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An insula-frontostriatal network mediates flexible
cognitive control by adaptively predicting
changing control demands
Jiefeng Jiang1,2, Jeffrey Beck3, Katherine Heller1,4 & Tobias Egner1,2

The anterior cingulate and lateral prefrontal cortices have been implicated in implementing

context-appropriate attentional control, but the learning mechanisms underlying our ability to

flexibly adapt the control settings to changing environments remain poorly understood. Here

we show that human adjustments to varying control demands are captured by a reinforce-

ment learner with a flexible, volatility-driven learning rate. Using model-based functional

magnetic resonance imaging, we demonstrate that volatility of control demand is estimated

by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the

caudate nucleus. The caudate’s prediction of control demand subsequently guides the

implementation of proactive and reactive attentional control in dorsal anterior cingulate and

dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-com-

putational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal

cognitive control network to a subcortical control-learning mechanism that infers future

demands by flexibly integrating remote and recent past experiences.
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‘Cognitive control’ describes the strategic guidance of
behaviour in accordance with internal goals1. A key
feature of cognitive control is flexibility, that is, the

continual adjustment of processing strategies in response to
varying demands. For instance, we are able to mobilize and
adaptively shift attention towards a particular task when we
encounter difficulties, such as worsening weather conditions
during a road trip. Accordingly, laboratory studies have
documented that human participants dynamically upregulate
their attentional focus on task-relevant stimulus features in
response to ‘conflict’ induced by incongruent task-irrelevant
stimulus features2–4. This type of online adaptation to varying
control demand can be observed both as a function of short-
term5–7 and long-term8,9 trial history, suggesting that the brain
integrates information at multiple temporal scales to adjust
conflict–control processes in line with anticipated future
demands. However, the neuro-computational mechanisms
supporting this integration remain poorly understood.

The influential conflict-monitoring model2 shows that short- and
long-term adaptation to control demand can be simulated by a
standard reinforcement learning mechanism that adjusts control
(here, attentional focus on task-relevant stimulus information) to
minimize the mismatch, or prediction error, between the level of
control exertion and control demand. To simulate short-term
adaptation, the model uses a fixed, high learning rate (LR), such
that control adjustments are driven most strongly by prediction
error from the most recent trials. To simulate long-term adaptation,
the model employs a fixed, low LR, where control adjustments are
driven by an extended trial history. This results in two key
shortcomings, however: first, the use of fixed LRs means that the
model, unlike people, lacks a mechanism to shift learning strategies
when the nature of control demand changes over time. Second,

while the model can successfully simulate short- and long-term
adaptation effects in isolation, it is incapable of simulating them
simultaneously, even though these effects do in fact co-occur in
empirical data10,11. A more realistic account of human conflict–
control would plausibly require the ability to flexibly self-adjust LRs
in line with changing environmental contingencies.

To build such a model, we exploited recent advances in the
modelling of Bayesian decision making under uncertainty, where
it has been shown that LR adjustments can be derived from an
estimation of the volatility (that is, rate of change) of the
environment12–14. This is because, in a stable environment, LRs
should be low to dampen learning, so that predictions are
generated by integrating evidence over long periods of time.
Conversely, in a volatile environment, LRs should be high so that
predictions are generated only from recent observations and not
from older, outdated evidence. On the basis of this perspective,
we develop a hierarchical Bayesian extension of the standard
reinforcement learning algorithm that includes a flexible control
component to infer subjects’ internal states related to flexible
cognitive control using observed congruency and behaviour
(Fig. 1a, lower panel, also see Methods). The top level in the
hierarchy represents a volatility-driven flexible LR that quantifies
the model’s (or a subject’s) belief concerning the rate of change of
control demand (here, trial congruency) in the environment,
which is learned on the basis of behaviour and the unsigned
prediction error of congruency (control prediction error),
quantified as the interaction between predicted conflict level
and observed congruency (Supplementary Methods). This LR
informs the middle layer of the model, which encodes the level of
predicted conflict (or control demand), representing the belief of
encountering an incongruent trial. Crucially, belief that the agent
is in a higher volatility environment results in a larger LR during
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Figure 1 | Model structure and schematic illustration of model-based analyses (N¼21). (a) The graphical representation of the belief update model
(upper panel) and the flexible control model (lower panel). The two models use identical structure and inference algorithms except that the flexible control
model also uses reaction time (RT) to update the belief of latent variables. Note that only the flexible control model was used in all analyses to account for
individual difference of behaviour. The flexible control model uses four variables, flexible LR/volatility (a), predicted conflict (f), congruency (o, shown in grey
indicating this variable is observable) and RT for each trial. The directed edges indicate the information flow. At a given trial, horizontal and top–down edges
represent the estimation of flexible LR/volatility and predicted conflict level prior to stimulus presentation. Subsequently, the observed congruency and RT are
used to update belief of latent variables in anticipation of the next trial (bottom-up edges). (b) A schematic illustration of the univariate and multivariate
encoding analysis using the example model variable of predicted conflict level (see Methods for details). Importantly, prior to multivariate analysis, the
searchlight mean activation vector was also regressed from each voxel’s activation vector to ensure the orthogonality between the two analyses.
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conflict prediction. Given this relationship, we will henceforth use
the terms ‘volatility’ and ‘flexible LR’ interchangeably. However,
this should not be interpreted as indicating that the objective task
volatility is the same as a subject’s LR. In fact, it has been shown
that LR can be modulated by multiple factors, such as change
point probability, and uncertainty about the environment and
reward, each of which has distinct neural substrates14. Rather,
‘volatility’ in the present model refers to the subjective belief that
quantifies the factors that determine the learning rate.

The bottom level of the model represents the observable
variables of congruency and reaction time (RT), which model the
subject’s experience of conflict and are, therefore, used to update
beliefs about volatility and predicted conflict level at each trial.
Note that within this prediction-updating scheme, we can
distinguish two potentially distinct forms of control, a ‘proactive’
component that corresponds to strategic processing adjustments
in line with the model’s prediction of control demand, and a
‘reactive’ one that would be required to resolve any residual
conflict if a mismatch (that is, control prediction error) occurred
between predicted conflict and observed congruency15,16.

In prior work we have demonstrated that a Bayesian model
with a flexible learning strategy can successfully track changing
control environments and reproduce the simultaneous beha-
vioural short-term and long-term adaptation effects observed in
human performance10, thus supporting the proposal that the
human cognitive apparatus estimates the volatility of control
demand to optimize conflict prediction and cognitive control. We
here combined a volatility-modulated conflict task with
functional magnetic resonance imaging (fMRI) and model-
based analyses to reveal the neural architecture underpinning
these computations. We found that volatility of control demand
and the prediction of forthcoming demand are estimated by the
anterior insula and caudate nucleus, respectively. The prediction
of control demand then guides the implementation of proactive
and reactive attentional control in dorsal anterior cingulate cortex
(ACC) and dorsolateral prefrontal cortices. These data enhance

our understanding of the neuro-computational mechanisms
of adaptive behaviour by connecting the classic cingulate-
prefrontal cognitive control network17 to a subcortical control-
learning mechanism that infers future demands by flexibly
integrating remote and recent past experiences.

Results
Task overview. fMRI data were acquired while subjects (N¼ 21)
performed a face-word Stroop conflict task6,10,18, in which they
responded to the gender of face images via button-presses and
tried to disregard overlaid gender word labels (Fig. 2a), which
could be either congruent (for example, ‘male’ superimposed on a
male face) or incongruent (for example, ‘female’ superimposed on
a male face). To investigate the flexible adjustment of cognitive
control, we furthermore varied the relative dependence on short-
term versus long-term trial history required for achieving optimal
prediction of control demand. In the volatile control demand
condition, the trial sequence sampled alternately from
distributions with a 20 or 80% proportion of incongruent trials,
switching every 20 trials over a run of 80 trials. Conversely, in the
stable control demand condition, the underlying proportion of
incongruent trials remained unchanged (either 20 or 80%) for a
run of 80 trials. In the volatile condition, more frequent change of
the proportion of incongruent trials (that is, control demand)
should encourage a higher LR in the prediction of conflict, as
compared with the stable condition. Note that the overall
incidence of congruent and incongruent trials was equal (0.5)
across stable and volatile runs (see Methods).

Behaviour. Descriptive statistics of behaviour are presented in
Supplementary Table 1. Subjects performed the volatility-
modulated conflict–control task with high accuracy (mean
accuracy¼ 94.2%). A three-way analysis of variance (ANOVA;
volatility" proportion of incongruent trials" congruency)
revealed a main effect of congruency (F1,20¼ 9.15, Po0.005), due
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Figure 2 | Experimental task and simulation and behavioural results (N¼21). (a) Example stimuli and timing of presentation. This example depicts an
incongruent trial, followed by a congruent trial. (b) Individual mean model LRs, plotted as a function of run type. Each line represents a subject. (c) The time
course of group mean LR and s.e.m. in the first and last 10 trials of volatile (in blue) and stable (in red) blocks. Note that in this graph, which averages over
all blocks, the difference in LR at the beginning of the blocks was driven by volatile blocks 2–4 in the volatile runs, as in these blocks the LR had already been
raised by preceding volatile blocks. (d) Time courses of the underlying proportion congruency (in black) and the corresponding predicted conflict level
(in red) of an example run. (e) Individual RS, plotted as a function of congruency. Each line represents one subject. Note that higher RT equals lower RS.
(Con¼ congruent trials; Inc¼ incongruent trials). (f) Group mean RS and s.e.m., centred across trials for each subject, plotted as a function of unsigned
prediction error of congruency (control prediction error).
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to higher accuracy in congruent (94.9%±1.2) than incongruent
(93.1%±1.0) trials, as well as a main effect of proportion of
incongruent trials (F1,20¼ 4.77, Po0.05) due to higher accuracy
in blocks of 80% incongruent trials (94.8%±1.0) than blocks of
20% incongruent trials (93.2%±1.2). In RT data, a three-way
ANOVA detected a significant main effect of congruency
(F1,20¼ 20.4, Po0.0001), driven by a slower RT in incongruent
trials (458 ms) than congruent trials (418 ms).

Model validation. We used the flexible control model to simulate
behavioural data on a trial-by-trial basis (see Methods). For each
subject, observed congruency and response speed (RS, defined as
1/RT) were used to infer trial-by-trial estimates of the volatility-
driven flexible LR and predicted conflict level. As expected, the
model estimate of LR was indeed higher for volatile than for
stable runs (Fig. 2b, paired t-test, t20¼ 21.22, Po0.0001). In both
volatile and stable blocks, the LR increased soon after the
underlying proportion congruency changed, and gradually
decreased as the model learnt the proportion congruency of the
new environment (Fig. 2c). These results strongly suggest that the
model estimates of flexible LR are sensitive to the structure of the
task. Moreover, the model estimates of the flexible LR resemble a
previous simulation study of the proportion congruency effect2.
Finally, the estimates of predicted conflict level tracked the time
course of the underlying proportion congruency very closely
(Fig. 2d). These results indicate that the model beliefs successfully
tracked the experimental manipulations. We next employed three
model variables (trial-wise estimates of volatility and predicted
conflict level, and the observed congruency) and their interactions
(that is, a total of seven variables, resembling a three-way
ANOVA) to account for the variance in RS (see Methods). This
analysis revealed that, unsurprisingly, the congruency variable
was a strong predictor of RS, with slower responses associated
with incongruent trials (t20¼ 4.17, Po0.001, Fig. 2e). More
importantly, and reflecting the basic tenet of our model, the larger
the model’s trial-wise control prediction error was, the slower
were the participants’ responses, as reflected in a negative
modulation of control prediction error on RS (t20¼ # 2.79,
P¼ 0.01, Fig. 2f). This result is unlikely to be biased by the use of
RS to update the model’s beliefs, because we did not constrain the
manner in which RS could correlate with the model variables, like
predicted conflict level, to best account for behaviour. In sum, the
flexible control model closely captured behaviour in a conflict
task with time-varying control demands.

Model comparison. The fact that a conflict–control model with a
volatility-driven flexible LR can explain participants’ behaviour in
an environment of changing control demands does not imply the
necessity of a flexible LR in explaining behaviour. We therefore
conducted a model comparison that pitted the flexible control
model against simpler reinforcement learning models with one
learning rate (for the whole task) or two learning rates (one for
stable runs and one for volatile runs). Model performance was
quantified using the Bayesian information criterion (BIC; see
Methods). The best LRs for fixed-LR models were selected based
on an exhaustive search (from 0.01 to 0.5 with a step size of
0.001) that minimized the BIC. For each subject, the models were
fit to the individual trial sequence of congruency and RS, and the
simulated RS values derived from each model fit were then used
to calculate the BIC, on which the model selection was based. A
group level model comparison19 revealed an exceedance
probability (that is, the belief that one model explains data
better than other models in the comparison) of 0.99 for the
flexible control model (Supplementary Table 2). To further test
whether the flexible control model is also superior at predicting

forthcoming congruency, we repeated the model comparison
analysis using BIC calculated from candidate models’ prediction
of conflict in relation to observed congruency. The same flexible
control model as above was used, whereas the fixed-LR models
were re-selected using exhaustive search to ensure that the fixed-
LR models that best accounted for congruency were employed in
this analysis. A group level model comparison19 revealed an
exceedance probability of 0.91 for the flexible control model
(Supplementary Table 3). Additionally, note that the best-fitting
LRs in the fixed-LR models are determined in a post hoc manner,
which is not a luxury the brain has. By contrast, the flexible
control model does not benefit from post hoc fitting, as it relies
solely on the LR as it emerges from the model’s interaction with
the trial sequence experienced so far. On the basis of these results,
we accepted the flexible control model as the best account for
participants’ behaviour and task manipulation in this volatility-
modulated cognitive control task.

Assessing neural computations of flexible control. Next, we
sought to determine the neural substrates of the flexible control
model’s components, namely, the estimation of control demand
volatility (flexible LR), the prediction of conflict (control
demand), and the application of proactive control as a function of
that prediction; moreover, based on the residual of that predic-
tion, we can infer demands on reactive control mechanisms. The
vector of ‘congruency’ in and of itself was not of interest, as it
simply coded for observed trial congruency. Brain regions that
were more activated by incongruent than congruent stimuli
replicated standard findings in the literature20 (Supplementary
Fig. 1).

For delineating neural substrates of model components, we
assessed whether local trial-by-trial fluctuations in neural activity
(univariate or multivariate activation vectors) could explain a
significant portion of trial-by-trial variance in the inferred states
of model variables. To this end, we performed parallel univariate
and multivariate searchlight analyses (radius¼ 2 voxels)21,22,
which accounted for the possibility that the variables in question
could be encoded either via a homogeneous (univariate)
scheme (Fig. 1b), where information is encoded by local voxel
populations with similar response properties (for example, a
group of voxels whose fMRI signal amplitudes all scale positively
with predicted conflict), or via a heterogeneous, distributed
scheme, where information is encoded in multivariate activation
patterns over local voxel populations21 (Fig. 1b, also see
Methods). Within small clusters of voxels (that is, the
searchlight), homogeneous activation patterns will be better
detected by the univariate analysis, whose averaging process (see
below) boosts the signal-to-noise ratio of the homogeneous
activation patterns. By contrast, local heterogeneous activation
patterns, where, for example, each voxel encodes a different
aspect of the variable of interest, or only a few voxels accurately
encode the variable of interest while other voxels are not sensitive
to that variable, will be more easily identified by the multivariate
analysis. To ensure the unique attribution of fMRI signal to a
given variable (or interaction among variables), all other variable
and interaction vectors were used as nuisance variables in both
analyses. A summary of all findings from these analyses is
available in Supplementary Table 4.

Anterior insula estimates volatility of control demand. Begin-
ning with the top-level model node, we first conducted a whole-
brain search for regions that encoded the flexible LR (that is,
volatility), by fitting searchlight activation vectors to the (residual)
flexible LR variable vector (a). We found that the bilateral ante-
rior insula (AI) and adjacent inferior frontal gyri (IFG), the
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amygdala, putamen and right parahippocampal gyrus and pre-
cuneus (Fig. 3a; Po0.05, corrected) all tracked this model vari-
able vector via a homogenous (univariate) coding scheme,
reflected in higher signal amplitudes for higher LR estimates.
These areas therefore represent candidate regions for encoding
control demand volatility. We next performed an additional,
independent analysis to cross-validate this hypothesis.

Recall that after congruency is observed, the model’s LR needs
to be updated to guide the adjustment of predicted conflict level
(Fig. 3b), based on the control prediction error (predicted conflict
level" congruency interaction). Given that the control prediction
error is required for updating the LR, we reasoned that brain
regions that compute the LR of control demand would likely also
harbour a representation of control prediction error. We
therefore conducted another whole-brain search for regions
whose activation vectors reflected this interaction, which revealed
a cluster of searchlights in the left AI/IFG (Fig. 3c; Po0.05,
corrected). This cluster overlapped closely with the AI/IFG region
encoding the volatility/LR model vector (Fig. 3a), within which 28
out of 77 searchlights also showed encoding (Po0.05) of control
prediction error (Fig. 3d). Accordingly, across the searchlights in
the left AI/IFG encoding the belief of control demand volatility
(Fig. 3a), the mean effect of control prediction error was
significant (t20¼ # 1.97, Po0.05).

To further characterize the role of this region in representing
the LR of control demand predictions, we plotted model LR
against neural activation estimates (Fig. 3e), where a strong linear
relationship is observed. One possible rival interpretation of these
data could be that the AI/IFG signals reflect uncertainty rather
than volatility of predicted conflict, as uncertainty and volatility
tend to be highly correlated12. To rule out this possibility, we

repeated our model-based analysis while replacing flexible LR
with ‘estimation uncertainty’ (calculated as the s.d. of the
distribution of predicted conflict level). We did not observe an
effect of estimation uncertainty of conflict in the AI/IFG. This
selective encoding of the flexible LR in this task can be attributed
to the fact that within each subject the trial-wise model estimates
of these two variables in stable and volatile blocks only shared a
relatively small proportion of variance (Supplementary Tables 5
and 6; Fig. 3f). This distinction is also consistent with previous
findings showing dissociable neural signatures of volatility and
estimation uncertainty12. However, future studies are required to
determine the exact relationship between LR and estimation
uncertainty in a broader context. Taken together, we obtained
strong evidence that the (left) AI and IFG (Brodmann areas 13
and 47) encode and update a volatility-driven flexible LR for
predicting control demand in a non-stationary environment.

Caudate nucleus predicts control demand based on volatility.
In the flexible control model, the volatility-driven flexible LR
informs the prediction of control demand (conflict). We therefore
next sought to identify the neural substrates of conflict prediction,
by conducting a whole-brain search for brain regions whose
activation vectors could account for significant variance in the
(residual) conflict prediction variable vector (f). We found that
the body of the (right) dorsal caudate nucleus tracked the model’s
predicted conflict levels (Fig. 4a; Po0.05, corrected) via a het-
erogeneous (multivariate) coding scheme (Fig. 1b). Additionally,
predicted conflict levels were also encoded in a homogeneous
(univariate) fashion in the left inferior parietal lobule, left
superior frontal gyrus and right paracentral lobule, where larger
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predicted conflict levels were associated with higher activity. We
next performed an additional, independent analysis to cross-
validate these putative neural substrates of volatility-driven
updating of predicted conflict.

Before stimulus presentation in a given trial, the flexible control
model updates predicted conflict level by integrating the most
recently observed congruency, modulated by the model’s LR
(Fig. 4b), an effect we should also expect to observe in a conflict-
predicting brain region. To test whether any of the above reported
regions displayed this type of modulation, we extracted a ‘neural
LR’, which was derived from these regions’ activation vectors
without any assumption of the flexible control model, and we
then examined the linear relation between neural LR and the
model LR for each subject (Supplementary Methods). A
significant positive scaling between neural LR and model LR
was observed in the caudate (Fig. 4c, t20¼ 4.70, P¼ 0.0001),
supporting the idea that the volatility-driven flexible LR
modulates the updating of conflict predictions in this region.
By contrast, the equivalent analyses in other regions did not
produce significant results. In sum, the above results provide
strong evidence for the caudate to be involved in the computation
of (volatility-modulated) predicted conflict levels. These predicted
conflict levels provide guidance for the implementation of flexible
cognitive control, whose neural substrates were investigated in the
following analysis.

Proactive and reactive cognitive control in prefrontal cortex.
The behavioural results documented that larger control predic-
tion errors (that is, the discrepancy between predicted and actual
conflict level) are associated with slower RS, which is in line with
the basic model assumption whereby the implementation of
cognitive control is guided by predicted conflict level and sub-
sequent control prediction error. In a final set of imaging ana-
lyses, we aimed to link back directly to this behavioural
performance pattern by examining how the volatility-driven
prediction of control demand was translated into the recruitment
of brain regions that mediate the application of proactive and, in
the case of erroneous predictions, reactive cognitive control,
within a ‘dual mechanisms of control’ framework16 (Fig. 5a).
These analyses thus employ the individual behavioural
correlation between control prediction error and RS as the to-
be-explained target variable, and ask in which brain regions the
neural encoding of the model variables of control demand
prediction and control prediction error may explain variance in
this target variable. To this end, we employed an individual
difference analysis that linked variance in encoding strength of
model variables to variance in the target variable. Specifically,
since proactive control is applied based on predicted conflict, the
level of proactive control should be positively correlated with the

target variable, because stronger proactive control should improve
performance (that is, produce faster RS) when the observed
control demands closely match predictions (that is, lower control
prediction error), resulting in a greater effect of the target
variable. Thus, to identify the neural substrates of proactive
control, we tested the correlation between the target variable
(obtained from the behavioural analysis above) and encoding
strength of predicted conflict level (obtained from the imaging
analysis) across subjects, at each searchlight. We detected this
signature of proactive control in the caudal ACC (Fig. 5c, red
overlay), and left dorsolateral prefrontal cortex (dlPFC, Fig. 5b,
red overlay). Here, subjects showing a stronger neural encoding
of predicted conflict level displayed a greater effect of control
prediction error in RS, indicating a direct role for these regions in
translating predicted control demand into adaptive processing
strategies.

According to the dual-mechanism model, after the imperative
stimulus is observed, reactive control must be recruited in
proportion to the necessity of resolving any residual conflict, that
is, the prediction error arising from a mismatch between
predicted and actual control demand16. Stronger reactive
control should lead to more efficient resolution of residual
conflict, which in turn should translate into a smaller effect of
control prediction error in RS. In other words, since reactive
control is assumed to counteract the consequences of a mismatch
between predicted conflict (proactive control) and observed
congruency, reactive control strength should be negatively
correlated with the target variable. Thus, to identify the neural
substrates of reactive control, we tested the correlation between
the target variable and encoding strength of control prediction
error (obtained from the imaging analysis) across subjects, at each
searchlight. We detected the hypothesized signature of reactive
control in the rostral ACC (Fig. 5c, green overlay). Here, subjects
showing a stronger neural encoding of control prediction error
displayed a weaker effect of control prediction error in behaviour,
indicating a close involvement of this region in the process of
reactively resolving unanticipated processing conflict. In sum,
these two analyses revealed brain regions that appear to be
involved in either proactive or reactive cognitive control, which
jointly mediate conflict resolution in the context of predicted
control demand, as reflected in the behavioural performance
pattern where larger control prediction error is associated with
slower responses.

Discussion
Previous work has shown that conflict prediction based on a fixed
LR can capture human adaptive behaviour in stationary
environments, and has implicated the dACC and dlPFC in
mediating conflict–control2,17. Here we showed that the flexible
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adaptation of cognitive control to a dynamically changing
environment can be achieved by self-adjusting, volatility-
weighted reinforcement learning of control demand, and that
this dynamic form of cognitive control depends on learning
processes that have neural correlates in the AI/IFG and dorsal
striatum. Specifically, model-based fMRI analyses documented
that the activity in the AI adjacent IFG tracks a flexible, volatility-
driven LR; this flexible LR can be employed to optimize the
prediction of forthcoming control demand (conflict), a prediction
we found to be encoded in activation patterns of the caudate. This
prediction in turn should guide the implementation of proactive
control to match the anticipated conflict, and we observed
correlational evidence to suggest that this process is carried out by
the dACC and the dlPFC; the residual of that conflict (control
prediction error) appears to be resolved by a more rostral portion
of the ACC.

Both the volatility (flexible LR) of control demand and control
prediction error were found to be encoded by the AI/IFG,
suggesting that this region dynamically maintains an estimate of
the degree to which current control demands are stable or fast-
changing. The association of this area with an explicit computa-
tion of control demand volatility promotes a new, integrative
interpretation of results from a diverse collection of previous
studies. In broad agreement with the present findings, the AI/IFG
have long been argued to form part of a fronto-parietal ‘multiple
demand’ cognitive control network23,24, with some authors
postulating a more specific role of a cingulo-opercular
sub-network in sustaining ongoing task control25,26, based
on these regions’ tendency to be (tonically) more activated in
conditions of higher relative to lower task demands23–26.

Moreover, neuroeconomics studies have tied the AI to
representing the uncertainty of reward location14, reward
magnitude27 and risk prediction error28. Of particular relevance,
it has been shown that the AI displays higher activation during
decision-making involving ambiguity (an unknown probabilistic
distribution of reward) than that involving risk (a known
probabilistic distribution of reward)29. These results closely align

with our findings, because volatility quantifies the ambiguity of the
belief of the probabilistic distribution of conflict. Thus, the present
model and findings may provide a formal account explaining why
this region has previously been implicated in the computation of
risk prediction error.

Note, however, that one previous study has attributed the
computation of volatility of reward likelihood to the dACC12.
Different findings between the two studies should not be
surprising though, because they focused on distinct cognitive
processes. Our task required the learning of abstract control
demands, whereas that study involved the learning of
specific stimulus-action-reward associations. In addition, the
present fMRI analysis assessed the activity in relation to the
processing of the imperative (to-be-presented) stimulus, whereas
that analysis12 focused on the post-outcome (explicit reward
feedback) period. The two studies’ results are therefore not
directly comparable.

Moving from volatility to anticipating control demand, we
found that the flexible LR informed a representation of predicted
conflict in the dorsal caudate body. Specifically, the caudate
employed volatility estimates to fine-tune the integration weights
of temporally more recent versus more remote control prediction
errors in the service of predicting forthcoming control demand.
This region is anatomically connected to the prefrontal cortex30

and thought to form part of a cognitive or ‘associative’
frontostriatal loop31 mediating the selection or gating of
information to be represented in task-sets held by the
prefrontal cortex32–34. Aligned to this perspective, the present
data foster the proposal that the caudate’s contribution to
cognitive control may be to optimize frontostriatal gating
processes by predicting forthcoming control demand, which
could inform both the selection and vigour of rule representations
in frontal cortices. Of note, we found predicted conflict level to be
encoded via a distributed (multivariate) coding scheme, which
suggests that the expected control demand is represented across
distinct local neuronal populations, with each group’s activation
tuned to respond to a specific level of predicted conflict level35. In
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concordance with this finding, the parallel circuit organization of
the caudate36,37 can be argued to provide a feasible structural
foundation for representing a statistical variable.

Finally, leaning on the dual-mechanisms-of-control frame-
work16, the present study also allowed us to formally tease apart,
within the same trial, neural substrates of reactive control from
those of proactive control. In the prior literature, two possible
dual-mechanism architectures have been discussed; one assumes
proactive and reactive control to be implemented via different
temporal activation dynamics within the same frontal regions38,
and the other postulates the existence of distinct brain regions
supporting the two types of control39. Our results provide novel
evidence for the latter proposal, as we found distinct brain regions
showing neural signatures supporting either anticipatory or
reactive control. On the one hand, we found that the caudal
dACC and dlPFC (Fig. 5b,c) displayed neural profiles
commensurate with a role in supporting anticipatory control
guided by predicted conflict levels. This finding broadly
recapitulates a large prior literature implicating these regions
in mediating trial-by-trial conflict-driven adjustments in
control5–7,40, though the present data enrich this perspective by
documenting that this frontal conflict–control network is tuned
to changing control environments via control-learning signals
computed in the insula and caudate. On the other hand, we
detected a focus in the most anterior portion of the rostral
cingulate zone41 selectively involved in reactive control processes
(Fig. 5c), as indicated by activity that scaled with the successful
resolution of residual (unpredicted) conflict. While a general
involvement of this rostral ACC territory in conflict–control
processes has been suggested by some previous studies42,43, a role
specific to the resolution of residual control prediction error has
not been articulated and merits more in-depth exploration in
future work. Note that the manner in which we identified this
rACC region makes the assumption that a higher degree of
reactive control should be associated with better resolution of
residual conflict. This type of reactive control signature implies
that the rACC plays a role in dampening the influence of
unexpected incongruent distracters on response selection,
resulting in faster responses. An alternative type of reactive
control mechanism could respond to unexpected conflict by
raising the response threshold, to delay response execution until
conflict has been resolved. Here, higher reactive control would be
associated with slower (but more accurate) responses.
Interestingly, this type of reactive control signature has been
attributed to interactions between a more dorsal ACC region and
the subthalamic nucleus44. Side-by-side, these findings raise the
intriguing possibility that different ACC territories may be
involved in two different, complementary reactive control
processes, which could be tested empirically in future studies.

To conclude, while flexibility in response to changing
environments has long been thought of as a defining character-
istic of cognitive control, the present study is, to the best of our
knowledge, the first to document the neuro-computational
mechanisms underlying the flexible adaptation of control to
time-varying demands. Extending the basic conflict-prediction
framework2, we show how changing control demand
contingencies can be effectively learned to predict conflict and
adjust cognitive control via an adaptive, volatility-driven LR.
Delineating the neural substrates of flexible control, we found that
the activity in the AI/IFG reflects a self-adjusting, volatility-
modulated LR that informs the adaptive prediction of anticipated
control demand, which appears to involve the caudate; the
predicted control demand in turn proactively guides control to
match anticipated needs, likely via the ACC and dlPFC regions;
prediction failure requires reactive control, which appears to rely
on the rostral ACC.

Methods
Subjects. Twenty-one healthy, right-handed volunteers (eight females, mean
age¼ 26 years) gave informed consent in accordance with institutional guidelines.
All subjects were native or highly proficient English-speakers and had normal or
corrected-to-normal vision. This study is approved by the Duke University Health
System Institutional Review Board. The sample size was determined based on a
previous analysis45.

Apparatus and stimuli. Stimulus delivery and behavioural data collection were
carried out using Presentation (http://www.neurobs.com/). Stimuli consisted of a
collection of 24 grey-scale photographs of male and female faces (12 each) of
neutral expression that were overlaid with red gender word labels (‘man’, ‘woman’,
‘male’ and ‘female’), which could be printed in lower or upper case lettering. Visual
stimuli were presented on a back projection screen viewed via a mirror attached to
the scanner headcoil. On each trial, one face-word compound stimulus (subtending
B3! of horizontal and 4! of vertical visual angle) was presented against a grey
background in the centre of the screen.

Procedure and task design. Stimuli were presented for 250 ms, followed by a
jittered inter-stimulus interval ranging from 4 to 6 s in uniformly distributed steps
of 500 ms, during which a fixation cross remained on screen. Subjects performed a
speeded button response that categorized the gender of the face stimulus with
either index finger (for example, left-hand response to male faces, right-hand
response to female faces, counterbalanced across subjects), while trying to
ignore the task-irrelevant gender labels. Responses were collected using an MRI-
compatible button box. To preempt low-level priming effects, face stimuli never
repeated across adjacent trials, and the lettering alternated between lower- and
upper-case across trials. A practice run was conducted before the subjects entered
the MRI scanner to ensure they comprehended the task requirements.

The task consisted of eight runs of five blocks each. The first block contained 16
trials and had 50% congruent trials and served as a burn-in block to bring
predictions to the same baseline at the beginning of each run. The remaining four
blocks contained 20 trials each. To create experimental environments that differ in
their dependence on long-term and short-term trial history, a run could be either
volatile (the proportion incongruency altered between 20 and 80% every block) or
stable (the proportion incongruency remained either 20 or 80% for all four post-
burn-in blocks), though overall, the proportion of incongruent trials was equal
between stable and volatile runs (50% congruent and 50% incongruent trials,
averaged over runs). The order of volatile and stable runs was counter-balanced
across subjects. This manipulation resulted in a 2 (volatile/stable)" 2 (proportion
incongruency)" 2 (congruency) factorial design.

Behavioural data analyses. Performance accuracy and RT were analysed using a
repeated-measure three-way ANOVA based on the factorial design. Error trials,
post-error trials, outlier trials (RT values that deviated 42.5 s.d. from an individual
subject’s grand mean), and post-outlier trials were excluded from the RT and fMRI
analyses, as these trials likely involve cognitive and/or affective processes additional
to the computations of interest in this study. Specifically, error trials reflect either
unsuccessful conflict resolution processes or lapses in task-set, and errors are
accompanied by negative affective responses46, all of which represent possible
confounding factors in our quest to model successful cognitive control over
conflict. Similarly, trials following an error are known to display ‘post-error
slowing’, possibly due to a cautionary shift in response thresholds47,48, which
represents a process that is not targeted in the current version of the flexible control
model. Outlier and post-outlier trials were excluded from the analysis because they
reflect rare extreme lapses in performance (and subsequent recovery processes) that
are not representative of the typical cognitive control regulation we attempted to
characterize. In addition, a model-based, trial-based analysis was performed.
Specifically, individual sequences of trial congruency (concatenated across runs,
with all trials included) and RS (1/RT) were processed by the flexible control model
(see below) to generate trial-based estimates of LR and predicted conflict level,
defined as the mean of the variables. Variable estimates and congruency for
excluded trials were then discarded. The remaining estimates were grouped into a
chronological vector for each model variable. As shown in Supplementary Tables 5
and 6, even though the some variables/conditions were significantly correlated with
each other, the model variables/conditions did not share much variance, likely due
to the high degrees of freedom (B600 trials per subject). These vectors were then
normalized and multiplied to form seven variable vectors (flexible LR/volatility,
predicted conflict level, congruency, and their two-way and three-way
interactions). Subsequently, these vectors were grouped, along with a constant
vector, to form a general linear model. To test the effect of each of the seven
variable vectors while ensuring that effects were not confounded by shared variance
with any of the other variables, the ‘test variable’ vector was first regressed against
the other variable vectors. The residual resulting from this regression was then fit as
a predictor to the RS vector, along with the other six variable vectors in the general
linear model as nuisance effects. The resulting fitting coefficient for the test variable
vector was then tested against 0 using a one-sample t-test across subjects.
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Flexible control model. Structurally, the flexible control model was based on the
algorithm in Behrens et al.12. In the present study we re-describe this model as an
extension of the conventional reinforcement algorithm to ensure biological
plausibility and facilitate comparison with standard fixed-LR models. The model
has four variables (Fig. 1a, lower panel), namely (1) the (volatility-driven) flexible
LR (a) that quantifies the model’s (or a subject’s) belief concerning the rate of
change of control demand (here, trial congruency) in the environment;
(2) predicted conflict (f) that represents the believed probability of encountering an
incongruent trial; (3) congruency (o) and (4) RT. Congruency and RT are observed
variables that are included to infer the hidden model belief states of the LR and
predicted conflict level. The inclusion of RT for inferring internal model states
enables the model to account for individual difference in performing this task. For
example, two subjects experiencing the same sequence of congruency but with
different RT will produce different estimates of internal belief states. Each column
in Fig. 1a represents the state of the variables in a given trial. In brief, the model
makes predictions of congruency for the forthcoming trial, and the observed
congruency and RT are used to infer model beliefs of flexible LR and conflict
predictions, which are then used to make predictions for the next trial. How the
distribution of each variable is determined by other variable(s) and/or parameter(s)
is explained in detail below. The legitimacy of the model components were
validated using model comparison (Supplementary Methods).

The transition of the flexible LR is defined to most likely remain in its previous
state; if it changes state, however, it is equally likely to jump to any other value (that
is, following a uniform probability distribution):

pðaiþ 1 j aiÞ ¼ 1# kþ kdðaiþ 1 # aiÞ

where 0oai, ko1. This definition captures the fact that, in real-life environments
(and in our task manipulation), at any given instance control demands are more
likely to stay the same than to change, which in our task is captured by the fact that
at any given trial transition, the proportion congruency is more likely to stay the
same than to jump to another value. Compared with other change point detection
algorithms, this transition function is more feasible because it does neither require
a priori knowledge of the rate of change of proportion congruency49, which is not
disclosed to the subjects in our experiment, nor a perfect memory of all previous
trials50. Note that we did not hard-code the task structure (for example, the
underlying proportion congruency changes every 20 or 80 trials) in the flexible
control model. This is due to two reasons: first, unlike a normative model that has
explicit knowledge about how LR should behave, we aimed to employ an agnostic
model with a uniform prior to infer how one’s belief of LR changes using observed
congruency and behaviour. Second, the manipulation of volatility was not disclosed
to the subjects before finishing the task. Subjects were therefore unlikely to have
strong, specific expectations concerning forthcoming changes in task volatility (that
is, change of the underlying proportion congruency). As a consequence, a uniform
prior was chosen for the model’s prediction of the LR at the forthcoming trial.
However, the choice of a uniform prior does not imply that the flexible LR is
insensitive to the underlying change of proportion congruency. As can be seen in
Fig. 2c, the flexible LR increases soon after a change in proportion congruency (that
is, at the beginning of blocks), indicating that the LR variable, using a uniform
prior, adapted to the change in the proportion of congruency, with increases in LR
in a more volatile environment, and decreases in a more stable environment.

Given the randomness of the sequence of congruency in our experiment, it is
impossible to make a precise prediction of conflict (for example, predicting conflict
level to be 0.8 with 100% certainty). Hence the prediction should be approximate,
leading to a smooth distribution of predicted conflict level. For example, high
likelihood of the predicted conflict level being 0.8 should also imply high likelihood
of predicted conflict level at values close to 0.8. Hence the belief of the predicted
conflict level being a particular value is propagated to nearby values. Because the
(un)certainty of the prediction depends on volatility (for example, given that the
prediction of the conflict level is 0.8, the distribution of true conflict level should
surround 0.8 more tightly when the volatility is lower), we further used the
volatility variable to control the propagation process in the following manner:

viþ 1 ¼
1

aiþ 1
# 2

fiþ 0:5 ' Beta fiviþ 1 þ 1; viþ 1 # fiviþ 1 þ 1ð Þ

Here, the mode of the beta distribution is fi. The sum of the two parameters in the
beta function is 1=aiþ 1. Note that this sum modulates the width of the beta
distribution (a higher sum results in a narrower beta distribution)12. Thus, a belief
of lower volatility (that is, lower LR) would result in a narrower propagation
distribution to simulate the distribution of true conflict level conditioned on the
predicted conflict level. After propagation, the predicted conflict level is updated
based on inverting the generative model under the assumption that the subject only
updates his beliefs based upon the observation of conflict. This belief update has
the form of a standard reinforcement learning rule with aiþ 1 playing the role of
learning rate:

fiþ 1 ' fiþ 0:5 þ aiþ 1ðoi # fiþ 0:5Þ

Note that we slightly abuse notation by letting viþ 1 and fiþ 1 represent the mean of
our belief distributions over these quantities in the behavioural and fMRI analysis.
This belief update model describes how the subject makes his predictions based on

observed conflict, and forms the core of our behavioural model. However, when
attempting to infer a subject’s belief we employed the RT. Therefore, when fitting
the behavioural model our estimates of the subject’s belief of viþ 1 and fiþ 1 were
updated in the following manner:

p k; aiþ 1; fiþ 1 j o1; . . . ; oiþ 1;RS1; . . . ;RSiþ 1ð Þ
/ p k; aiþ 1; fiþ 1 j o1; . . . ; oi; ;RS1; . . . ;RSi
! "

pðfiþ 1 j oiþ 1;RSiþ 1Þ

where

p fiþ 1 j oiþ 1;RSiþ 1ð Þ / ð1# j oiþ 1 # fiþ 1 j Þe#ðRSiþ 1 # aoiþ 1 fiþ 1 # boiþ 1 Þ
2=2s2

oiþ 1

Where |oiþ 1–fiþ 1| quantified the discrepancy between estimated and actual
conflict. RSiþ 1 is the reaction speed (that is, 1/RTiþ 1). RSiþ 1 was used because of
its normality, an assumption that we confirmed with tests for normality of RS for
each congruency condition in each subject using Kolmogorov–Smirnov tests (False
discovery rate corrected P40.05, indicating that the distributions do not
significantly differ from Gaussian distribution). aoiþ 1 , boiþ 1 and soiþ 1 are
congruency-specific hyper-parameters that predicted RS based on a normal
distribution whose mean is a function of fiþ 1 Nðaoiþ 1 fiþ 1 þ boiþ 1 ; soiþ 1 Þ

! "
. In other

words, because oiþ 1 can be either 0 (congruent trial) or 1 (incongruent trial), aoiþ 1 ,
boiþ 1 and soiþ 1 refer to one set of hyper-parameters for each congruency type. The
predicted RS was calculated using the hyper-parameters based on oiþ 1. These
hyper-parameters were optimized via the expectation-maximization algorithm
(Supplementary Methods). Thus e#ðRSiþ 1 # aoiþ 1 fiþ 1 # boiþ 1 Þ

2=2s2
oiþ 1 measures

unsigned prediction error of RS. Finally, note that the probabilistic distribution
of LRs in the flexible control model can alternatively be described as a dynamic
mixing of weights of several, distinct reinforcement learners with fixed LRs
(refs 49,51). The code for this model is available on request.

Calculating the BIC. The BIC was calculated for each subject as BIC¼ # 2
lnLþ kln(n), where n is the number of trials analysed, k is the number of free
parameters (0, 1, 2 for the flexible control model, the reinforcement learners with
one and two LRs, respectively), and L is the maximized value of the likelihood
function. The first term (# 2lnL) can be approximated by nlns2

e , where s2
e is the

error variance52. For the model comparison analysis using observed congruency,
we also ran an analysis where the likelihood for each trial was calculated as
1–|oi–fi|. For example, given a predicted conflict level of 0.8, the likelihood is
0.2 and 0.8 if the trial is congruent and incongruent, respectively. This approach
yielded qualitatively equivalent model comparison results (data not shown).

Image acquisition and preprocessing. Images were acquired parallel to the
AC-PC line on a 3T GE scanner (Milwaukee, WI). Structural images were scanned
using a T1-weighted SPGR axial scan sequence (146 slices, slice thickness¼ 1 mm,
TR¼ 8.124 ms, FoV¼ 256 mm" 256 mm, in-plane resolution¼ 1 mm" 1 mm).
Functional images were scanned using a T2*-weighted single-shot gradient EPI
sequence of 39 contiguous axial slices (slice thickness¼ 3 mm, repetition time
(TR)¼ 2 s, TE¼ 28 ms, flip angle¼ 90!, field of view (FoV)¼ 192 mm" 192 mm,
in-plane resolution¼ 3 mm" 3 mm). Functional data were acquired in eight runs
of 240 images each. Preprocessing was done using SPM8 (http://www.fil.ion.u-
cl.ac.uk/spm/). After discarding the first five scans of each run, the remaining
images were realigned to their mean image and corrected for differences in slice-
time acquisition. Each subject’s structural image was co-registered to the mean
functional image and normalized to the Montreal Neurological Institute template.
The transformation parameters of the structural image normalization were then
applied to the functional images. Normalized functional images were kept in their
native resolution.

Analysing neural encoding of model variables and their interactions. To gauge
the trial-wise activation in the fMRI data, a task model was built for each run.
A task model consisted of regressors representing the onset of each non-excluded
trial, along with five nuisance regressors representing the onsets of each type of
excluded trial (error trials post-error trials, outlier trials (determined using the
same criteria as in the behavioural analysis), post-outlier trials and burn-in trials)
and two other nuisance regressors separately encoding onsets of left and right
button-presses. This task model was then convolved with SPM 8’s canonical
hemodynamic response function. The convolved task model was appended by
regressors representing head motion parameters and the grand mean of the run (to
remove the run-specific baseline signal) to form a design matrix, against which the
normalized functional images were regressed. The resulting activation maps were
then concatenated across runs. As the final output of preprocessing, each grey
matter voxel obtained an activation vector that chronologically represented its
activation level at each trial (that is, t-values derived from the regressor repre-
senting that trial). The grey matter voxels were selected based on a grey matter
mask, which resulted from dilating (by one voxel) voxels whose grey matter value is
40.01 in the segmented T1 template. These activation vectors were used for fMRI
analyses below.

Both univariate analysis and multi-variate pattern analysis (MVPA) were
carried out with a searchlight approach53 that scanned through small clusters
(radius: 2 voxels) of grey matter voxels (Fig. 1b). Within each searchlight, the
univariate analysis assessed homogeneous encoding by amplitude by fitting the
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variable vector to the searchlight mean activation vector. The univariate analysis
was conducted via a two-fold averaging approach between the first and last four
scanning runs. Each half contained two volatile runs and two stables runs (one for
each proportion of incongruent trials) and was tested separately. The results were
averaged across the two halves to reduce the impact of outliers. The MVPA
quantified distributed encoding by the amount of signal variance in a model
variable vector that could be explained by the mean-centred activation vectors from
all voxels in a given searchlight through linear regression. The removal of
searchlight mean signals renders the MVPA independent from the univariate
analysis. Over-fitting was controlled for by a two-fold cross-validation scheme
between the first and last four scanning runs. To ensure the unique attribution of
fMRI signal to a given variable, all other variable and interaction vectors were used
as nuisance variables in both analyses.

For each analysis, the quantification of encoding (that is, the mean z value of the
two-fold cross validation for the multivariate analysis, or the mean z value across the
two folds in the univariate analysis) was mapped to the centre voxel of each
searchlight to form a spatial map of information content. The map was then
smoothed using a Gaussian kernel of 6 mm (2 voxels) radius. One-sample t-tests were
then conducted across individual maps to test for group-level (random) effects of
homogeneous encoding and distributed encoding. To ensure that the assumptions of
the t-tests were met, note that (1) for each searchlight, the z values are independently
sampled from the subjects, thus fulfilling the assumption of independent sampling;
and (2) the z-scores were derived from Fisher’s z-transform and followed a Gaussian
distribution, such that the smoothed and averaged z-scores are also Gaussian-
distributed, fulfilling the t-test’s assumption of a normal distribution.

Statistical results were corrected for multiple comparisons at Po0.05 for
combined searchlight classification accuracy and cluster extent thresholds, using the
AFNI ClustSim algorithm (http://afni.nimh.nih.gov/pub/dist/doc/program_help/
3dClustSim.html). Specifically, 10,000 Monte Carlo simulations were conducted, each
generating a random statistical map based on the smoothness of the map resulting
from the aforementioned group-level t-tests. For each randomly generated map, the
algorithm searched for clusters using a voxel-wise P value threshold of o0.01. The
identified clusters were then grouped to produce a null distribution of cluster size. As
a result, the ClustSim algorithm determined that an uncorrected voxelwise P value
threshold of o0.01 in combination with a searchlight cluster size 30 to 35 searchlights
(depending on the specific contrast) ensured a false discovery rate of o0.05. This
approach conforms to recent recommendations on statistical analysis and multiple
testing correction in MVPA54.
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