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The human brain encodes experience in an integrative fashion by binding together the various features of an event (i.e., stimuli and
responses) into memory “event files.” A subsequent reoccurrence of an event feature can then cue the retrieval of the memory file to
“prime” cognition and action. Intriguingly, recent behavioral studies indicate that, in addition to linking concrete stimulus and response
features, event coding may also incorporate more abstract, “internal” event features such as attentional control states. In the present
study, we used fMRI in healthy human volunteers to determine the neural mechanisms supporting this type of holistic event binding.
Specifically, we combined fMRI with a task protocol that dissociated the expression of event feature-binding effects pertaining to concrete
stimulus and response features, stimulus categories, and attentional control demands. Using multivariate neural pattern classification,
we show that the hippocampus and putamen integrate event attributes across all of these levels in conjunction with other regions
representing concrete-feature-selective (primarily visual cortex), category-selective (posterior frontal cortex), and control demand-
selective (insula, caudate, anterior cingulate, and parietal cortex) event information. Together, these results suggest that the hippocam-
pus and putamen are involved in binding together holistic event memories that link physical stimulus and response characteristics with
internal representations of stimulus categories and attentional control states. These bindings then presumably afford shortcuts to
adaptive information processing and response selection in the face of recurring events.

Introduction
Human cognition is strongly conditioned by recent experi-
ence—we are better at perceiving, and faster to respond to, stim-
uli that resemble recent observations than those that do not
(Pashler and Baylis, 1991; Cheadle et al., 2014; Fischer and Whit-

ney, 2014). These “priming” effects likely represent adaptations
to an environment of high temporal autocorrelation in which our
experience at one moment strongly predicts stimulation at the
next moment (Dong and Atick, 1995). Research into such short-
term sequential dependencies in behavior suggests that the cog-
nitive apparatus binds together the various features of our
experience, integrating different physical attributes of stimuli
(Treisman and Gelade, 1980), as well as actions performed in
response to those stimuli, into memory “event files” (Hommel,
1998, 2004). A proximate reoccurrence of one or more of these
event features then appears to activate (or prompt the retrieval
of) the prior event memory, presumably to serve as a potential
shortcut for fast, appropriate responses to recurring stimuli or
events (Logan, 1988).

Interestingly, recent work suggests that this type of mnemonic
event coding may extend beyond the binding of concrete, observ-
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Significance Statement

Memory binds together the different features of our experience, such as an observed stimulus and concurrent motor responses,
into so-called event files. Recent behavioral studies suggest that the observer’s internal attentional state might also become
integrated into the event memory. Here, we used fMRI to determine the brain areas responsible for binding together event
information pertaining to concrete stimulus and response features, stimulus categories, and internal attentional control states.
We found that neural signals in the hippocampus and putamen contained information about all of these event attributes and could
predict behavioral priming effects stemming from these features. Therefore, medial temporal lobe and dorsal striatum structures
appear to be involved in binding internal control states to event memories.

The Journal of Neuroscience, November 4, 2015 • 35(44):14885–14895 • 14885



able stimulus and response characteristics to also include more
abstract features such as stimulus categories (Goschke and Bolte,
2007) and, most notably, concurrent internal states such as atten-
tional control settings (for review, see Egner, 2014). Therefore, a
physical event feature such as stimulus location or color can be-
come associated with an internal cognitive state such as a partic-
ular task set (Waszak et al., 2003; Crump and Logan, 2010) or
level of attentional selectivity (Crump et al., 2006; Spapé and
Hommel, 2008; Crump and Milliken, 2009; Heinemann et al.,
2009; Bugg et al., 2011; King et al., 2012) such that future presen-
tation of the feature in question can come to prime the retrieval of
the associated attentional set (Verguts and Notebaert, 2009). For
example, the sight of a particular intersection on your daily com-
mute could come to trigger the retrieval of a heightened atten-
tional focus that you previously had to engage when navigating
that junction.

However, whereas neural concomitants of basic stimulus–re-
sponse event binding have been investigated previously (Keizer et
al., 2008; Kühn et al., 2011), the neural mechanisms underlying
the integration of concrete, observable event characteristics such
as specific stimuli and responses with more abstract (generaliz-
able), internal event features such as control states are presently
not well understood. It has been speculated that this process
might be supported by the hippocampus, which could rapidly
integrate diverse event features through interactions with other
brain regions that selectively encode concrete, categorical, and
control demand aspects of events along a posterior-to-anterior
anatomical gradient in which the bindings of more abstract fea-

tures occur in more anterior regions (Egner, 2014). This pro-
posal, however, remains untested.

Here, we sought to elucidate how concrete and abstract event
features are integrated by exploiting the well known congruency
sequence effect (CSE) (Gratton et al., 1992), which, depending
on the specifics of the experimental design, can be driven by
(mis-)matching stimulus and response features and/or (mis-)
matching attentional states over successive trials (for reviews, see
Egner, 2007; Duthoo et al., 2014). Specifically, we combined
fMRI with a novel CSE protocol that could dissociate the ex-
pression of priming effects from event information pertaining
to concrete stimulus and response features, stimulus catego-
ries, and attentional control demands (Fig. 1). This paradigm,
combined with searchlight multivoxel pattern analysis (MVPA)
(Kriegeskorte et al., 2006) and multivariate brain– behavior
correlation analyses, allowed us to characterize commonalities
and differences in the neural substrates of event integration as
a function of event features at levels of abstraction ranging
from physical stimulus characteristics to internal control
states.

Materials and Methods
Subjects. Twenty-nine right-handed volunteers gave informed consent in
accordance with institutional guidelines. All subjects had normal or
corrected-to-normal vision. Four subjects were excluded from further
analysis (two stopped responding during the task and two had excessive
head movement during scanning). The final sample consisted of 25 sub-
jects (14 females, 22–37 years old, mean age � 28 years).

Figure 1. Event-file-priming framework and task design. A, Schematic illustration of the event file memory-matching framework in the context of the current task. Physical, categorical, and
internal (attentional state) event features are bound together into an event file (trial N ). In trial N � 1, any features matching the previous trial event file will cue the retrieval of that file; the exact
feature matching relationship (e.g., partial match vs complete match) will determine whether this process speeds or slows responses. B, Time course of an example incongruent trial and response
mapping (correct response is in green). C, Example trial sequence conditions: congruency-priming sequence (left): a congruent trial is followed by another congruent trial in the absence of any
concrete stimulus feature repetitions, representing a match of features at the most abstract (congruency or control state) feature level; category-priming sequence (middle): a trial with left-oriented
arrows and face is followed by another trial with left-oriented arrows and face, but of differing identities, representing a repetition at the category (direction) level; identity-priming sequence (right):
two physically identical target-distracter ensembles appear successively, representing a complete repetition at the most concrete, identity feature level.
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Apparatus and stimuli. Stimulus delivery and behavioral data collec-
tion were performed using Presentation software (http://www.neurobs.
com/). Stimuli consisted of eight gray-level photographs of unique male
faces and eight unique arrow ensembles. The face stimuli were adopted
from Weidenbacher et al. (2007). The arrows appeared in a stack of 3 to
cover approximately the same area as the faces (subtending �3° of hor-
izontal and 4° of vertical visual angle). The faces/arrows faced/pointed
up, down, left, or right (two unique faces and arrow identities for each
direction). The stimuli were presented against a gray background in the
center of a back projection screen, which was viewed via a mirror at-
tached to the scanner head coil.

Procedure. A trial started with the presentation of a stationary arrow
stack for 133 ms, followed by a blank screen for 333 ms and then a face for
250 ms (see Fig. 1B). The trials were separated by jittered intertrial inter-
vals (ITIs) ranging from 3 to 5 s in uniformly distributed steps of 500 ms,
during which a blank screen was shown. Subjects performed a speeded
button response to the direction of the face stimulus (target) while trying
to ignore the task-irrelevant arrows (distracter). The up, down, left, and
right responses were made with the right middle finger, right index fin-
ger, left middle finger, and left index finger, respectively. Responses were
collected using two MRI-compatible button boxes (one for each hand)
placed perpendicular to each other to form an intuitive response map-
ping (see Fig. 1B). Subjects completed a practice run before entering the
MRI scanner to ensure that they comprehended the task requirements.
The task consisted of 10 runs, each of which included 65 trials presented
in a pseudorandomized order.

Defining different levels of event feature priming in the CSE. In our task,
a trial could be either congruent or incongruent depending on whether
the target face and distracter arrows pointed in the same or opposite
directions. We expected responses to incongruent trials to be slower and
more error prone than those to congruent trials, reflecting the classic
congruency effect (e.g., MacLeod, 1991). In addition, this type of task
produces a reliable CSE in which the congruency effect tends to be re-
duced on trials that follow an incongruent trial compared with those that
follow a congruent trial (Gratton et al., 1992; for a review, see Egner,
2007) and, importantly, this effect can involve the expression of feature
learning (or priming) at different levels of abstraction (Duthoo et al.,
2014; for review, see Egner, 2014). Note that we use the term “priming”
here as a convenient shorthand for any effects of recent experience with-
out theoretical commitment to the implicit nature of these effects.

First, based on the idea that stimulus and response features get bound
together into event files, the CSE can reflect the degree of overlap between
the physical current and previous trial stimulus and response attributes
(Mayr et al., 2003; Hommel, 2004). In the context of the present task, a
complete overlap at this level corresponds to a repetition of the exact face
and arrow stimuli over two consecutive trials. Complete repetitions and
complete changes of stimulus and response features across consecutive
trials lead to relatively fast responses, whereas “partial repetitions,” in
which some trial features (e.g., the distracter) repeat whereas others (e.g.,
the target and response) change, slow responses. This slowing occurs
because the repeated feature cues the retrieval of the other associated
event features from the previous trial, which are, however, unhelpful as a
shortcut to the correct response. By contrast, in complete repetition tri-
als, the primed event file is an appropriate shortcut and, in complete
change trials, the previous trial event is not being cued in the first place,
thus not incurring the “unbinding cost” of a partial memory match
(Hommel, 2004).

The reason that this priming of concrete event features can produce
the CSE is illustrated by the following example: consider a typical con-
gruency task with a small stimulus set of two targets (T1, T2) and two
distracters (D1, D2), with the combinations T1D1 and T2D2 represent-
ing congruent stimuli and T1D2 and T2D1 representing incongruent
stimuli. As noted above, complete repetitions (e.g., from T1D1 to T1D1
or T1D2 to T1D2) and complete changes (e.g., from T1D1 to T2D2 or
T1D2 to T2D1) of stimulus features across trials will result in relatively
fast responses, but these trials also happen to always be associated with a
repetition of congruency. In other words, because each stimulus has a
50% chance of repetition, successive congruent trials (cC trials) and
incongruent trials (iI trials) will consist of 50% complete repetitions and

50% complete changes. Conversely, slow partial repetition trials (e.g.,
from T1D1 to T1D2 or from T1D2 to T2D1) will always be associated
with changes in congruency (cI and iC trials). Given this scenario, con-
crete event feature priming renders cC and iI trials faster compared with
cI and iC trials, which results in the characteristic CSE pattern of smaller
mean congruency effects after an incongruent trial than after a congruent
trial (Mayr et al., 2003; Hommel, 2004).

Second, it has been suggested that the same mechanisms operate at the
level of stimulus categories (Schmidt, 2013) in which target and dis-
tracter stimulus categories can become associated with specific responses
and are therefore subject to benefits under complete repetitions (or
changes) and costs under partial repetitions (Goschke and Bolte, 2007,
but see Hommel and Müsseler, 2006). In the present task, this would
correspond, for example, to deriving a benefit from the direction (e.g.,
left), but not the physical identities, of arrows and faces being repeated
across trials.

Third, crucially, it has also been demonstrated that the CSE can be an
expression of trial-to-trial matching of internal control states rather than
particular stimulus–response features. Specifically, one can design a con-
gruency task in a manner that avoids any concrete event feature repeti-
tions across trials but still obtain a robust CSE (Kunde and Wuhr, 2006;
Schmidt and Weissman, 2014; Weissman et al., 2014). In this scenario,
the behavioral benefit derived from congruency repetitions presumably
occurs due to a learning process at the level of attentional or control state.
Specifically, an incongruent trial requires the resolution of conflict cre-
ated by the incongruent distracter and is thus thought to engage control
processes such as the enhancement of attentional focus on the target
stimulus (Egner and Hirsch, 2005) and/or the suppression of the re-
sponse that is cued by the distracter (Ridderinkhof, 2002). Recruitment
of these control states is thought to prime the same kind of control
settings for the subsequent trial, thus leading to a relatively suppressed
influence of distracters on performance (i.e., a smaller congruency ef-
fects) after an incongruent compared with a congruent trial (Gratton et
al., 1992; Botvinick et al., 2001).

Dissociating different levels of event feature priming in the present task.
The basic premise behind our task design is that all event features—
physical, categorical, and attentional—are bound together on each trial
(see Fig. 1A), but their respective impact on processing during the sub-
sequent trial (i.e., their “expression”) is determined by the degree of
overlap (i.e., match/mismatch) of concrete, categorical, and control de-
mand features across the two trials. Note that we focus on first-order trial
sequences, but not because we believe that event-binding effects only
occur at short latencies. On the contrary, we assume that mnemonic
event feature matching effects can occur cumulatively and over much
longer periods of time (Logan, 1988). However, consistent with much of
the previous empirical feature integration literature (Hommel, 1998,
2004), we also assume that the most recently encoded event file (of the
previous trial) will be the most accessible and influential in affecting
feature matching on the current trial. Moreover, the present design iso-
lates these short-term effects of event feature binding from possible con-
tamination by longer-term effects by carefully controlling for any
additional predictive associations between event features, as described
below. The task was therefore designed to produce three types of distinct
first-order priming conditions in which the expression of event feature
priming varied systematically as a function of feature level. To this end,
we used three first-order sequence conditions (Fig. 1C): (1) the identities
and orientation of face and arrow stimuli switched to another axis (e.g.,
from vertical to horizontal) from the previous trial (congruency–prim-
ing trial); (2) the axis of direction remained the same as in the previous
trial (i.e., the direction was either the same or reversed), but both the
identities of the face target and arrow distracter changed from the previ-
ous trial (category-priming trial); and (3) the identity of the face and/or
arrows may repeat from the previous trial (identity-priming trial). Note
that the label attached to each sequence type indicates the most concrete
(rather than the only) level of trial feature in which matching between the
previous and current trial could mediate behavior. In the congruency-
priming condition, the CSE can only be due to congruency-level priming
because both the directions and identities of the stimuli changed. In the
category-priming condition, the CSE can be modulated by congruency-
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and category-level priming because identities of the face and arrows
changed but the category (axis) remained the same. Finally, in the
identity-priming condition, all three levels of priming can mediate the
CSE. Because the CSE in each sequence condition is attributable to a
unique combination of the three levels of priming, these three levels can
be dissociated in our design. The numbers of congruency-priming,
category-priming, and identity-priming trials in each scan run were 32,
16, and 16, respectively (excluding the first trial of the run due to the
lack of a previous trial). The cC and iI trials in both the category-
priming and identity-priming conditions also included eight com-
plete change trials (i.e., the directions of both the face and the arrows
were reversed) to balance the proportion of congruency for the stim-
uli (see below).

To rule out the possibility that a particular physical stimulus feature
would predict congruency and thus confound congruency-level priming,
each stimulus (face and arrows) appeared in four congruent and four
incongruent trials in each run (excluding the first trial). This constraint
also eliminated the potential confound of a particular distractor predict-
ing responses (Schmidt, 2013) because, for each arrow, the number of
responses in the same and in the opposite direction were identical. Fi-
nally, note that the stimuli involved in each of the three sequence condi-
tions all derive from the same stimulus set such that there were no basic
perceptual differences between conditions. In sum, to study the expres-
sion of event-binding effects at different levels of abstraction, we used a 3
(sequence condition: congruency priming, category priming, and iden-
tity priming) � 2 (previous congruency: congruent, incongruent) � 2
(current congruency: congruent, incongruent) factorial design. Across
the 10 scanning runs, the numbers of trials for each previous congru-
ency � current congruency combination (i.e., cC, cI, iC, iI) were 80, 40,
and 40 for the congruency-priming, category-priming, and identity-
priming sequence conditions, respectively. All congruency-priming tri-
als were complete change trials at both category and identity levels. In
category-priming and identity-priming conditions, the cC and iI trials
consisted of 50% complete repetition trials and 50% complete change
trials (at the category and identity level, respectively), whereas the iC and
cI trials consisted of 100% partial repetition trials (at the category and
identity level, respectively), creating the standard conditions for the CSE
to emerge as an expression of stimulus and response feature integration
(Hommel, 2004).

Behavioral data analyses. Reaction times (RTs) were analyzed using a
repeated-measures 3 (sequence condition) � 2 (previous congruency) �
2 (current congruency) ANOVA. Error trials, posterror trials, and outlier
trials (i.e., RT values that deviated �3 SDs from an individual subject’s
grand mean) were excluded from further analyses. In addition, the CSE
of RT (i.e., previous � current congruency interaction, or [cI � iC �
cC � iI]) was computed for each subject and each sequence condition.
The sequence-condition-specific CSEs were compared with 0 using a
two-tailed, one-sample t test. The difference of RT in complete repetition
trials between category-priming and identity-priming conditions was
tested using a two-tailed, paired t test. Accuracy approached ceiling (M �
97%) and thus was not analyzed any further.

Image acquisition and preprocessing. Images were acquired parallel to
the AC–PC line on a 3 T GE scanner. Structural images were scanned
using a T1-weighted SPGR axial scan sequence (146 slices, slice thick-
ness � 1 mm, TR � 8.124 ms, FoV � 256 mm � 256 mm, in-plane
resolution � 1 mm � 1 mm). Functional images were scanned using a
T2*-weighted sense spiral sequence of 39 contiguous axial slices (slice
thickness � 3 mm, TR � 2 s, TE � 28 ms, flip angle � 90°, FoV � 192
mm � 192 mm, in-plane resolution � 3 mm � 3 mm). Functional data
were acquired in 10 runs of 156 images each. Preprocessing was done
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). After discarding the
first five scans of each run, the remaining images were realigned to their
mean image and corrected for differences in slice-time acquisition. Each
subject’s structural image was coregistered to the mean functional image
and normalized to the Montreal Neurological Institute template brain.
The transformation parameters of the structural image normalization
were then applied to the functional images. Normalized functional
images were kept in their native resolution and then smoothed by a

Gaussian kernel with 5 mm full width at half maximum to increase
signal-to-noise ratio (Xue et al., 2010).

Task model. These smoothed images were then used in conjunction
with a task model to estimate activation levels for each experimental
condition. The task model consisted of event-based regressors represent-
ing the onsets of trials in each of the 12 conditions of the factorial design,
along with four nuisance regressors representing the onsets of each type
of excluded trial (error trials, posterror trials, outlier trials, and the first
trial of each run). This task model was then convolved with SPM8 ’s
canonical hemodynamic response function. The convolved task model
was appended by regressors representing head motion parameters and
the grand mean of the run (to remove the run-specific baseline signal) to
form a design matrix against which the smoothed functional images were
regressed, resulting in model estimates for each of the first 12 regressors.
Finally, for each subject and each sequence condition, two contrasts
(cI � cC and iI � iC) were applied to the model estimates across runs,
producing 6 (3 sequence conditions � 2 previous congruency) neural
congruency effects (i.e., the t values of these contrasts) at every gray
matter (GM) voxel defined in the segmented SPM T1 template (dilated
by 1 voxel). These neural congruency effects were normalized within
each voxel to remove individual baseline variance for the intersubject
multivariate analysis (see below).

Multivariate classification analyses. To locate brain regions that are
either commonly or selectively involved in the expression of the different
levels of event priming that contribute to the CSE, we conducted a mul-
tivariate decoding analysis (see Fig. 3B) with a searchlight strategy
(Kriegeskorte et al., 2006) that scanned through spheres of GM voxels
(searchlight radius � 3 voxels). Because the CSE is expressed as the
modulation of previous-trial congruency on the current-trial congru-
ency effect, this analysis aimed to distinguish fMRI activation pat-
terns of postcongruent congruency effects (i.e., cI � cC) from
activation patterns of postincongruent congruency effects (i.e., iI � iC)
for each type of sequence (identity-priming, category-priming, and
congruency-priming) using linear support vector machines. Note that,
although another intuitive way of testing category- and identity-level
priming would be to distinguish cC � iI (complete repetition and com-
plete change trials) from cI � iC (partial repetitions), this contrast is
equivalent to our classification of cI � cC vs iI � iC (by shifting cC and iC
to the other class) given that linear classifiers were used in the analyses. In
addition, our subtraction-based congruency effects removed activity re-
lated to nuisance processes (e.g., motor activity) and thus allowed for
more accurate regression to isolate each level of priming (see below).

The MVPA was performed in an intersubject manner using a leave-
one-out (LOO) cross-validation approach: the classifiers were trained on
the data from 24 subjects and tested on the data from the remaining
subject. The training and testing iterated until each subject served as test
subject once. As a result, for each level of priming, a classification accu-
racy map was computed in which each GM voxel represented the classi-
fication accuracy from the LOO cross-validation of the searchlight
centered at that voxel. Compared with within-subject MVPA, this
analysis imposed an additional constraint that the activation patterns
that represent priming effects are similar across subjects, thus creat-
ing a more rigorous (and generalizable) test of the functional map-
ping between cognitive processes and specific brain regions (Jiang et
al., 2013).

To assess the decoding performance of congruency-level priming,
neural congruency effects (postcongruent vs postincongruent) from the
congruency-priming sequence condition were classified. For the other
two sequence conditions, priming levels that are not uniquely expressed
in one particular sequence types were dissociated by filtering out neural
activity related to other priming levels using linear regression. Specif-
ically, category-level priming was tested by classifying the category-
priming condition’s neural congruency effects (postcongruent vs
postincongruent) after they had been regressed against both neural con-
gruency effects (postcongruent and postincongruent) from the
congruency-priming condition to remove possible confounds from
congruency-level priming (see Fig. 3C). Similarly, neural congruency
effects (postcongruent vs postincongruent) from the identity-priming
condition were regressed against neural congruency effects from the
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other two sequence conditions and were then classified to test identity-
level priming (see Fig. 3C).

To locate brain regions that selectively express priming effects at a
particular event feature level, the classification accuracy maps for each
feature level were compared with the classification accuracy maps of each
of the other two levels. For exampe, we would consider a brain region to
selectively express congruency-level (control demand) priming effects if
classification of congruency-level priming in this region was above
chance and significantly better than classification of the category and
identity levels. These classification comparisons were conducted using a
Bayesian approach (Jiang et al., 2013): to test the null hypothesis that two
classification accuracies o1 and o2 observed from the same searchlight
over two different accuracy maps (classification analyses) belonged to the
same underlying classification accuracy o (i.e., no significant difference
between o1 and o2), we constructed a null distribution of observing any
classification accuracy given o1 and the two accuracy maps over all pos-
sible o. Specifically, the probability of observing o2 based on o1 in the null
distribution, or p�o2�o1	, was expressed as 
p�o2�o	p�o�o1	do, where
p�o2�o	 was calculated using a binomial distribution; p�o�o1	 was com-
puted using Bayes’ rule: p�o�o1	� p�o1�o	p�o1	, where p�o1�o	 was again
calculated using a binomial distribution and p�o1	 was obtained by sam-
pling the accuracy map. With this null distribution, the p value of the null
hypothesis of no significant difference between o1 and o2 was defined
based on a two-tailed test: �0

1�o2 p�x�o1	dx � �
o

2

1 p�x�o1	dx (without
loss of generality, here, we assume that o2 � 0.5). For example, a p value
of 0.05 would indicate that the probability that o1 and o2 do not differ
from each other (i.e., o1 and o2 reflect the same underlying accuracy) is
0.05. Similarly, a one-tailed test (e.g., null hypothesis o2 � o1) can be
derived using either the first or second term of the definition of the
two-tailed test, depending on the direction of the test.

By contrast, to identify brain regions involved in integrating event
characteristics across all levels of abstraction, we delineated searchlights
that expressed priming effects at all feature levels. This was done by
performing a “logical AND” conjunction analysis (Nichols et al., 2005)
across the classification accuracy maps taken from the initial searchlight
MVPAs for each of the three priming levels (i.e., before computing the
contrast between these maps). In other words, for each voxel, we tested
whether it belonged to a searchlight cluster that passed the multiple-
comparison correction in all three accuracy maps.

Multivariate brain– behavior analysis. To link the putative integrated
neural event file representations directly to behavioral priming effects, a
searchlight-based, multivariate brain–behavior analysis was performed to
predict behavioral CSEs (i.e., the RT differential of [iI � cI] � [cI � cC])
using neural CSEs (i.e., the difference between the neural congruency
effects, or [iI � cI] � [cI � cC]). Here, data from all sequence conditions
were pooled together (because we were interested in effects related to
integrated event files) and then submitted to a LOO cross-validation for
each searchlight. Because this analysis involved the use of linear regres-
sion and correlation (see below), both of which are susceptible to spuri-
ous results (overfitting) due to high dimensionality and noise, we first
performed a dimension reduction by means of a principle component
analysis (PCA). Specifically, the to-be-predicted variable in this analysis
consisted of three behavioral CSEs per 25 subjects (i.e., 75 data points),
which could easily be overfit by a searchlight consisting of up to 123
dimensions (voxels). Therefore, the neural CSEs from the training sub-
jects first underwent a PCA and the principle components (PCs) that
explained the highest portion of variance in the data were selected until
the total amount of variance explained by these selected PCs reached
50%. This selection mitigated against the possibility of overfitting by
drastically reducing the number of predictor dimensions (maximum
number of selected PCs � 4 for all searchlights analyzed) while keeping
the majority of variance (i.e., information) represented in the data.

The selected components were fit to behavioral CSEs in the training
sample using supported vector regression and an � parameter of 0.01
(Kahnt et al., 2011; Jimura and Poldrack, 2012). Then, the regression
coefficients were applied to the neural CSEs of the test subject, which
were transformed and selected using the PCA outcome computed using
the training subjects to produce predicted behavioral CSEs. After the
LOO cross-validation, we computed correlations between predicted and

observed behavioral CSEs to assess the quality of the prediction. A sig-
nificant positive correlation in a searchlight implies that the behavioral
CSE—reflecting the combined priming effect of an integrated event
file— can be predicted from neural signal patterns in that searchlight,
suggesting that this brain region is involved in the process that translates
the integrated event file into behavioral output.

Control for false positives. For all aforementioned statistical analyses,
false positives due to multiple comparisons were controlled for at p �
0.05 (for classification and brain– behavior analyses, the p values were
obtained using binomial and correlation tests for each searchlight,
respectively) for combined searchlight classification accuracy and
cluster extent thresholds using the AFNI ClusterSim algorithm (http://
afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html) and
smoothness estimation using AFNI 3dFWHMx tool (http://afni.nimh.
nih.gov/pub/dist/doc/program_help/3dFWHMx.html). Ten thousand
Monte Carlo simulations determined that an uncorrected voxelwise p
value threshold of �0.01 (for p value transformed from binomial distri-
bution, the largest p value that was �0.01) in combination with a search-
light cluster size 9 to 25 searchlights (depending on the specific analysis)
ensured a false discovery rate of �0.05.

It has been suggested that binomial test results in LOO cross-
validation analyses (i.e., the decoding analysis and the brain– behavior
analysis) may be biased by the interdependence between training and test
data and statistical tests based on random permutations can overcome
this bias (Stelzer et al., 2013). However, random permutations for whole-
brain searchlight analyses tend to be impractical due to the huge amount
of computation required. To reduce the amount of computation, we
instead took an alternative approach by conducting random permuta-
tion tests only on brain regions displaying statistically significant effects
in binomial tests. To this end, we first defined ROIs based on the AFNI
ClusterSim algorithm above (i.e., searchlight clusters that survived
multiple-comparison correction) and then performed permutation tests
on the resulting ROIs to ensure that the ROI-based results were free from
such bias. Notably, for each ROI, the null distribution was obtained using
all voxels within that ROI such that the resulting null distribution did not
suffer from undersampling. Specifically, for each analysis, the random
permutation test repeated the analysis using randomly shuffled data (e.g.,
the order of voxels for each data point was randomly shuffled in the
classification analysis and each data point was randomly assigned to an
observed behavioral CSE in the brain– behavior analysis) 1000 times. The
results from the shuffled data were then used to approximate the null
distribution to calculate the p value of the random permutation test.

Results
Behavioral data
Subjects (n � 25) performed the task with very high accuracy
(97  1%). We analyzed RT data using a repeated-measures 3
(sequence condition) � 2 (previous trial congruency) � 2 (cur-
rent trial congruency) ANOVA. As shown in Figure 2, we ob-
served a main effect of sequence condition (F(2,23) � 20.7, p �
0.001) due to faster responses to identity-priming trials (545  29
ms) than category-priming trials (559  35 ms; t24 � 5.7, p �
0.001) and congruency priming trials (588  27 ms; t24 � 6.1, p �

Figure 2. Group-mean RT ( SEM) plotted as a function of sequence condition and
previous-trial and current-trial congruency. Significant CSEs occurred at each level of priming.
Cur, current trial; pre, previous trial; C, congruent; I, incongruent.
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0.001) and faster responses to category priming trials than con-
gruency priming trials (t24 � 5.0; p � 0.001). The ANOVA also
revealed a significant main effect of current-trial congruency
(F(1,24) � 88.0, p � 0.001) driven by faster responses to congruent
(541  22 ms) than incongruent trials (585  22 ms). Moreover,
we detected an interaction between sequence and current-trial
congruency factors (F(2,23) � 9.3, p � 0.001) due to a larger
congruency effect in congruency priming (62  6 ms) than cat-
egory repetition (38  6 ms; t24 � 3.8, p � 0.001) and identity
priming (33  7 ms; t24 � 3.9; p � 0.001) conditions. Crucially, a
significant interaction between previous and current congruency
(i.e., the CSE) was evident (F(1,24) � 11.6, p � 0.002) and CSE
magnitude did not interact with sequence condition. By perform-
ing previous-trial � current-trial congruency interaction tests
separately for each sequence condition, we furthermore ascer-
tained that the CSE was significant in each condition (calculated
by testing the interaction contrast [cI � cC � (iI � iC)] against
null using two-tailed one-sample t tests; congruency-priming tri-
als: 14  7 ms; t24 � 2.2; p � 0.038; Cohen’s d � 0.44; category-
priming trials: 24  7 ms; t24 � 3.4; p � 0.002; Cohen’s d � 0.69;
identity-priming trials: 23  6 ms; t24 � 3.9; p � 0.001; Cohen’s
d � 0.79). No other effects reached statistical significance.

In order for our imaging analyses to reveal distinct and shared
neural substrates of priming effects at different event feature lev-
els, we had to first establish that, in each sequence condition,
behavior was actually affected by priming at the most concrete
level available in that sequence condition. This is self-evident for
the congruency-priming condition because congruency-level
priming was the only type of priming available. Conversely,
category-priming trials could be driven by either category-level
or congruency-level priming (see Materials and Methods). To
ensure that category-level priming was operational in this se-
quence condition, we interrogated the [iC � cC] contrast of the
category sequence condition, which measures priming without
the potential confound of current trial conflict occurring in
incongruent trials. Crucially, if congruency-level priming
were the only source of the CSE in the category-priming se-
quence condition, then the stimulus-feature-independent na-
ture of congruency-level priming predicts that this effect (i.e.,
[iC � cC]) should not vary with the repetition/change of target
category. However, contrary to this prediction of no category-
level priming, we found such dependence, as documented by a
significant previous congruency � target category repetition/
change interaction in congruent trials of the category-priming
condition (F(1,24) � 6.6, p � 0.05). This reliance on stimulus
category can only be attributed to the category-level, indicat-
ing that category-level priming affected behavior in the
category-priming sequence condition, although this does not
rule out an additional contribution from congruency-level
priming in this sequence condition.

Next, we applied the same logic to identity-priming trials in
which behavior could theoretically be driven by all three levels of
priming. In this analysis, testing the modulation of target identity
repetition/change on the [iC � cC] contrast, we again found a
significant interaction between previous congruency � target
identity repetition/change (F(1,24) � 10.4, p � 0.005). This inter-
action suggests the presence of category-level and/or identity-
level priming. Importantly, if identity-level priming were
present, it should make responses to complete repetition trials in
the identity-priming condition faster than those in the category-
priming condition. This prediction was confirmed (identity-
priming condition: 535  20 ms, category-priming condition:

553  22 ms, t24 � 3.2; p � 0.005). In sum, these manipulation
checks confirmed that the classic CSE occurred in the context of
three different levels of event features contributing to priming
effects. These data set the stage for the fMRI analyses in which we
delineated the neural substrates of integrative event coding.

Imaging data
Binding of concrete and abstract event features in the
hippocampus and putamen
To locate brain regions that are either selectively or commonly
involved in the expression of the different levels of event priming
that contribute to the CSE, we conducted a searchlight based,
whole-brain MVPA to decode priming effects at each level of
event feature (identity, category, congruency). We then con-
trasted searchlight classification performance across different
event features to isolate brain regions that are selectively involved
in the expression of one particular event feature and applied a
conjunction analysis to identify brain regions that store informa-
tion about all three event features (see Materials and Methods).

The comparison of searchlight decoding accuracy across dif-
ferent levels of event features revealed a number of brain regions
showing selective expression of priming effects for each of the
three levels of abstraction. Figure 3D depicts the main findings
and Table 1 provides a complete list of regions. Beginning at the
most concrete, identity level, where priming effects are an expres-
sion of binding together specific stimulus and response features,
selective decoding was observed primarily in the visual brain.
Specifically, concrete-event feature encoding regions comprised
areas of occipital and temporal cortex, including face-sensitive
regions (fusiform gyrus) of the ventral visual stream (Fig. 3D),
but also one more anterior focus in inferior frontal gyrus. At the
more abstract category level, where priming effects are related to
the direction of target/distracter stimuli (but not their physical
identity), selective decoding was obtained in frontal regions, in-
cluding posterior lateral sites along the inferior frontal, precen-
tral, and postcentral gyri, as well as a focus in medial frontal
cortex. Finally, at the most abstract, congruency level, where
priming effects are an expression of the matching between previ-
ous and current trial control states (independent of stimulus
identity or category), selective decoding was observed in the an-
terior medial frontal cortex, including the anterior cingulate (Fig.
3D), as well as in bilateral dorsal striatum (particularly the cau-
date) and left insula and precuneus.

Our main interest, however, lay in discovering brain re-
gions involved in the integration of concrete and abstract
event features; that is, brain regions that would simultane-
ously carry information about priming effects at all three of
the event feature levels. A conjunction analysis using results of
decoding analyses at each of the congruency, category, and
identity levels ( p � 0.05, corrected) revealed overlapping
searchlights with significantly above-chance decoding of
priming effects at all three levels in a cluster spanning the left
anterior hippocampus and putamen (Fig. 3E). To cross-
validate that this region of overlap contains information en-
coding all three levels of priming, we repeated the decoding
analysis using all voxels defined within this region of overlap
from the conjunction analysis (Fig. 3E) and applied an unbi-
ased permutation test to assess decoding accuracy (Stelzer et
al., 2013). We obtained significant decoding (i.e., above-
chance classification accuracy) for all three levels of priming
(congruency level: 0.74, p � 0.001; category level: 0.68, p �
0.01; identity level: 0.64; p � 0.05, permutation test, see Ma-
terials and Methods), thus corroborating that the hippocam-
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pus and putamen store information about the relationship
between previous and current trial event features at multiple
levels of abstraction, ranging from the (mis-)matching of con-
crete physical stimulus characteristics to that of attentional
demands. These data indicate that these regions integrate con-
crete, categorical, and control-state event features into a ho-
listic event memory.

The hippocampal and striatal regions identified above are
part of a single cluster of searchlights spanning both of these
regions. To test whether voxels within each anatomical struc-
ture by themselves would be able to decode event features
across all levels of abstraction, we further divided this region
of overlap from the conjunction analysis (Fig. 3E) into sepa-

rate hippocampus (139 voxels) and putamen (202 voxels) re-
gions by masking the searchlight cluster with anatomical
masks based on the AAL template (Tzourio-Mazoyer et al.,
2002). Interestingly, using the voxels in each of these two ROIs
separately, neither region by itself displayed reliable classifica-
tion performance across all three levels of abstraction in this
decoding analysis (Table 2). Given that the sizes of these two
ROIs are comparable to the size of the searchlights (up to 123
voxels) used in the classification analysis, these null findings
are unlikely to be due to an insufficient number of voxels
making up each ROI. These results suggest that the hippocam-
pus and putamen may represent complementary information
regarding event features at different levels of abstraction.

Figure 3. Event-feature-priming MVPA results. A, Within the context of the event file model (Fig. 1A), the present analysis examines the integration of different event features in memory
(highlighted in red). B, Illustration of the cross-subject classification MVPA. Given a searchlight, activation of voxels in this searchlight was extracted from individual t-maps and grouped together
for cross-subject analysis. C, Schematic illustration of isolating neural congruency effects for each level of priming. Neural congruency effects from the congruency priming condition were regressed
from category priming trials and congruency-level and category-level neural congruency effects were regressed from those of identity-priming trials. D, Brain regions displaying feature-level-
specific expression of priming effects [i.e., showing higher decoding accuracy for one feature level than the other two levels ( p � 0.05, corrected)]; for full results, see Table 1. E, Overlap of
searchlights in left putamen and hippocampus (in red) showing above-chance encoding of feature priming at all three levels of abstraction.
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Neural signals in hippocampus and putamen predict behavioral
priming effects
The preceding analyses suggest that hippocampus and putamen
jointly encode event representations that integrate information
over various levels of abstraction ranging from physical stimulus
and response features to attentional states. However, it does not
necessarily follow that these regions’ representations are directly
involved in driving behavioral priming effects. Our second set of
analyses therefore probed how the matching of multilevel event
features across trials is translated from neural into behavioral
effects (as highlighted in red in Fig. 4A). We reasoned that brain
regions involved in this process should harbor neural CSE signal
patterns from which we can predict the size of the behavioral
CSE. To pinpoint these brain regions, we conducted a regression-
based brain– behavior analysis (Kahnt et al., 2011; Jimura and
Poldrack, 2012) in which we tried to predict the behavioral CSE
using multivariate patterns pertaining to the neural CSE (Fig. 4B;
see Materials and Methods). Briefly, for each searchlight, the neu-
ral CSEs for each subject and each sequence condition (see matrix
A in Fig. 4B) were fit to their corresponding behavioral CSEs
(vector y in Fig. 4B) in the training sample. The resulting fitting
parameters (vector b in Fig. 4B) were then applied to the test sub-
ject’s neural CSEs (see matrix Atest in Fig. 4B) to produce a set of three
simulated behavioral CSEs, one for each sequence condition. After

cross-validation, simulated behavioral CSEs were correlated with
observed behavioral CSEs to assess the quality of fit.

This analysis revealed significant prediction of behavior from
fMRI data (p � 0.05, corrected; Fig. 4C) in bilateral temporal
regions, including the temporal poles and posterior lateral tem-
poral cortex, in addition to right temporoparietal junction and
the left insula. Most notably, we again detected the left putamen
and hippocampus in this analysis, suggesting that these regions
not only integrate event features across different levels of abstrac-
tion, but are also involved in the matching and retrieval process
by which integrated event representations drive behavior. We
followed up on this finding with two additional analyses investi-
gating whether voxels in each of these structures could predict
behavioral CSEs by themselves and if the same hippocampal and
putamen subregions identified in the event-binding analyses
above would also be able to predict behavior. First, we defined
ROIs using the left putamen and the hippocampus clusters that
survived the multiple-comparison correction (see Materials and
Methods) and masked these ROIs using the anatomical AAL tem-
plates of the left putamen and the left hippocampus. We found
significant positive correlations between simulated and observed
behavioral CSE in both regions (hippocampus: r � 0.23, p �
0.05; putamen: r � 0.30, p � 0.005; both ROIs: r � 0.28, p � 0.01,
permutation test, Fig. 4D). These hippocampus and putamen
ROIs also largely overlapped the left putamen and hippocampus
cluster that was found to decode priming effects at all three levels
of abstraction (Fig. 4E). We next tested directly whether neural
signal patterns in the hippocampus and putamen region defined
by the previous event-binding findings (Fig. 3E) could also pre-
dict the size of the behavioral CSE and this was in fact the case
(r � 0.29, p � 0.01, permutation test). In sum, our data across the
two sets of analyses suggest that the putamen and hippocampus
are involved both in event file integration, as well as in a matching
process of event features across trials, presumably consisting of
the cued retrieval and application of an integrated memory event
file to facilitate response selection.

Discussion
Recent behavioral studies have demonstrated that the binding of
event information in memory extends beyond the long-
acknowledged linking of stimulus features (Treisman and Ge-
lade, 1980) and responses (Hommel, 1998) to incorporate more
abstract and “internal” event features, most notably attentional
control states (Spapé and Hommel, 2008; Crump and Milliken,
2009; for review, see Egner, 2014). The present study is the first to
assess the neural substrates of event feature binding that ranged
from concrete stimulus and response properties to stimulus cat-
egories to control demands (or attentional states). Using a novel
fMRI paradigm, we found that neural signal patterns in the (left)
hippocampus and putamen represented event priming effects at
all levels of event features and furthermore predicted the behav-
ioral expression of trial-by-trial priming effects. Together, these
results suggest that both medial temporal lobe (MTL) and dorsal
striatum (DS) are crucially involved in binding together “holis-
tic” event representations that link physical stimulus and re-
sponse characteristics with internal control states, which afford
shortcuts to adaptive information processing and response selec-
tion in a stable environment. We discuss key aspects of our design
and results in turn.

We assessed the process of event file binding at different levels
of abstraction by exploiting distinct feature priming sources of
the CSE, as delineated in the recent cognitive control literature
(for review, see Egner, 2007, 2014; Duthoo et al., 2014). The

Table 1. Summary of clusters showing significantly higher decoding accuracy of
priming effects at each level of abstraction compared with the two other levels

Location Peak MNI

Peak
decoding
accuracy

Cluster
size (no. of
searchlights)

Selective congruency level decoding
R. putamen (18, 8, �5) 0.78 10
L. calcarine and precuneus (�21, �58, 4) 0.78 56
L. insula (�39, �1, �2) 0.76 11
R. medial frontal gyrus (12, 50, 16) 0.78 56
R. caudate (15, 5, 16) 0.82 35
L. caudate (�18, �10, 22) 0.78 14
Precuneus (�12, �67, 34) 0.88 48
Middle cingulate (6, �10, 49) 0.80 21

Selective category level decoding
L. medial frontal gyrus (�15, 47, 4) 0.82 13
R. inferior frontal gyrus (45, 11, 19) 0.86 9
L. precental gyrus and L. postcental gyrus (�45, �7, 37) 0.82 36

Selective identity level decoding
L. fusiform gyrus and L. parahippocampal

gyrus
(�24, �37, �14) 0.92 46

L. inferior frontal gyrus (�18, 17, �20) 0.80 19
L. superior and middle temporal gyri (�54, �7, �11) 0.80 37
R. superior and middle temporal gyri (57, �40, �13) 0.84 84
R. middle occipital gyrus (36, �85, 10) 0.84 11
L. middle occipital gyrus (�39, �67, 13) 0.88 21
L. Superior occipital gyrus and precuneus (�24, �73, 28) 0.80 9
R. Superior occipital gyrus and precuneus (18, �73, 31) 0.84 14
Precuneus (�9, �43, 43) 0.76 14

Peak decoding accuracy refers to the level that shows superior decoding accuracy than the other two levels.

Table 2. Accuracy of congruency effect classifiers shown as a function of the level of
priming and ROI (defined as the intersection of the ROI defined in Fig. 3D and
respective AAL masks)

Congruency
level classifier

Category
level classifier

Identity level
classifier

Hippocampus ROI 0.62* 0.64* 0.52
Putamen ROI 0.64* 0.56 0.56

*p � 0.05 using permutation tests.
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present design contributes to this literature by manipulating dif-
ferent levels of event feature learning orthogonally within the
same task (for a related approach, see Weissman et al., 2015). A
key validation question was therefore whether all levels of prim-
ing would in fact be observable in this design. Importantly, and
consistent with the basic assumption that priming effects can
occur simultaneously for different event features, we obtained
robust CSEs for each of the sequence conditions (Fig. 2). Al-
though CSEs at the level of stimulus identity and category in our
design represent a mixture of priming effects from those levels
and all “higher” levels, we conducted additional analyses to show
that the most concrete possible level of priming did in fact mod-
ulate RTs in each condition.

The main aim of this study was to determine which brain
regions underlie the mnemonic integration of “external” event
characteristics with the concurrent internal, attentional state of
the individual. To this end, we used a between-subjects neural
pattern classifier approach to first delineate neural signal patterns
associated with each level of event feature coding and then test for
brain regions representing information about all three event fea-
ture levels. This analysis identified the anterior hippocampus and
the putamen as harboring representations related to both exter-
nal and internal aspects of the trial events (Fig. 3E), which we
interpret as indicating that these MTL and DS regions are in-
volved in the creation of “integrative” or “holistic” event files
(Egner, 2014). This functional attribution was furthermore bol-
stered by a multivariate brain– behavior correlation analysis in
which we found that neural signal patterns in the very same
regions of the hippocampus and putamen predicted the mag-
nitude of behavioral priming effects (i.e., the CSE) across sub-
jects (Fig. 4).

The involvement of the anterior hippocampus in integrating
internal states with external event features was hypothesized a
priori (Egner, 2014) and fits well with this structure’s proposed
role in promoting fast-paced learning (Squire, 1992; Eichenbaum
and Cohen, 2001) and binding processes in the context of rela-
tional memory encoding (Sperling et al., 2003; Preston et al.,
2004; Prince et al., 2005; Shohamy and Wagner, 2008). In fact,
previous studies highlighted the anterior (as opposed to poste-
rior) hippocampus in particular as a key structure for supporting
relational memory (Schacter and Wagner, 1999). Of particular
relevance to the present study, an elegant recent experiment
showed that this region is involved in the binding and retrieving
of “holistic event engrams” representing different elements of a
scene such as locations, people, and objects (Horner et al., 2015).
Crucially, the present findings complement and significantly ex-
tend this conception by showing that hippocampal event binding
incorporates not only various elements of an observed scene or
event, but also the concurrent internal attentional state of the
observer.

The putamen’s involvement in this type of holistic event bind-
ing represents a more surprising finding, particularly when con-
sidering the traditional view that the hippocampus and DS
support distinct or even competing memory systems that operate
at different time scales, with the DS thought to mediate primarily
slow, procedural learning (Gabrieli et al., 1995; Poldrack and
Packard, 2003). However, recent work renders this categorical
distinction between MTL and DS function less tenable and the
type of finding we report in the present study has a number of
parallels in the contemporary literature.

First, it is of course well established that the DS contributes to
the acquisition of stimulus–response and stimulus– category as-

Figure 4. Multivariate brain– behavior analysis results. A, Within the context of the event file model (Fig. 1A), the present analysis examines the translation of event file matching between
successive trials into behavior (highlighted in red). B, Illustration of the analysis procedure (see Materials and Methods for details). C, Lateral views of brain regions (in red; p � 0.05, corrected) with
neural CSEs that could predict behavioral CSEs. D, Individual predicted behavioral CSEs computed using data from the hippocampus–putamen ROI defined by the whole-brain brain– behavior
analysis plotted as a function of observed behavioral CSEs. The line shows the linear trend between the predicted and observed behavioral CSEs. E, The overlap (in yellow) of regions capable of
decoding the CSE at all three levels of abstraction (in red, also see Fig. 3E) and the searchlights with neural CSEs that predicted behavioral CSEs (in green).
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sociations (Packard and Knowlton, 2002; Seger and Cincotta,
2005) but, importantly, recent work demonstrated that this bind-
ing function extends beyond slow, multitrial learning to fast,
single-trial memory formation in which the DS appears to be
jointly involved with the hippocampus (Shohamy and Wagner,
2008; Albouy et al., 2008). Second, and of particular relevance to
the present data, Sadeh et al. (2011) showed that the recruitment
of the DS (specifically, the putamen) in cooperative encoding
with the hippocampus might specifically be triggered in a context
in which distracter stimuli need to be filtered out for optimal task
performance (see also McNab and Klingberg, 2008). This is pre-
cisely the kind of situation that participants encountered in our
congruency protocol. Moreover, the current results also corrob-
orate the idea that the anterior hippocampus and putamen play
complementary roles in this encoding process because we found
that multilevel event learning effects could not be reliably de-
coded using only information from the hippocampus or puta-
men alone (Table 2), but were successfully decoded when signals
from both regions were considered together. In addition, the
present study extends our appreciation of the nature of this co-
operation by showing that it appears to contribute to memory-
guided cognitive control by facilitating the encoding and primed
retrieval of internal control states that form part of holistic event
ensembles.

In addition to these primary findings, we observed some
event-feature-selective involvement of other brain regions that
broadly followed a posterior-to-anterior anatomical gradient re-
lated to their level of abstraction (Fig. 3, Table 1). Priming of
concrete stimulus features could unsurprisingly be decoded from
large swaths of occipitotemporal cortex. Moreover, selective
stimulus category binding effects were observed in posterior
frontal cortex, notably including inferior frontal gyrus, which has
in the past been implicated in the priming of concepts and ab-
stract features (Schacter et al., 2007). Perhaps most interestingly,
we observed selective representations of control demand priming
in the insula, caudate, medial frontal cortex (including the ante-
rior cingulate) and parietal regions. Although all of these areas
have previously been implicated in imaging studies of cognitive
control (Niendam et al., 2012; Jiang and Egner, 2014), the present
study assessed their functional roles from a somewhat different
perspective than most previous work. Specifically, our analyses
gauged the degree to which brain regions harbored mnemonic
information about the relationship (or match) between control
demands across trials, which implicates these regions in control-
learning processes. This interpretation is bolstered by the fact that
the present set of regions matches up very closely with findings
from a recent model-based fMRI study that specifically investi-
gated how the brain learns to predict future control
demands in a similar task (Jiang et al., 2014, 2015). That study
documented an interplay between the anterior insula and cau-
date in predicting the level of forthcoming control demand and
implicated the anterior cingulate in translating that prediction
into anticipatory adjustments of attentional set (cf. Botvinick et
al., 2001).

We demonstrated the integration of concrete and abstract
event features by focusing on the modulation of current-trial
processing by features of the previous trial. This focus on short-
term effects of event binding should not be taken to imply that
there are no longer-term and/or cumulative influences of event
file encoding and retrieval on performance. Rather, we investi-
gated first-order feature binding effects while controlling for
higher-order effects (see Materials and Methods), primarily be-
cause of experimental expediency—these trial-by-trial effects can

be easily detected and are grounded in a large prior literature
(Hommel, 2004). However, studying event file effects over longer
periods of time would make for an extremely interesting next step
in improving our understanding of event feature binding.

In conclusion, the current study investigated how internal
attentional control states might be bound together with concrete
sensory and response features comprising a task trial “event.” We
found that the integration of “holistic” event information rang-
ing from the specifics of observed stimuli to the internal atten-
tional state of the observer appears to be performed jointly by the
anterior hippocampus and putamen in concert with other brain
regions that selectively support the encoding of different types of
event features. Specifically, the integration of attentional control
settings with the event file seems to involve, beyond the hip-
pocampus and putamen, a network of insula, caudate, anterior
cingulate, and parietal cortices.
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