domain-general conflict–control
were detected in the group analysis only at more lenient (un-
corrected) statistical thresholds.

Materials and Methods

Subjects
Twenty-nine healthy volunteers (mean age = 21.3, 15 females) gave
informed consent in accordance with institutional guidelines. All sub-
jects were native or highly proficient English speakers and had
normal or corrected-to-normal vision. Five subjects were excluded
due to low accuracy on the behavioral task (<80% correct), and a
further 3 subjects due to excessive movement (>3 mm or >3°) during
imaging. The final sample consisted of 11 females and 10 males.

Apparatus and Stimuli
Stimulus delivery and behavioral data collection were carried out
using Presentation software (http://www.neurobs.com/). Stimuli were
presented on a back projection screen viewed via a mirror attached to
the headcoil of the MRI scanner, and responses were collected using
an MRI-compatible button box. Stimuli consisted of a collection of 24
black and white photographs of male and female faces (12 each) of
neutral expression that were overlaid with red gender word labels
(“male” and “female”), which could be printed in lower or upper case
lettering, resulting in a total of 96 unique pictorial stimuli (Fig. 1A).

Procedure
On each trial, one face-word compound stimulus (subtending approxi-
mately 3° of horizontal and 4° of vertical visual angle) was presented
against a gray background in either the left upper, left lower, right
upper, or right lower quadrant of the screen (centered at approxi-
mately 7° of horizontal eccentricity from the vertical midline, and at
approximately 3° of vertical eccentricity from the horizontal midline of
the display), with a fixation cross occupying the center of the screen
(Fig. 1A). Stimuli were presented for 1 s, followed by a jittered intersti-
mulus interval ranging from 3 to 4.5 s in uniformly distributed steps of
500 ms, during which the fixation cross remained on screen. Subjects
performed a speeded button response that categorized the gender of
the face stimulus with either index finger (for example, left-hand
response to male faces, right-hand response to female faces, counter-
balanced across subjects), while trying to ignore the task-irrelevant
gender labels and stimulus locations. Following a brief practice run to
ensure subjects comprehended the task requirements, the experimen-
tal trials were presented across 4 scan runs, each entailing 96 trials.

Following the main task, subjects also performed a localizer task to
define the fusiform face area (FFA; Kanwisher et al. 1997), a visual
brain regions specialized in the processing of face stimuli. In this lo-
calizer task, subjects responded to direct repetitions of visual stimuli
(1-back task) by pressing a button using the right index finger. Face
and house stimuli were presented separately in 5 blocks each. Each
block contained 15 stimuli, including 1 or 2 direct repetitions. Stimuli
were presented at the center of the screen (subtending approximately
3° of horizontal and 4° of vertical visual angles) against a gray back-
ground for 750 ms. Each stimulus was then followed by a fixation
cross shown at the center of the screen for 250 ms. The blocks pre-
senting face and house stimuli alternated and were further randomly
interleaved with 5 fixation blocks of 15 s each.

Experimental Design
The experimental design of the main task integrates variants of the
classic Stroop task (Stroop 1935) and Simon task (Simon 1969), by
combining a task-relevant stimulus dimension (face gender) with 2
task-irrelevant stimulus dimensions that could give rise to stimulus- or
ideomotor-conflict, respectively. Specifically, the semantic meaning of
the gender label written across the face stimuli could be either compa-
tible (50% of trials) or incompatible with the gender of the face stimu-
lus, representing a potential source of stimulus-conflict (Kornblum
et al. 1990; Egner et al. 2008). Moreover, the horizontal stimulus
location (left/right) could be either compatible (50% of trials) or in-
compatible with the horizontal position of the correct response effec-
ter, representing a potential source of ideomotor-conflict (Kornblum
et al. 1990; King et al. 2010). Stimulus- and ideomotor-compatibility
were varied independently of each other, resulting in a fully balanced
2 × 2 (stimulus domain: Compatible vs. incompatible × ideomotor
domain: Compatible vs. incompatible) within-subject factorial design.
To control for possible associative influences on behavior and
imaging data stemming from stimulus feature repetitions across
sequential trials, all stimulus features changed from each trial to the
next, while the response feature (left or right button press) was
equally likely to repeat or change from trial to trial. Specifically, no
particular face stimulus was ever repeated over 2 successive trials, the
gender labels alternated between lower case and upper case lettering
across trials, and the spatial quadrant of stimulus presentation also
always varied from trial to trial.

Behavioral Data Analysis
The behavioral signature of conflict–control we employed is given by
the size of the interference (or conflict) effect, the differential in

Figure 1. Experimental protocol and behavioral data. (A) Example stimuli and timing
(and correct responses) of the experimental protocol. Assuming a button mapping of
a left-hand response to male faces and a right-hand response to female faces
(mappings were counterbalanced across subjects), the example depicts one trial that
was both stimulus- and ideomotor-incompatible, followed by another trial that was
stimulus-compatible, but ideomotor-incompatible. (B) RT data (±mean standard error
[MSE]), plotted as a function of stimulus- and ideomotor-compatibility, exhibit
additive main effects of these 2 factors.
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response time (RT) to incompatible when compared with compatible
stimuli. This interference score captures both the generation/detec-
tion and the within-trial resolution of conflict (given that we only ana-
lyzed trials where a correct answer was given). Note that an
approximate segregation of conflict detection versus conflict resol-
ution processes could in principle be achieved by analyzing first-order
congruency sequence (conflict adaptation) effects (Gratton et al.
1992; Botvinick et al. 2001; Egner 2007). However, since this analysis
results in a substantial reduction in trial count (going from 4 to 16
cells in the factorial design), which would have greatly reduced the
power of the neural pattern classification, we opted to focus exclu-
sively on the standard trial n effects. An added benefit of this ap-
proach is that it coincides with the way that the large majority of
previous fMRI studies manipulating different conflict sources have
analyzed their data, thus rendering the present MVPA results more
comparable with prior, univariate fMRI results. The mean RT was
computed in each subject for each of the experimental cells, exclud-
ing incorrect trials and RT values that deviated >2 standard deviations
from an individual subject’s grand mean. The trimmed RT values
were then averaged across subjects and entered into repeated-
measures 2-way analyses of variance (ANOVAs) with the factors
stimulus-compatibility (compatible vs. incompatible) and ideomotor-
compatibility (compatible vs. incompatible). Equivalent analyses were
carried out on mean accuracy rates.

Image Acquisition
Images were acquired on a 3-T GE scanner (Milwaukee, WI, USA).
Structural images were scanned using a T1-weighted axial sequence
parallel to anterior commissure–posterior commissure line (120 slices,
slice thickness = 1 mm, time repetition [TR] = 8.124 ms, field of view
(FoV) = 256 mm × 256 mm, in-plane resolution = 1 mm × 1 mm).
Functional images were scanned using a T2*-weighted inverse spiral
sequence (40 slices, slice thickness = 3 mm, TR = 1.5 s, time echo
[TE] = 24 ms, flip angle = 85°, FoV = 192 mm × 192 mm, in-plane
resolution = 3 mm × 3 mm). The functional images of the main task
were acquired in 4 runs of 330 images each. The functional images of
the localizer task were acquired in one run of 314 images.

Image Preprocessing
Preprocessing of functional images was performed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/). For each run, the first 7 scans
were discarded from further analysis. The remaining images were rea-
ligned to their mean image and corrected for differences in slice-time
acquisition. Each subject’s structural image was coregistered to the
mean functional image and normalized to the Montreal Neurological
Institute (MNI) template brain. The transformation parameters of the
structural image normalization were then applied to the functional
images. The normalized functional images retained their native
spatial resolution.

General Linear Model Univariate Analysis
For the standard general linear model (GLM) analysis, normalized
images were smoothed using an 8-mm Gaussian kernel. Note that the
GLM results reported below were not strongly dependent on our
choice of spatial smoothing kernel (8 mm3), as we obtained qualitat-
ively equivalent results with a smaller kernel (6 mm3) and when using
unsmoothed data. For each subject, a model of the main task was
created via vectors of stimulus onsets corresponding to the 4 exper-
imental trial types, along with vectors for error trials, head-motion
parameters, and grand means of each run. Vectors were convolved
with SPM8’s canonical hemodynamic response function to produce a
design matrix, against which the blood oxygenation level-dependent
signal at each voxel was regressed. Within-subject effects of stimulus-
(or ideomotor-) compatibility were assessed by contrasting activations
between stimulus- (or idemotor-) incompatible and compatible regres-
sors at each voxel. The resulting single-subjects contrast maps were
then entered into group-level, 1-sample, t-tests, where subjects were
treated as random effects. For the localizer task, boxcar vectors of
onsets and durations were created for face- and house-blocks. These

vectors, along with 7 other vectors, modeling head-motion par-
ameters and the grand mean were convolved with SPM8’s canonical
hemodynamic response function to produce the design matrix, which
was then estimated at each voxel for each subject. Face-sensitive
regions were defined through a face > house block contrast at the
single-subject level. These contrast maps were then entered into
group-level, 1-sample t-tests, where subjects were treated as random
effects.

MVPA Feature Generation
The preprocessed fMRI images scanned during the main task also un-
derwent an MVPA procedure (Fig. 2). For MVPA feature generation,
we employed a strategy based on grouping a small number of trials
within each condition in each run together in order to create “trial
exemplars” (Misaki et al. 2010). Specifically, for each subject, the 96
trials of each experimental condition were randomly grouped into 24
exemplars of 3–4 trials (depending on exclusions due to error trials)
per run, in order to reduce noise. There was no overlap of trials
across exemplars, that is, each trial belonged to a single exemplar
only. Feature extraction was performed via GLM analysis of un-
smoothed data. The resulting design matrix contained 96 unique re-
gressors (one for each “exemplar”, of which there were 6 for each of
the 4 stimulus- × ideomotor-conflict congruency conditions per each
of 4 runs), 24 head-motion parameters (6 for each run) and 4 grand
means (1 for each run). The t-value of each regressor was then esti-
mated at each voxel and used as the feature of that regressor’s corre-
sponding exemplar. All features from the same run were normalized
at each voxel to reduce variances of features between runs.

Searchlight MVPA
To decode stimulus- and ideomotor-compatibility using regional
information content, a whole-brain (constrained by a gray matter
mask derived from the segmentation of the SPM8 T1 template)
searchlight MVPA (Kriegeskorte et al. 2006; Haynes et al. 2007) was
conducted on the features. Similar to previous studies (Clithero
et al. 2009), the searchlight was a spherical cluster with a radius of
3 voxels and contained up to 123 cortical voxels. Linear support
vector machines (SVMs) were used. Specifically, we used Matlab
functions “svmtrain” and “svmclassify” for training and testing an
SVM, respectively. The box constrain-value controlling the soft margin
was set to 1 (the default value) for all SVMs. The performance of SVMs
was evaluated with a leave-one-run-out cross-validation approach. Four
types of classifiers were trained on searchlights centered at each voxel,
namely “pure ideomotor-conflict”, “pure stimulus-conflict”, “full
ideomotor-conflict”, and “full stimulus-conflict” classifiers. “Pure classi-
fiers” were trained to categorize their respective conflict type when the
other type was compatible. For example, pure stimulus-conflict classifiers
only used ideomotor-compatible stimuli (that were in addition either
stimulus-compatible or stimulus-incompatible). “Full classifiers”, on the
other hand, were trained to categorize their respective conflict type re-
gardless of the compatibility of the other conflict type. For example, a
full stimulus-conflict classifier discriminated stimulus-compatible/
ideomotor-compatible and stimulus-compatible/ideomotor-incompatible
exemplars from stimulus-incompatible/ideomotor-compatible and
stimulus-incompatible/ideomotor-incompatible exemplars. These full
classifiers resemble the main effects analysis in both the behavioral
and univariate fMRI data analyses. The classification accuracies of
the 4 types of classifiers were then used in the following categoriz-
ation scheme that determined domain generality and domain speci-
ficity for each searchlight.

Domain Generality/Specificity Classification Analysis
After searchlight MVPA, each searchlight had classification accuracies
for pure stimulus-conflict classifiers (rps), pure ideomotor-conflict
classifiers (rpi), full stimulus-conflict classifiers (rfs), and full
ideomotor-conflict classifiers (rfi). In order to assess the degree of
domain generality/specificity in neural substrates of conflict–control,
each searchlight was classified as either domain general, domain
specific (stimulus- or ideomotor-conflict-specific), or noninformative.
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Specifically, for a given accuracy threshold r, the classification was
performed using the following rules: (a) A searchlight is domain
general if it can decode both types of conflicts using pure classifiers
(i.e. min (rps, rpi)≥ r). (b) A searchlight is domain specific if: It is not
domain general (rps < r or ris < r); and it can decode only the stimulus-
conflict (i.e. min (rps, rfs)≥ r) or only the ideomotor-conflict (i.e. min
(rpi, rfi)≥ r) using both pure and full classifiers. (c) A searchlight is
noninformative if it is neither domain general nor domain specific.

A number of points regarding these classifications are worth
noting: (1) This classification scheme imposes equally strict inclusion
thresholds on domain-general and domain-specific searchlights,
because both the domain-general and the domain-specific searchlights
have to pass 2 independent statistical criteria each. (2) Pure classifiers,
rather than full classifiers, were used to test domain generality. This is

because domain-general searchlights may use the same coding for in-
compatibility regardless of the origins of conflict. Thus, domain-general
searchlights may treat both stimulus-compatible/ideomotor-incompatible
exemplars, and stimulus-incompatible/ideomotor-compatible exem-
plars as generic incompatible exemplars. However, in full classifiers,
those exemplars would be considered compatible. For example, when
training full stimulus-conflict classifiers, stimulus-compatible/ideomotor-
incompatible exemplars would be treated as compatible exemplars
(because they are both stimulus-compatible). This discrepancy may in
theory produce biased results when using full classifiers to test for
domain generality. In contrast, using pure classifiers avoids this poten-
tial problem by eliminating the above discrepancy. (3) Domain-general
and domain-specific searchlights were mutually exclusive because rule
(b) required domain-specific searchlights to not be domain-general

Figure 2. MVPA processing pipeline. Following preprocessing, 24 aggregate exemplars (averaging 4 randomly selected trials) were generated and estimated for each
of the 4 experimental conditions (stimulus-compatible/ideomotor-compatible; stimulus-compatible/ideomotor-incompatible; stimulus-incompatible/ideomotor-compatible;
stimulus-incompatible/ideomotor-compatible). Then, features from exemplars were split into 2 nonoverlapping groups to avoid potential dependencies in subsequent analyses. For
each searchlight, 4 types of independent whole-brain searchlight MVPA classifiers were trained in each subject. “Pure” ideomotor- and stimulus-conflict classifiers were trained
to categorize their respective conflict type (i.e. distinguish incompatible from compatible exemplars) when the other conflict type was compatible. “Full” classifiers were trained
to categorize their respective conflict type regardless of the compatibility of the other conflict type. Based on these classifiers, domain-general searchlights were defined as
searchlights that achieved significant above-chance (corrected for multiple tests at P<0.05) classification accuracy in both types of pure classifiers, whereas domain-specific
searchlights were defined as searchlights that could exclusively decode one type of conflict using both pure classifiers and full classifiers.
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searchlights. Furthermore, domain-specific searchlights could be
divided into stimulus-conflict-specific and ideomotor-conflict-specific
searchlights, based on the conflict they were capable of decoding. These
categories were mutually exclusive because stimulus-conflict specificity
required rps≥ r and ideomotor-conflict specificity required rps< r accord-
ing to rule (b).

Based on the rules above, we defined rg =min (rps, rpi), rs = min
(rps, rfs), and ri = min (rpi, rfi) as indices of a searchlight’s domain gen-
erality, stimulus-conflict-specificity, and ideomotor-conflict-specificity,
respectively. In order to avoid bias affecting rg, rs, and ri, it is crucial
to keep the pairs of variables in min () independent of each other.
However, if rps, rpi, rfs, and rfi were computed using exemplars from
all 4 runs, they could become dependent because they share some
exemplars. For example, both rps and rpi were computed using the
same stimulus- and ideomotor- compatible exemplars. This overlap
may cause rps and rpi to be dependent, and thus bias the distribution
of rg. Similarly rs and ri could also become biased. To avoid depen-
dence, the exemplars were split into 2 nonoverlapping groups, each
of which had exemplars from 2 runs. Then rps and rfi were estimated
using group 1; while rpi and rfs were estimated using group 2. As a
result, rg, rs, and ri were computed from independent pairs of vari-
ables. With the 4 runs in this task, we used all 6 possible splits (1,2/
3,4; 1,3/2,4; 1,4/2,3; 2,3/1,4; 2,4/1,3; and 3,4/1,2). For each split, we
computed rg, rs, and ri. We then averaged rg, rs, and ri across splits
and used their mean values as the indices of domain generality,
stimulus-conflict-specificity, and ideomotor-conflict-specificity,
respectively. We refer to rg, rs, and ri as their respective averages
across splits.

Nonparametric Statistical Tests of Domain Generality
and Domain Specificity
Similar to the situation described above, averaging across splits may
cause dependence due to the overlap of exemplars across splits. Fur-
thermore, the dependence is unknown, meaning the null distribution
for statistical tests is not available using conventional parametric stat-
istical methods. Thus, we employed a simulation-based, nonpara-
metric method to estimate the null distributions of rg, rs, and ri.
Specifically, we simulated features for 21 virtual subjects. Each virtual
subject had 96 features (one for each exemplar) on each voxel of the
gray matter mask, resembling the structure of features in the original
data. Importantly, each feature was sampled from a T-distribution
with the same degree of freedom as the original data. This sampling
process simulated a situation with no real differences in activation
patterns between experimental conditions, making it an ideal candi-
date for estimating the null distribution. The simulated features then
went through searchlight MVPA and the domain generality/specificity
classification analysis in exact the same way as the original features
and produced simulated rgs, rss, and ris. The simulated rgs, rss, and
ris at each voxel of each simulated subject were then pooled together
to estimate subject-level null distributions of rg, rs, and ri. Using these
estimated null distributions, we pursued 2 additional analyses (see
next 2 sections), one being a quantification of the incidence of con-
flict–control domain-general and domain-specific searchlights at the
within-subject level, and the other being a group analysis to deter-
mine consistently domain-general or -specific brain regions across
subjects.

Individual Subject-Level Analysis
The individual subject-level analysis aimed at quantifying the extent
of domain generality and domain specificity of cortical conflict–
control processing for each subject. This was done by counting the
statistically significant domain-general and domain-specific search-
lights. To mark potential domain-general and domain-specific search-
lights, each subject’s rg, rs, and ri maps were transformed to P-value
maps based on their corresponding subject-level null distributions. To
control for false alarms caused by multiple comparisons, the analysis
of functional neuroimages (AFNI) AlphaSim algorithm (Cox 1996)
was applied to each subject’s P-value maps. Specifically, combined
voxel activation intensity and cluster extent thresholds corrected for
multiple comparisons were determined by running 5000 Monte Carlo

simulations taking into account the search volume and the estimated
smoothness of each axis of the individual SPMs to generate prob-
ability estimates of a random field of noise producing a cluster of
voxels of a given extent for a set of voxels passing a specific voxel-
wise P-value threshold, which we set at 0.05 for all analyses. Given
this voxelwise threshold, the simulations determined that cluster sizes
>52–62 voxels, depending on the specific analysis, corresponded to
combined threshold of P < 0.05 (corrected). Note these are compara-
tively small cluster sizes because the fMRI data were unsmoothed.

In these corrected P-value maps, searchlights within suprathreshold
clusters for rg, rs, and ri were counted and used as measures of
domain generality, stimulus-conflict-specificity, and ideomotor-
conflict-specificity. To further verify the selectivity of domain-specific
searchlights, those searchlights were retrained and tested to decode
the other type of conflict. In other words, stimulus-conflict-specific
searchlights were retrained to decode ideomotor-conflict, and vice
versa. In this retrain analysis, full classifiers rather than pure classifiers
were used. The reason is that when using domain-specific searchlights
to decode their nonspecialized conflict, rule (b) implies that pure clas-
sifiers must perform under threshold (see above). Thus, retrained pure
classifiers would produce artificially low performance and make them
biased for the retrain analysis.

Group-Level Analysis
The group-level analysis aimed at identifying brain regions that were
consistently domain general or domain specific across subjects. To
test domain generality and domain specificity at the group level using
statistical inference, we first estimated the null distributions of group
means of rg, rs, and ri by repeatedly sampling from their correspond-
ing subject-level null distributions. Specifically, a number was ran-
domly drawn from each subject-level null distribution. The mean of
the 21 numbers was then considered as being sampled from the null
distribution of group means. This sampling process was repeated for
10 000 000 times for each subject-level null distribution. The sampled
group means were pooled to produce an estimate of the group
mean’s null distribution. Finally, the newly estimated null distri-
butions were applied to each searchlight to give its group-level
P-values of domain generality, stimulus-conflict-specificity, and
ideomotor-conflict-specificity. The P-value maps were corrected for
multiple comparison using AFNI’s AlphaSim algorithm (for details,
see above), which determined that voxelwise P < 0.05 values paired
with cluster sizes of >79–82 voxels, depending on the specific analy-
sis, corresponded to combined multiple comparison-corrected
threshold of P < 0.05.

Region-of-Interest Analysis
Because the main task was to identify the gender of face stimuli, it
was of particular interest to investigate the conflict–control domain
specificity of brain regions that specialize in the processing of face
stimuli. According to a modular view of conflict–control, only control
over stimulus-conflict should involve brain regions representing these
stimuli, while control over ideomotor-conflict should not (Egner et al.
2007; Egner 2008). We localized the left (lFFA) and right FFAs (rFFA)
using the group-level face > house contrast of a standard GLM analy-
sis. The centers of the region-of-interests (ROIs) were defined as the
local maxima of suprathreshold voxels (P < 0.005 uncorrected, cluster
size >30 voxels) in bilateral fusiform gyrus, and the ROIs themselves
were defined as the collection of searchlights whose centers were
located within 3 voxels from the center of the ROIs. To perform
group-level MVPA analysis within each ROI of each subject, the
indices of domain generality, stimulus-conflict-specificity, and
ideomotor-conflict-specificity of searchlights were separately
z-transformed (i.e. we subtracted the mean and divided by the stan-
dard deviation of their corresponding null distributions) and then
averaged. These z-scores therefore reflected the relative degree of
domain generality/specificity compared with the null distributions.
Finally, individual ROI means of z-scores were tested against null
(chance-level domain generality/specificity) using group-level,
1-sample t-tests.

Cerebral Cortex 5

 at D
uke U

niversity on June 10, 2014
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


Results

Behavioral Data
A repeated-measures ANOVA on mean RT revealed a main
effect of stimulus-compatibility (F1, 20 = 43.4, P < 0.001), as
responses were slower on stimulus-incompatible (696 ms)
than stimulus-compatible trials (663 ms), and a main effect
of ideomotor compatibility (F1, 20 = 27.2, P < 0.001), with
slower responses to ideomotor-incompatible (692 ms) than
ideomotor-compatible trials (668 ms) (Fig. 1B). Stimulus- and
ideomotor-compatibility effects did not interact (F1, 20 = 2.5, n.
s.) and their impact on RT was comparable (33 vs. 24 ms,
t(20) = 1.2, n.s.). Accuracy data conformed to the same pattern
of results, displaying noninteracting (F1, 20 = 0.3, n.s.) main
effects of stimulus-compatibility (F1, 20 = 15.6, P < 0.005) and
ideomotor-compatibility (F1, 20 = 13.1, P < 0.005), due to more
error-prone performance on incompatible than compatible
trials (stimulus-compatibility: 95.0% vs. 98.0% accuracy;
ideomotor-compatibility: 95.7% vs. 97.4% accuracy).

These results replicate previous findings of independent
(additive) conflict–control effects in the stimulus and ideomo-
tor domains (Simon and Berbaum 1990; Kornblum 1994;
Egner et al. 2007; Funes et al. 2010) and set the stage for the
fMRI data analyses. In principle, the additive behavioral
effects could either reflect distinct stages of conflict processing
for the 2 domains that are nevertheless resolved by a shared
cognitive control resource, or they may reflect the workings of
independent, domain-specific conflict–control modules, or a
mesh of the two. To adjudicate between these possibilities, we
turned to the concurrently acquired fMRI data.

Univariate Imaging Results
For comparison with previous studies and the MVPA analyses
(see below), we first conducted conventional (mass-), univariate

random-effects group tests on the main effects of stimulus- and
ideomotor-compatibility, contrasting activity in incompatible
versus compatible trials. The results (Fig. 3 and Table 1) were
consistent with the prior literature, as control over stimulus- and
ideomotor-conflict elicited activity predominantly in a set of
frontal and parietal regions (Peterson et al. 2002; Fan et al.
2003; Liu et al. 2004; Egner et al. 2007), some of which were
distinct and some of which overlapped across domains (Peter-
son et al. 2002; Fan et al. 2003; Liu et al. 2004). Importantly, the
degree of this overlap, and thus the implied domain generality
of conflict–control, is of course directly dependent on statistical
thresholding, in that a more lenient threshold would result in en-
hanced overlap, while a more stringent threshold would abolish
overlap entirely (Fig. 3). Based on the univariate results, one
could therefore either conclude that conflict–control processes
are implemented in a domain-specific fashion (at more stringent
thresholds) or in a domain-general manner (at more lenient
thresholds). However, we argue that neither conclusion is war-
ranted, as it is not known whether regions of shared activity
carry essential information about the 2 conflict–control pro-
cesses, nor whether they reflect a functionally homogenous
neuronal population response. In addition, key regions of
domain-general or domain-specific processing might code
information in distributed activity patterns not characterized
by mean activation differences between conditions. For a deci-
sive test of domain-general versus domain-specific neural
implementation of conflict–control processing, we therefore
analyzed the same data set using MVPA.

Within-Subjects MVPA Results
Following whole-brain searchlight MVPA, each searchlight
of each subject was associated with indices for domain
generality, stimulus-conflict-specificity, and ideomotor-
conflict-specificity. These indices were translated into

Figure 3. Univariate fMRI results. Univariate group results for the main effects of stimulus-compatibility (incompatible > compatible, shown in green) and ideomotor
compatibility (incompatible > compatible, shown in blue) and their overlap (shown in cyan) are projected onto dorsal, lateral, and medial views of a 3-dimensional-rendered brain
(right hemisphere only for lateral and medial views). The maps are displayed at 3 different statistical voxelwise height thresholds (P<0.05, <0.01, and <0.001, uncorrected)
and a cluster extent threshold of ≥10 voxels. For additional details of the activation locations and statistics, see Table 1.
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P-values based on simulated null distributions (see Materials
and Methods). As a result, each subject had 3 P-value maps,
reflecting spatial distributions of P-values for domain
generality, stimulus-conflict-specificity, and ideomotor-conflict-
specificity. To control for multiple comparisons over search-
lights, a whole-brain correction (P < 0.05) was applied to the
P-maps (see Materials and Methods). Searchlights that passed
correction were then considered as either domain general,
stimulus-conflict-specific, or ideomotor-conflict-specific at the
individual subject level. Many searchlights passed multiple
comparison correction. On average of 21 subjects, there were
856.4 ± 225.8 domain-general searchlights, 1344.7 ± 344.0
stimulus-conflict-specific searchlights, and 826.1 ± 198.3 ideo-
motor-conflict-specific searchlights. A straightforward way of
quantifying the degree of domain generality/specificity of the
neural organization of conflict–control would be to compare
the number of domain-general searchlights with the number of
domain-specific searchlights. Yet, direct comparison between
the raw numbers of searchlights might be biased by individual
differences, because subjects with a larger overall amount of
informative searchlights will contribute more strongly to the
results. To control for this factor, an analysis was conducted
using proportions of searchlights. Specifically, for each subject,
we calculated the proportions of domain general, stimulus-con-
flict-specific, and ideomotor-conflict-specific searchlights rela-
tive to all informative searchlights and then compared these
proportions across subjects (Fig. 4A). The results showed that
the proportion of domain-specific searchlights (mean = 72.7 ±
3.4%) was significantly higher than that of domain-general
searchlights (mean = 27.3 ± 3.4%, t(20) = 5.0, P < 0.0001).
Additionally, stimulus-conflict-specific searchlights had a sig-
nificantly higher proportion (mean = 43.9 ± 5.6%) than domain-
general searchlights (t(20) = 2.2, P < 0.05). The proportion of
ideomotor-conflict-specific searchlights (mean = 28.8 ± 5.6%),
however, did not differ from domain-general (t(20) = 1.6, n.s.)
or stimulus-conflict-specific searchlights (t(20) = 0.2, n.s.).

Given the preponderance of stimulus-conflict-specific
searchlights, we sought to ensure that these data were not a
consequence of our whole-brain analysis lacking sensitivity to

both ideomotor- and domain-general conflict–control sites.
Therefore, we ran 2 additional analyses where we constrained
the MVPA search space to ROIs previously linked to domain-
general and ideomotor-conflict-specific control. ROIs
were created by combining masks of Brodmann areas (BAs)
using Mricron (http://www.mccauslandcenter.sc.edu/mricro/
mricron/). In the first analysis, we constrained our within-
subject analysis to a putative domain-general cognitive control
network described in a recent meta-analysis (Niendam et al.
2012), which consisted of BAs 9, 46, 32, 7, and 40. The
results within this ROI showed the same pattern as the whole-
brain analysis: Stimulus-conflict-specific searchlights had a
significantly higher proportion (mean = 50.6 ± 7.6%) than
domain-general searchlights (mean = 23.9 ± 5.7%) (t(20) = 2.5,
P < 0.05). The proportion of ideomotor-conflict-specific
searchlights (mean = 25.5 ± 7.4%), however, did not differ
from domain-general (t(20) = 0.2, n.s.) or stimulus-conflict-
specific searchlights (t(20) = 1.9, P < 0.076). In the second ROI
analysis, we constrained our within-subject analysis to pre-
motor and motor regions (i.e. BAs 4 and 6). One subject did
not have any searchlight that passed the correction for mul-
tiple comparisons and was thus excluded from this analysis.
For the remaining 20 subjects, stimulus-conflict-specific
searchlights had a significantly higher proportion (mean =
50.0 ± 8.5%) than domain-general searchlights (mean = 12.6 ±
4.4%, t(19) = 3.6, P < 0.005). The proportion of ideomotor-

Figure 4. Individual subject-level MVPA results. Domain-general and domain-specific
searchlights were identified using nonparametric statistical tests with multiple
comparison correction (corrected P< 0.05) within each subject. (A) Mean proportion
(+MSE) of domain general, stimulus-conflict-specific, and ideomotor-conflict-
specific searchlights across subjects. (B) Mean group accuracy (+MSE) of full
stimulus-classifiers retrained on ideomotor-conflict-specific searchlights (ideomotor-
stimulus) and full ideomotor-classifiers retrained on stimulus-conflict-specific
searchlights (stimulus-ideomotor).

Table 1
Univariate effects of control over stimulus- and ideomotor-conflict

Region t-value MNI Cluster

Main effect of stimulus-conflict (incompatible > compatible)
Thalamus/caudate 6.76 6, −28, 34 110
Parietal lobule/precuneus 5.80 −30, −58, 55 123
Medial frontal gyrus/cingulate gyrus 5.64 −9, 5, 61 42
Inferior parietal lobule 5.60 −42, −40, 49 69
Middle/inferior frontal gyrus 5.56 45, 41, 25 124
Middle/inferior occipital gyrus 5.06 42, −79, 1 58
Parietal lobule/precuneus 5.00 30, −58, 52 252
Posterior cingulated gyrus 4.60 −24, −76, 7 25
Inferior frontal gyrus 4.53 33, 23, 4 73
Inferior frontal gyrus 4.17 −39, 8, −5 30
Middle/inferior frontal gyrus 4.14 −45, 32, 16 47
Middle/inferior frontal gyrus 4.12 −45, 5, 34 33
Precuneus 4.05 9, −70, 49 10
Middle/inferior temporal gyrus 4.04 −48, −58, −11 19

Main effect of ideomotor-conflict (incompatible > compatible)
Middle frontal gyrus 5.51 −27, −7, 49 11
Paracentral lobule/precuneus 5.19 −21, −43, 55 14

Note: Inclusion threshold is voxelwise P< 0.001 and cluster extent >10.
t-value = t-value at peak voxel, MNI x, y, z= spatial location of peak activation foci in MNI
coordinates, cluster = cluster size in number of voxels.
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conflict-specific searchlights (mean = 37.4 ± 8.6%) was also
higher than domain-general searchlights (t(19) = 2.4, P < 0.05).
There was no significant difference of proportion between
stimulus- and ideomotor-conflict-specific searchlights
(t(19) = 0.8, n.s.). Thus, unlike at the whole-brain level,
ideomotor-conflict-specific searchlights were more prevalent
than domain-general searchlights in motor cortices, but not
more prevalent than stimulus-conflict-specific searchlights.
Taken together, comparisons of proportions of searchlights
that were successful at decoding conflict–control processes
suggest a preponderance of domain-specific neural substrates
of conflict–control at the individual subject level.

To further ascertain the domain specificity of searchlights
that were classified as domain-specific, stimulus-conflict-
specific searchlights were “retrained” to decode ideomotor-
conflict using “full” ideomotor-classifiers, and vice versa.
Recall that based on the original classification scheme (see
Materials and Methods), stimulus-conflict-specific searchlights
had to display suprathreshold accuracy for both pure and full
stimulus-conflict-classifiers (rule b), and subthreshold accu-
racy for pure ideomotor classifiers (rule a). Yet, the accuracy
of these searchlights for full ideomotor classifiers remains
unknown. Therefore, these searchlights’ stimulus-conflict-
specificity would be further bolstered if they performed at
chance level when retrained with a full ideomotor classifier,
and vice versa. As anticipated, domain-specific searchlights
showed chance-level retrain performance (Fig. 4B). Specifi-
cally, across all 21 subjects, the mean retrain classification
accuracy of using stimulus-conflict-specific searchlights to
decode ideomotor conflict is 49.8 ± 0.2% (t(20) =−1.2, n.s.).
Two subjects had no ideomotor-conflict-specific searchlights
after correcting for multiple comparisons. For the remaining
19 subjects, the retrained ideomotor-conflict-specific search-
lights also showed chance-level performance when decoding
stimulus-conflict (accuracy = 50.1 ± 0.2%, t(18) =−0.6, n.s.).
The chance-level retrain performance clearly supports our

classification of these searchlights as being purely domain
specific rather than being weakly domain general.

Group-Level MVPA Results
The results of the individual subject-level analysis provided
evidence for a predominantly domain-specific organization of
conflict–control in the human brain, but they granted no
information on the anatomical distribution of domain-general
and domain-specific conflict–control searchlights. Thus,
we further pursued a group-level analysis that aimed at
identifying anatomical structures that were consistently
domain-general or domain-specific across subjects. Several
stimulus-conflict-specific and ideomotor-conflict-specific
regions could be identified (P < 0.05, whole-brain corrected).
Stimulus-conflict-specific searchlights were consistently
observed bilaterally in dorsolateral, ventrolateral, and ventro-
medial prefrontal cortices (PFCs), as well as in parietal
and occipito-temporal regions (Fig. 5A and Table 2).
Ideomotor-conflict-specific searchlights, on the other hand,
were found in the rostral anterior cingulate cortex (ACC)
stretching to the head of the caudate, the left lingural gyrus,
the left parahippocampal gyrus, and bilateral calcarine sulci
(Fig. 5A and Table 2). In contrast, we did not detect any
domain-general searchlights that passed whole-brain correc-
tion in this group-level analysis, suggesting that domain-
general conflict–control processes display more anatomical
variability across subjects. We nevertheless pursued an
exploratory analysis to provide hints as to where domain-
general processing may be observed under higher statistical
power (though the results we present necessarily run the risk
of entailing false positives). Figure 5B displays group results
for domain-general searchlights when the cluster-extent
threshold is lowered to >30 voxels (when compared with
a threshold of >82 voxels required for whole-brain
correction at P < 0.05). At this more lenient threshold, poten-
tial domain-general conflict control foci emerged in the most

Figure 5. Group-level MVPA results. (A) Searchlights displaying consistent stimulus-conflict-specificity (in green) and ideomotor-conflict-specificity (in blue) across subjects were
identified using nonparametric statistical tests and corrected for multiple comparison (corrected P<0.05). No domain-general searchlights were found at this statistical criterion.
(B) Exploratory mapping of domain-general searchlights across subjects at a more lenient (not whole-brain corrected) statistical threshold of voxelwise P<0.05 and a cluster
extent of 30 voxels.
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anterior regions of both lateral and medial PFCs, as well as in
extrastriate visual regions of the lateral occipital and the
ventral temporal lobes.

Contrasting Univariate and Multivariate Results
It is interesting to note commonalities and differences
between the multivariate information-based mapping of
conflict-specific control processes (Fig. 5) and the traditional,
mass-univariate maps derived from the main effects contrasts
of stimulus- and ideomotor compatibility (Fig. 3). The MVPA
results concerning regions involved in control over stimulus-
conflict are broadly in agreement with the traditional GLM
results, although they highlight additional regions involved in
stimulus-conflict-specific control that went undetected by the
univariate analysis, most notably the ventromedial PFC. Also
notable is the absence of the dorsal ACC in the MVPA when
compared with the univariate results. The pattern classifier
analysis produced more divergent results from the traditional
approach with respect to regions involved in control over
ideomotor-conflict, where the MVPA results highlight an
ideomotor-conflict-specific involvement of the rostral ACC,
but discount the importance of dorsal premotor and parietal
regions, compared with the mass-univariate results (cf. Figs 5
and 3).

This descriptive comparison across univariate and multi-
variate analyses provokes the question as to whether the
MVPA approach was actually more sensitive in detecting
neural substrates of conflict–control than the univariate analy-
sis in the present study. To gauge the unique contribution of
MVPA to decoding conflict–control processes, we therefore
performed a whole-brain searchlight univariate analysis as
comparison. This univariate analysis was the same as the
whole-brain MVPA, except that, for each searchlight, the
mean of the constituent voxel features was used as the only
feature (rather than their multivariate data patterns). After this
univariate analysis, the top 1% (∼400) of searchlights in terms
of the decoding metrics rps, rpi, rfs, and rfi were averaged to
give their corresponding mean of classification for each split
and each subject. These mean accuracies reflected the sensi-
tivity of decoding conflict–control in the most informative uni-
variate searchlights. These means were then averaged across

all splits for each subject. For the MVPA results, the individual
means were calculated using the same method. Finally, the
individual means of rps, rpi, rfs, and rfi from the univariate
analysis results were compared with their counterparts from
the MVPA results using group-level, paired t-tests. As shown
in Figure 6, compared with the univariate classification
results, MVPA results showed significantly higher mean classi-
fication accuracy for all 4 types of classifiers (rps: MVPA
mean = 0.797 ± 0.003, univariate analysis mean = 0.763 ±
0.003, t(20) = 11.3, P < 1e-9; rpi: MVPA mean = 0.791 ± 0.003,
univariate analysis mean = 0.755 ± 0.003, t(20) = 13.5,
P < 1e-10; for rfs: MVPA mean = 0.716 ± 0.002, univariate
analysis mean = 0.695 ± 0.002, t(20) = 10.5, P < 1e-7; rfi:
MVPA mean = 0.712 ± 0.002, univariate analysis mean =
0.685 ± 0.002, t(20) = 10.9, P < 1e-8). Additionally, for all
types of classifiers and all subjects, mean classification accu-
racies from MVPA were unanimously higher than their cor-
responding accuracies from univarate analysis. These results
verify unequivocally that MVPA was more sensitive in de-
coding conflict–control processes than standard, univariate
analyses.

ROI-Based Results
The analyses above assessed the degree of domain generality/
specificity across the whole brain. In addition, we applied this
analysis to brain regions involved in representing the
task-relevant stimulus features, that is, face stimuli. This is of
particular interest in the present context, because modular
models of conflict–control have claimed that control over
stimulus-conflict involves biasing the percetual representation
of relevant stimulus features, whereas control over ideomotor-
conflict does not (Egner et al. 2007; Egner 2008). Thus, ROIs
representing bilateral FFAs were defined using an indepen-
dent localizer task (Fig. 7A, see Materials and Methods).
These ROIs were subsequently tested for domain generality/
specificity using ROI mean z-scores at the group level. Data
from the left FFA did not allow us to decode conflict–control
of any kind above chance level (domain generality: mean =
0.05 ± 0.07, t(20) = 0.7, n.s.; stimulus-conflict-specificity:
mean = 0.10 ± 0.11, t(20) = 1.0, n.s.; ideomotor-conflict-specificity:
mean = 0.08 ± 0.07, t(20) = 1.0, n.s.). In contrast, the right FFA
displayed significant stimulus-conflict-specificity (mean = 0.34 ±
0.09, t(20) = 3.9, P < 0.001, Fig. 7B), whereas the domain general-
ity (mean = 0.09 ± 0.09, t(20) = 1.0, n.s.) and ideomotor-conflict-
specificity (mean =−0.05 ± 0.09, t(20) = 0.5, n.s.) were at chance
level. These results show that, in the present task, where face

Table 2
Multivariate effects of control over stimulus- and ideomotor-conflict

Region t-value MNI Cluster

Stimulus-conflict-specific regions
Orbital gyrus/medial frontal gyrus 5.24 9, 56, −20 343
Hippocampus/parahippocampal gyrus 4.90 −21, −16, −29 97
Superior/middle frontal gyrus 4.63 12, 65, 25 678
Middle occipital gyrus/fusiform gyrus 4.53 30, −82, 28 829
Superior/middle frontal gyrus 4.27 −24, 56, 25 129
Inferior frontal gyrus/insula 3.73 −36, 17, 1 134
Cuneus/precuneus 3.65 6, −82, 31 144
Middle temporal gyrus/putamen 3.38 −36, −19, 1 87

Ideomotor-conflict-specific regions
Calcarine sulcus 4.94 24, −70, 13 102
Lingural gyrus/parahippocampal gyrus 4.02 −30, −58, −5 131
Calcarine sulcus 3.68 −15, −76, 16 90
Caudate/anterior cingulate cortex 3.14 −21, 23, 4 83

Note: Inclusion threshold is a combined voxel- and cluster-based P< 0.05, corrected for multiple
comparisons.
t-value = t-value at peak voxel, MNI x, y, z= spatial location of peak activation foci in MNI
coordinates, cluster = cluster size in number of voxels.

Figure 6. Comparison between univariate and multivariate analyses in decoding
conflict–control. Mean classification accuracy (+MSE) of each subject’s top 1%
accurate searchlights is shown for each type of classifier and each type of analysis
(MVPA vs. univariate).
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stimuli served as task-relevant stimulus features, the (right) FFA
is selectively involved in conflict–control in the stimulus domain,
but carries no information concerning conflict–control in the
ideomotor domain.

Discussion

We harnessed a multivariate, information-based brain
mapping approach (Haxby et al. 2001; Haynes and Rees
2006; Kriegeskorte et al. 2006; Norman et al. 2006) to assess
the domain specificity of conflict–control. Specifically, we
delineated brain regions that carry diagnostic information
about stimulus- (or ideomotor-) conflict–control processes,
as defined by above-chance success at distinguishing the
processing of stimulus- (or ideomotor-) compatible from
-incompatible trials and quantified the incidence of regions
(searchlights) that were able to decode only stimulus- or
ideomotor-conflict–control (domain-specific processors) and
those that were able to decode both types of conflict–control
processes (domain-general processors). This MVPA approach
overcomes several key limitations of the previous, (mass-) uni-
variate fMRI studies in this area (see Introduction).

At the level of behavioral and univariate fMRI data analyses,
our study replicated basic findings from the prior literature,
producing independent behavioral effects of stimulus- and
ideomotor-conflict (Fig. 1B), accompanied by (threshold-
dependent) distinct as well as shared regional brain activity
detected in conventional, univariate fMRI analyses (Fig. 3).
Using MVPA, we also established the following, novel find-
ings, which we will discuss in turn: (1) In each subject, many
searchlights were observed that could successfully (above
chance, and corrected for multiple tests) decode stimulus- and
ideomotor-conflict, with a preponderance of domain-specific
searchlights, especially those involved in stimulus-conflict–
control (Fig. 4). (2) Whereas neural substrates involved in
domain-specific conflict–control processes were anatomically
consistent across participants, those pertaining to domain-
general conflict–control were much less so (Fig. 5). (3) The
multivariate information contained in the searchlights
was superior in decoding conflict–control than that entailed
by univariate, single voxels alone (Fig. 6), and the former
identified some brain regions containing information about
conflict–control processes that differed from those identified
in traditional analyses (cf. Figs 3 and 5). (4) An ROI analysis

focusing on the FFA (as supporting task-relevant stimulus rep-
resentation) showed that this region was involved in conflict–
control over stimulus-conflict, but not in ideomotor-conflict
(Fig. 7).

The results of the within-subjects classification analysis
suggest that, rather than being entirely domain general or
domain specific, conflict–control in the human brain entails
both specialized, domain-specific aspects and shared,
domain-general processes. This is in line with results from
some prior univariate fMRI studies (Milham et al. 2001; Fan
et al. 2003; Liu et al. 2004; Kim et al. 2010, 2011), but not
with others (Peterson et al. 2002; van Veen and Carter 2005;
Liston et al. 2006; Egner et al. 2007). Given the theoretical
advantages of the MVPA approach highlighted in the Intro-
duction, and the empirical demonstration in the current paper
that the multivariate analysis was superior to the univariate
approach in decoding conflict–control processes, we would
argue that the present results represent the strongest evidence
for a “hybrid” architecture of domain-specific and domain-
general conflict–control mechanisms to date.

Within this framework of mixed modular and global con-
flict–control, however, domain-specific substrates were con-
siderably more pronounced (and anatomically reliable) than
domain-general ones. This suggests that distinct conflict–
control adaptations have evolved to selectively deal with the
challenges of competing representations in different proces-
sing pathways. A key advantage that a partly modular or de-
composable architecture of control processes confers over
centralized control is that it can adapt to changing environ-
mental pressures more flexibly and rapidly than a nonmodu-
lar system, while at the same time granting greater robustness
against catastrophic systemic dysfunction through mutation,
injury, or disease (Simon 1962; Meunier et al. 2010).

Interestingly, in neuroanatomical terms, the mesh of
domain-general and domain-specific processors we observed
does not necessarily map onto the traditional idea of modular
processing in peripheral, sensory cortices combined
with central, nonmodular processes in multimodal association
cortices (Fodor 1983; Dehaene et al. 1998). Rather, the
present data documented a number of domain-specific con-
flict–control regions even in the PFC, with stimulus-
conflict-specific information detected in many regions of
lateral PFC, and ideomotor-conflict-specific information in the
rostral ACC. Conversely, the exploratory (not whole-brain cor-
rected) group maps of domain-general conflict–control did
not exclusively highlight anterior PFC regions, but also pos-
terior regions of the ventral and dorsal visual stream. Taken
together, these results argue against a strict mapping of
domain-general control processes purely onto fronto-parietal
association cortices (Duncan and Owen 2000; Dosenbach
et al. 2006; Niendam et al. 2012) and of domain-specific pro-
cesses solely onto unimodal sensory regions (Fodor 1983).

The specifics of the anatomical distribution of domain-
specific and -general searchlights deserve some additional dis-
cussion. First, the mere fact that the loci of domain-general
processors in our sample appeared to be much less consistent
across subjects than those of domain-specific ones may hint at
an interesting organizational feature of high-level cognition.
Specifically, one could speculate that the very flexibility,
which allows certain broad cortical regions to integrate and
abstract over multiple sources of information, renders them
more heterogeneous in terms of function-to-subregion

Figure 7. FFA MVPA results. Bilateral group FFA ROIs were defined using an
independent localizer task. Within those ROIs, for each subject indices of domain
generality, stimulus-conflict-specificity, and ideomotor-conflict-specificity were
generated and z-transformed and averaged to produce individual ROI z-scores. (A)
The spatial location of the group FFA ROIs. (B) Mean group z-scores (+MSE) of
domain generality, stimulus-conflict-specificity, and ideomotor-conflict-specificity of
the right FFA (rFFA, MNI coordinates = [45, −52, −17]). *P<0.001.
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mapping than areas concerned only with one particular
domain of processing. While our group results on domain-
general conflict–control regions have to be interpreted tenta-
tively (due to lenient thresholding), the emergence in particular
of frontopolar cortices in this analysis may represent a parallel
to previous studies and models that have emphasized a role for
regions at the apex of the PFC in the most abstract and integra-
tive forms of controlled processing (Koechlin et al. 2003; Sakai
and Passingham 2003; Badre 2008).

Second, it is noteworthy that the MVPA results at times di-
verged quite markedly from the univariate group maps. The
differences observed between the univariate and multivariate
group analyses were quite robust to changes in statistical
thresholding. Even when running the MVPA group analyses
at substantially more lenient cluster-size thresholds, we did
not observe substantially greater similarity between the uni-
variate and multivariate group results (data not shown).
Notable distinctions with respect to stimulus-conflict-specific
foci include the absence of the dorsomedial PFC and dorsal
ACC in the MVPA data, and conversely the addition of ventro-
medial PFC. The former is intriguing vis-à-vis the frequent
findings of mean signal enhancements in dorsal ACC in
response to conflict (Botvinick et al. 2004; Ridderinkhof et al.
2004) and may cast tentative doubt on whether this region
should be thought of as having a specific role in conflict pro-
cessing (see also Alexander and Brown 2011; Grinband et al.
2011). The latter finding, of ventromedial PFC involvement in
conflict–control in the stimulus domain, is also surprising.
However, it is plausible that this involvement stems from the
fact that the target stimuli in our task were faces. The ventro-
medial PFC has for some time been thought to belong to a
network of regions that contribute to face processing (Sum-
merfield et al. 2006; Ishai 2008), and this area has in fact been
found to be highly face sensitive in the FFA localizer in the
present paper (data not shown). In line with this interpret-
ation, the present information-based analysis of FFA activity
also showed a selective involvement in the control over
stimulus-conflict, thus corroborating previous findings and
proposals suggesting that this type of conflict–control should
indeed involve sensory regions specialized in the processing
of the task-relevant stimulus features (Egner and Hirsch 2005;
Egner et al. 2007; Egner 2008). Note that it is probable that
other brain regions would be involved, in particular in control
over stimulus-conflict, if other types of visual (or even audi-
tory) stimuli were employed as target or distracter features.

Thirdly, the group MVPA results concerning key regions
bearing information about ideomotor-conflict–control were
particularly divergent from the present (and previous) uni-
variate fMRI results: While the latter have typically implicated
parietal and premotor regions (e.g. Egner et al. 2007), the
present MVPA results highlight primarily the rostral ACC,
head of caudate, and ventral visual stream regions, including
the parahippocampal gyrus. Given the assumption that
ideomotor-conflict should primarily be detected and resolved
in regions involved in motor planning and execution (Sturmer
et al. 2002; Sturmer and Leuthold 2003; Egner et al. 2007;
Egner 2008), these findings are, at first blush, surprising.
Closer inspection of the rostral ACC territory implicated in
ideomotor-conflict–control in the present study (Fig. 5A),
however, suggests that this cluster stretches dorso-caudally
into the anterior rostral cingulate motor zone (Picard and
Strick 2001), which is thought to be involved in the detection

of response conflict (Botvinick et al. 1999; Picard and Strick
2001). Moreover, the involvement of the rostral ACC in
control over ideomotor-conflict has an intriguing precedent in
findings from recent lesion studies, where control over
ideomotor-conflict (in a Simon task), but not over stimulus-
conflict (in a Stroop task), was found to be impaired follow-
ing damage to the rostral ACC (di Pellegrino et al. 2007; Maier
and di Pellegrino, 2012). Similarly, the head of the caudate
has been implicated in motor control generally, and in the
inhibition of prepotent responses in particular (Vink et al.
2005; Li et al. 2008), an operation that would clearly be
highly compatible with the involvement of this region in
control over ideomotor-conflict. However, the fact that
regions of the ventral and dorsal visual streams also entailed
information regarding ideomotor-conflict–control (Fig. 5A) is
certainly not in line with a pure motor-system account of how
this conflict is generated and resolved.

In closing, one might want to speculate what form
the hybrid domain-general/domain-specific conflict–control
mechanisms suggested by the present results might take at
the level of cognitive or computational architecture. The
current data are not incompatible with the basic idea that con-
flict–control is sub-served by a feedback loop consisting of a
mechanism that detects the occurrence of conflict and sub-
sequently triggers the reinforcement of top-down biasing pro-
cesses comprising the ongoing task set, thus resolving
conflict (Botvinick et al. 2001); however, they necessitate the
added assumption that multiple, partly dissociable conflict–
control loops exist in parallel (Egner 2008). On the other
hand, the present data also document some domain-general
processing. This may be reflective of some form of central re-
source, such as attention, that imposes constraints on the
kinds and amount of controlled information processing that
can be carried out in parallel (Kahneman 1973; Vergauwe
et al. 2010). One way to reconcile these findings of partly
domain-general and partly (or perhaps mostly) domain-
specific resources for conflict–control would be to assume
that the detection and resolution of conflict in sensory and
motor pathways might be relatively “auxiliary” to this central
resource. Corollary data supporting this view comes from
studies, showing that adjustments in conflict processing can
occur in the absence of awareness both of the conflict (van
Gaal et al. 2010) and of the adjustment process itself (Crump
et al. 2008).

One possible sketch for such a hybrid executive processing
architecture could be that a central, domain-general resource
(e.g. attention) is required for setting up and operating a task
set (e.g. “categorize faces according to gender; ignore word
labels; if male face, press right button; if female face, press
left button”), but that the various sensory and motor pathways
that are being biased by this task-set are protected by auxili-
ary conflict adaptation mechanisms that rely largely on
domain-specific, peripheral resources. By this view, different
conflict–control loops would be anatomically independent
and not interfere with each other, as supported in part by the
present data set and prior behavioral studies (Simon and
Berbaum 1990; Kornblum 1994; Wendt et al. 2006; Egner
et al. 2007; Funes et al. 2010). However, they would neverthe-
less be affected by changes or challenges to the task set itself,
such as its reconfiguration during task-switching, or a strong
challenge to the task set maintaining central resource pool.
There is evidence to support both of these contentions, as
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conflict–control has indeed been shown to interact antagon-
istically with task switching (Goschke 2000; Brown et al.
2007), and to be attenuated by high demands on central pro-
cessing in dual task settings (Fischer et al. 2008). While con-
cordant with findings in the literature to date, this lose
proposal of conflict–control loops as task-set protection mech-
anisms auxiliary to more central processes that govern
task-set content clearly requires future computational elabor-
ation and empirical corroboration.

In conclusion, we employed an information-based brain
mapping approach to quantify and map the relative contri-
butions of conflict-specific and conflict-general control mech-
anisms in the human brain. We document that stimulus- and
ideomotor- conflict–control processes can be successfully
decoded with neural pattern classifiers, and that the brain
regions bearing the discriminating information for this classi-
fication are organized primarily in a domain-specific manner,
but also include domain-general processors. These data
suggest a hybrid architecture of both modular and centralized
cognitive control mechanisms.
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