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The Caudate Nucleus Mediates Learning of
Stimulus–Control State Associations
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A longstanding dichotomy in cognitive psychology and neuroscience pits controlled, top-down driven behavior against associative,
bottom-up driven behavior, where cognitive control processes allow us to override well-learned stimulus–response (S–R) associations.
By contrast, some previous studies have raised the intriguing possibility of an integration between associative and controlled processing
in the form of stimulus– control state (S–C) associations, the learned linkage of specific stimuli to particular control states, such as high
attentional selectivity. The neural machinery mediating S–C learning remains poorly understood, however. Here, we combined human
functional magnetic resonance imaging (fMRI) with a previously developed Stroop protocol that allowed us to dissociate reductions in
Stroop interference based on S–R learning from those based on S–C learning. We modeled subjects’ acquisition of S–C and S–R associ-
ations using an associative learning model and then used trial-by-trial S–C and S–R prediction error (PE) estimates in model-based
behavioral and fMRI analyses. We found that PE estimates derived from S–C and S–R associations accounted for the reductions in
behavioral Stroop interference effects in the S–C and S–R learning conditions, respectively. Moreover, model-based fMRI analyses
identified the caudate nucleus as the key structure involved in selectively updating stimulus– control state associations. Complementary
analyses also revealed a greater reliance on parietal cortex when using the learned S–R versus S–C associations to minimize Stroop
interference. These results support the emerging view that generalizable control states can become associated with specific bottom-up
cues, and they place the caudate nucleus of the dorsal striatum at the center of the neural stimulus– control learning machinery.
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Introduction
“Cognitive control” describes a collection of mechanisms that
coordinate our thoughts and actions in line with internal goals

(Miller and Cohen, 2001). Traditionally, control is conceptual-
ized in juxtaposition to associative processing, because it allows
us to override well-learned behaviors to produce responses that
are more suitable to the current context (Ach, 1910; Schneider
and Shiffrin, 1977; Norman and Shallice, 1986; Cohen et al.,
1990). For instance, the classic Stroop task requires subjects to
name the ink color of color words (Stroop, 1935; MacLeod,
1991), thus pitting a temporary instructed goal (color naming)
against an overlearned behavior (word reading). Slowed re-
sponses on incongruent trials (e.g., the word “RED” printed in
blue ink) compared to congruent trials (e.g., “RED” in red) re-
flect the difficulty of overriding the habitual word-reading pro-
cess. Running into such difficulty, in turn, is thought to elicit a
strategic upregulation in control, enhancing the top-down over-
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Significance Statement

Previous behavioral studies have demonstrated that control states, for instance, heightened attentional selectivity, can become
directly associated with, and subsequently retrieved by, particular stimuli, thus breaking down the traditional dichotomy between
top-down and bottom-up driven behavior. However, the neural mechanisms underlying this type of stimulus– control learning
remain poorly understood. We therefore combined noninvasive human neuroimaging with a task that allowed us to dissociate the
acquisition of stimulus– control associations from that of stimulus–response associations. The results revealed the caudate
nucleus as the key brain structure involved in selectively driving stimulus– control learning. These data represent the first iden-
tification of the neural mechanisms of stimulus-specific control associations, and they significantly extend current conceptions of
the type of learning processes mediated by the caudate.
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ride of the word-reading associations triggered by the bottom-up
stimulus (Botvinick et al., 2001). However, this historical dichot-
omy of controlled versus memory-guided responding ignores the
fact that context-sensitive application of cognitive control re-
quires one to associate particular situations or stimuli with ap-
propriate control states. Thus, cognitive control itself must rely
on learning (Braver and Cohen, 2000; Botvinicket al., 2001; Frank
et al., 2001; Egner, 2014).

Accordingly, previous behavioral work has demonstrated that
attentional control states can be directly associated with, and
subsequently retrieved by, particular bottom-up stimuli or con-
textual cues (Crump et al., 2006; Spapé and Hommel, 2008;
Crump and Milliken, 2009; Crump and Logan, 2010; Cosman
and Vecera, 2013). Here, rather than having to experience per-
formance difficulty to strategically adjust controlled processing
in response to that difficulty, features of the stimulus itself appear
to directly trigger the retrieval of the appropriate control state.
This type of bottom-up priming of control states therefore has
the merit of combining the speed of “automatic” processing with
the flexibility and generalizability of controlled processing
(Egner, 2014). The neural mechanisms mediating this integra-
tion of bottom-up and top-down processing are presently not
well understood, however. The extant neuroimaging studies in-
terrogating this type of control learning have investigated the
linking of spatial contexts (stimulus location) or temporal con-
texts (trial type history) to varying control demands (King et al.,
2012; Jiang et al., 2015a,b). However, no study to date has exam-
ined the neural mechanisms underlying stimulus– control (S–C)
learning—the acquisition of associations between specific stimuli
and appropriate control states—and assessed how these mecha-
nisms may differ from classic stimulus–response (S–R) learning.

The present study pursued this goal by adapting a recently
developed experimental approach (Bugg et al., 2011) that allowed
us to dissociate S–C learning from S–R learning in the context of
a single task (see Materials and Methods, Experimental ratio-
nale). We combined this protocol with functional magnetic res-
onance imaging (fMRI) in healthy human participants to isolate
the neural mechanisms of S–C learning. To this end, we used an
associative learning algorithm (Sutton and Barto, 1998) to model
subjects’ learning of S–C and S–R associations. After modeling
each individual subject’s learning, we then used the trialwise S–C
and S–R prediction error (PE) estimates in model-based fMRI
analyses to identify brain regions that selectively mediate the ac-
quisition of stimulus– control state associations. To preview the
results, we found that the caudate nucleus is the key structure for
associating stimuli with appropriate attentional control states
(but not with specific responses).

Materials and Methods
Experimental rationale. Excitement about the possibility of S–C associa-
tions first arose from the demonstration of an “item-specific proportion
congruency” (ISPC) effect in the Stroop task (Jacoby et al., 2003). While
keeping the overall proportion of congruent versus incongruent trials
[proportion congruency (PC)] at 50%, the authors manipulated the fre-
quency with which the task-irrelevant stimulus feature (i.e., the color
words) appeared as congruent or incongruent stimuli. In other words,
the PC was manipulated at the stimulus/item level. Thus, particular color
words could be either frequently incongruent (e.g., the word “RED” is
paired with green ink 75% of the time) or rarely incongruent (e.g., the
word “BLUE” is paired with blue ink 75% of the time). The key finding
was that Stroop interference [incongruent vs congruent trial response
time (RT)] was attenuated in the frequently incongruent items compared
to the rarely incongruent ones (Jacoby et al., 2003). While this finding
could in theory be an expression of S–C learning, whereby frequently

incongruent items become associated with a stronger attentional focus
on ink color (Jacoby et al., 2003), it has subsequently been shown that this
modulation of Stroop interference was instead an expression of S–R
learning: In reference to the above example, subjects simply learned to
associate the word “RED” with a “green” response (Schmidt and Besner,
2008).

Importantly, Bugg et al. (2011) introduced a novel variation on the
ISPC design that deconfounds the cuing of PC from the cuing of the
correct response. Specifically, their design contrasts an S–R learning con-
dition, where the source of PC cuing is the task-irrelevant stimulus fea-
ture [as in the study by Jacoby et al. (2003)], with an S–C learning
condition, where it is the task-relevant feature that cues PC. The rationale
is that when the task-irrelevant feature is associated with a biased PC
(e.g., signaling 75% congruent stimuli), this is accompanied by a corre-
sponding biased signaling of the correct response. However, when the
task-relevant feature is associated with a biased PC, this does not alter the
association between that stimulus feature and the correct response, be-
cause the task-relevant stimulus feature is always associated with the
correct response, regardless of whether it is more frequently accompa-
nied by a congruent or an incongruent task-irrelevant feature. Thus, any
reduction in Stroop interference for frequently incongruent as compared
to rarely incongruent stimuli where the task-relevant feature cues PC
cannot be driven by S–R associations and therefore is attributable to S–C
learning. Using this design, Bugg et al. (2011) successfully demonstrated
an ISPC pattern that was driven by S–C learning.

To investigate the neural mechanism associated with the acquisition of
stimulus– control state associations, we here adapted this protocol to a
face–name Stroop task and combined it with fMRI. Participants had to
indicate the identity of famous actors’ faces via button press while ignor-
ing congruent or incongruent names written across the faces (Fig. 1).
Unbeknownst to the participants, in one condition it was the task-
irrelevant feature (names) that predicted congruency (S–R learning
condition; Fig. 1, Table 1), whereas in another condition, it was the
task-relevant feature (faces) that was predictive of congruency (S–C
learning condition; Fig. 1, Table 2). By contrasting S–C and S–R learning
conditions, we aimed to reveal the neural substrates that selectively sup-
port the linking of specific stimuli with optimal control states.

Participants. Twenty-eight right-handed volunteers (15 females, 13
males; age, 20 –38; mean, 26.7; SD, 5.4) gave written informed consent to
participate in this study, which was approved by the Duke University
Healthy System Institutional Review Board. All participants had normal
or corrected-to-normal vision and reported no history of neurological or
psychiatric disorders. Participants were compensated with $30 for their
time (1.5 h). Data from six participants were excluded, three due to
excessive motion and three due to poor behavioral performance (accu-
racy �70%).

Stimuli. The face–name Stroop task used eight well-known male ac-
tors’ face images and their printed last names (actors Brad Pitt, Tom
Cruise, Matt Damon, George Clooney, Tom Hanks, Morgan Freeman,
Will Smith, and Leonardo DiCaprio). Names were overlaid on faces to
produce compound face–name stimuli, which could be congruent (e.g.,
Brad Pitt’s face paired with a “Pitt” name label) or incongruent (e.g., Brad
Pitt’s face combined with a “Hanks” name label; Fig. 1). The images were
collected from the Internet; cropped to reveal only face, hair, and ear
features; turned into gray-scaled images; and resized to 324 � 405 pixels
(6.9 � 8.6°). For each participant, each face image was randomly as-
signed to one of the experimental conditions.

Procedure. Each participant performed two sets (three consecutive
scan runs per set) of a face–name Stroop task in the scanner, with one of
the sets comprising the S–C learning condition and the other one the S–R
learning condition. Each set involved four actors’ faces and their corre-
sponding names. The order in which the two sets/conditions were ad-
ministered was counterbalanced across participants. For both sets, the
participants were instructed to identify, via a button press, the actor
whose face (target) was shown in the presented compound stimulus,
while ignoring the name (distracter) written on the face. Participants
were not informed about any contingency manipulation (Tables 1, 2) in
the task. Thus, from the participants’ perspective, they performed the
same task (identifying actor’s faces) throughout all six runs of the exper-
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iment, with a change in stimulus set occurring halfway through the
experiment.

Each trial started with a central fixation cross shown for 300 ms, fol-
lowed by a face–name compound stimulus shown for 1000 ms, during
which participants had to make a manual button press response to iden-
tify the face (i.e., RT limit, 1000 ms). After stimulus offset, a blank screen
was shown during a variable intertrial interval randomly drawn from a
pseudoexponential distribution of 2.5–3.75 s (mean, 3 s; step size, 250
ms). No trialwise feedback was provided, but the mean accuracy and
response time was provided at the end of each run. Participants were
encouraged to be as accurate as possible while responding within the
response deadline (1000 ms).

Before each set, participants received written instructions about the
S–R mapping and were given a short practice block of 40 trials to famil-
iarize themselves with the goal of the task and the assigned S–R mapping.
For the first set, the practice block was performed outside of the scanner,
and for the second set, the practice block was performed during the
anatomical scan in the scanner. During the practice blocks, to facilitate
the learning of the assigned S–R mapping, the distracter names were
replaced with “XXXX” (i.e., neutral distractors). There were four differ-

ent actors in each set, which mapped onto four different response but-
tons. In the scanner, participants held two MR-compatible response
boxes, one in each hand. They were instructed to use their index and
middle finger of each hand to press the designated buttons.

Design. In both sets, half of the trials were face–name congruent trials,
and half were incongruent trials (Tables 1, 2). With four faces and four
names in each set, there were a total of 16 unique face–name combina-
tions per set. However, unbeknownst to the participants, the frequency
of each face–name combination was biased, and the type of frequency
manipulation differentiated the two sets into S–C learning versus S–R
learning conditions (Tables 1, 2; Fig. 1). Specifically, in the S–C learning
condition, two of the faces (i.e., the target feature) were associated 75% of
the time with incongruent distracters (“frequently incongruent faces”),
whereas the other two faces were associated only 25% of the time with
incongruent distracters (“rarely incongruent faces”), while none of the
names was predictive of proportion congruency. In contrast, in the S–R
learning condition, two of the names (i.e., the distracter feature) were
associated with incongruent targets 75% of the time (“frequently incon-
gruent names”), whereas the other two names were associated with in-
congruent targets only 25% of the time (“rarely incongruent names”),
while none of the faces were predictive of proportion congruency.

Thus, both conditions involved predictive associations based on PC,
with the only difference between the two learning conditions being the
source of the PC prediction: in the S–C learning condition, it was the
task-relevant feature (i.e., the face) that signaled PC, whereas in the S–R
learning condition, it was the task-irrelevant feature (i.e., the name) that
signaled PC. This means that in the S–R learning condition, the distracter
name was probabilistically tied to both the PC and the correct response
(e.g., the distracter name “Pitt” assigned to signal 75% congruency also
signaled a 75% chance of being paired with Brad Pitt’s face, and thus a
“Pitt” response). This should result in faster responses for more probable
face–name combinations than less probable ones. Importantly, while this
distracter–PC association could in theory facilitate both the linking of
distracters with control states (S–C learning) and with response selection
(S–R learning), previous studies have shown that behavioral effects in
this type of manipulation are driven predominantly by S–R learning,
presumably because exploiting direct S–R links is less effortful than re-
trieving appropriate control states for facilitating performance (Schmidt
and Besner, 2008). By contrast, since faces are the task-relevant stimulus
feature, a given face is associated with a particular face response 100% of
the time, and therefore any performance benefit derived from faces pre-
dicting PC in the S–C learning condition cannot be attributed to S–R
learning, but instead must derive from the association between the face

Figure 1. Task design and stimuli. Example of frequently incongruent and rarely incongruent stimuli used in the face–name Stroop task. In the S–C learning condition, targets (face stimuli) are predictive of
proportion congruency, whereas in the S–R learning condition, distracters (names) are predictive of proportion congruency and responses. See Tables 1 and 2 for the exact trial numbers for each stimulus. Note
that these images are for illustration purpose only and are not the exact same ones used in the experiment (see Materials and Methods). The images used in this example are work in the public domain; for details,
see https://commons.wikimedia.org/wiki/File:George.Clooneywiki1.jpg, https://commons.wikimedia.org/wiki/File:Leonardo_DiCaprio_June_2014.jpg, https://commons.wikimedia.org/wiki/File:Matt_ D
a m o n _ T I F F _ 2 0 1 5 . j p g, and https://commons.wikimedia.org/wiki/File:Tom_Hanks_2014.jpg.

Table 1. Trial numbers for each face–name stimulus compound in the
stimulus–response learning condition

Name 5 Name 6 Name 7 Name 8
p (incongruent�
facej)

Face 5 63 30 3 30 0.5
Face 6 9 21 9 3 0.5
Face 7 3 30 63 30 0.5
Face 8 9 3 9 21 0.5
p (incongruent�namei) 0.25 0.75 0.25 0.75

Table 2. Trial numbers for each face–name stimulus compound in the
stimulus– control learning condition

Face 1 Face 2 Face 3 Face 4
p (incongruent�
namei)

Name 1 63 30 3 30 0.5
Name 2 9 21 9 3 0.5
Name 3 3 30 63 30 0.5
Name 4 9 3 9 21 0.5
p (incongruent�facej) 0.25 0.75 0.25 0.75
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and the appropriate control state (Bugg et al., 2011). By contrasting
behavioral effects and neural substrates between the S–C and S–R learn-
ing conditions, we could therefore isolate the mechanism that mediates
stimulus-driven control learning.

With this design, the S–R and S–C learning face–name stimulus sets
yielded four experimental conditions each: (1) congruent trials for stim-
uli associated with incongruent distracters 75% of the time (frequently
incongruent/congruent), (2) incongruent trials for stimuli associated
with incongruent distracters 75% of the time (frequently incongruent/
incongruent), (3) congruent trials for stimuli associated with incongru-
ent distracters 25% of the time (rarely incongruent/congruent), and (4)
incongruent trials for stimuli associated with incongruent distracters
25% of the time (rarely congruent/incongruent). Behavioral and neural
data could therefore be analyzed according to a factorial 2 (learning
condition, S–C vs S–R) � 2 (PC association, frequently incongruent vs
rarely incongruent) � 2 (current trial congruency, congruent vs incon-
gruent) design. In addition, to explore the time course of the acquisition
of the ISPC effect, we divided the response time data into three blocks of
112 trials each and calculated the ISPC effect for each block separately.
The data were then analyzed with a 2 (learning condition, S–C vs S–R) �
3 (block) ANOVA.

Importantly, this protocol additionally allowed us to directly model
the putative associative learning process taking place for each type of
stimulus. To this end, we used a standard reinforcement learning (RL)
modeling approach (Sutton and Barto, 1998), which assumes that the
participants form associations between the faces (or names) and propor-
tion congruency (and responses, in the S–R learning condition), i.e., the
likelihood of encountering a given face or name in the context of a
congruent or incongruent trial. The strength of these associations is up-
dated as a function of the difference between expected (based on previous
co-occurrence) and observed congruency, i.e., a prediction error (PE).
Thus, if a participant had formed an expectation of a specific face pre-
dicting a congruent trial and this prediction is violated (that face occurs
in the context of an incongruent trial), the prediction is updated, in this
case by reducing the expectation that this face would occur in the context
of a congruent trial in the future. The degree to which prediction errors
update associations is a function of the participant’s learning rate, which
is fit by the associative learning model, as described below. Therefore, in
line with a large prior literature on RL (Seymour et al., 2004; Daw et al.,
2006), we used condition-specific PEs to track subjects’ learning pro-
cess and to reveal the underlying neural mechanisms of S–C versus
S–R learning.

Modeling of prediction error. To quantitatively model how the S–C and
S–R associations were acquired, one associative learning model was used
for each face stimulus and each name label, in each participant. In other
words, for each face/name, we extracted all trials in which that face/name
was presented to form a new trial vector. In this trial vector, the learning
process that associated each face/name to PC was modeled as pi � 1 � pi

� �(ci � pi), where pi � 1 is the predicted congruency (specifically, the
predicted probability of encountering an incongruent face–name com-
pound) at trial i � 1, which is given by the predicted congruency in the last
trial, pi, and an updating term based on the previous-trial PE (ci � pi),
weighted by a learning rate �. For each participant, two �s were used, one for
all faces (i.e., the learning rate for forming face–PC associations) and one for
all names (i.e., the learning rate for forming name–PC/response associa-
tions). Note that the two learning conditions were modeled together. Thus,
the learning rates (one for all faces and one for all names) were the same
across the S–C and S–R learning conditions in a given participant. To deter-
mine the best-fitting �s, we conducted an exhaustive search (�� 0.01 – 0.99;
step size, 0.01): for each pair of �s, the trial-by-trial predicted congruency
was calculated separately using the associative learning models based
on the faces and names, respectively. The unsigned PE of congruency
was then used to account for RT in a trial-by-trial fashion using a
linear model with a least-square objective function (Jiang et al.,
2015a), namely, RT � [�PEface�, �PEname�,�1].

We used RT to fit the model parameters based on the hypothesis that if
participants used the stimulus–PC and stimulus–response associations
to adjust their information processing strategy, this should be reflected in
their RT. In model fitting, to account for the main effect of congruency

on RT, we modeled congruent and incongruent trials separately. We also
maximized the correlation between RT and unsigned PE based on the
theoretical prediction that the behavioral ISPC effect is manifested as
slower responses when there is a mismatch between the expected and
observed congruency (e.g., longer RT in congruent/incongruent trials
with a larger unsigned PE). Therefore, as ISPC is a joint effect of congru-
ent and incongruent trials, the best model-fitting parameters were
searched while keeping the correlation coefficient across congruent and
incongruent trials positive or at least zero. Our modeling approach fo-
cuses on independent contributions from PEface and PEname to learning,
rather than a combined contribution (e.g., using the linear weighted sum
to generate a unified PE), based on two key theoretical considerations:
First, our design intentionally discourages an integration of face and
name features in the service of predicting congruency, as only one of the
two stimulus features is ever predictive of congruency at any one time
(i.e., names in the S–R learning runs and faces in the S–C learning runs,
respectively; Tables 1, 2). Second, and most importantly, the two condi-
tions are of course assumed to foster qualitatively different kinds of as-
sociations (S–R vs S–C associations), as supported by a number of
previous studies (Schmidt and Besner, 2008; Bugg et al., 2011), and the
present study is specifically targeted at differentiating the neural sub-
strates of those different learning strategies. Nonetheless, we conducted a
formal model comparison to establish that an independent PE model
resulted in a superior fit of behavior than a combined PE model (see
below, Alternative model and model comparison).

Following exhaustive search, the learning rates that accounted for the
most variance in RT were then used in the associative learning models to
generate trial-by-trial PE estimates of congruency in each participant, for
the faces (PEface) and names (PEname) separately. The trial-by-trial PE
values were then used as the parametric modulators in the fMRI analyses,
which allowed us to pinpoint neural substrates of learning (prediction
updates) to link stimuli to either a heightened attentional control state
(PEface in the S–C learning condition) or to specific responses (PEname in
the S–R learning condition), and to directly contrast the two. Note that
because the learning rates were obtained within each participant, this
procedure did not violate the assumption of independence of data in the
group-level model-based behavioral analysis described below in Model-
based behavioral analysis.

Model-based behavioral analysis. We conducted a model-based behav-
ioral analysis relating the associative model PE parameter to participants’
mean RT ISPC effects to corroborate that ISPC effects are adequately
captured by this type of associative learning model. Specifically, to obtain
an estimate of the amount of variance in RT across all trials that was
explained by the trial-by-trial PE derived from faces versus from names
in the S–C versus S–R learning conditions, we performed a multiple
regression analysis. Here, RT served as the dependent variable, and the
trial-by-trial PEface and PEname obtained from the above modeling, along
with four binary “bottom-up factors,” served as predictor variables, re-
sulting in a total of six regressors for each learning condition. The first
binary factor coded for the congruency of the current trial, the second
coded for potential repetition of the face, the third coded for potential
repetition of the name, and the fourth factor coded for whether both
stimulus features repeated or changed simultaneously (complete repeti-
tions/alternations) versus whether only one of the two was repeated from
the previous trial (partial repetitions). Although these factors were not of
interest here, we included them to account for variance in RT that could
be attributable to well-known trial sequence effects (cf. Notebaert and
Verguts, 2007), to isolate the variance explained by PEface and PEname

above and beyond these bottom-up stimulus factors. To be consistent
with the model-fitting approach described above, we also constrained the
correlation between RT and unsigned PE to be positive. Finally, for the
following group-level model-based behavioral analysis, we extracted the
standardized coefficients (t) of PEface and PEname from the multiple re-
gression analysis.

To test whether the ISPC effects in the S–C learning and S–R learning
conditions were in fact driven by the hypothesized face–PC and name–
PC/response associations, respectively, we performed four cross-subject
correlations: two correlation analyses assessed the relationships between
the behavioral ISPC effect (RT) in the S–C learning condition and the
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regression weights of PEface and PEname on RT in that condition, and
another two correlation analyses assessed the relationships between the
behavioral ISPC effect (RT) in the S–R learning condition and the regres-
sion weights of PEface and PEname on RT in that condition. If the putative
associative learning model offers an appropriate account of these ISPC
effects, we would expect a significant correlation between the ISPC effect
and the regression weight of PEface (but not PEname) in the S–C learning
condition as well as a significant correlation between the ISPC effect and
the regression weight of PEname (but not PEface) in the S–R learning
condition.

Alternative model and model comparison. Despite having a strong the-
oretical rationale for assuming independent PE contributions in model
fitting, we nonetheless performed a formal model comparison between
independent PE versus combined PE model variants. Specifically, we
performed a model comparison using a threefold cross-validation pro-
cedure (Efron, 1983) with respect to whether a model can account for the
variance in the trial-by-trial RT. This cross-validation procedure insures
against overfitting and allows for an unbiased comparison between mod-
els with varying numbers of free parameters (the combined PE models
have one additional parameter). Data were divided into three folds. In
each cross-validation, two folds of data served as the training set to obtain
the optimal free parameters (i.e., learning rates and weights), which were
then used to derive the trial-by-trial PE estimates in the remaining fold of
data (i.e., the test set). We then calculated the amount of variance in
terms of the trial by trial RT in the test set that was accounted for by a
particular model. This procedure was repeated until each fold served as
the test set once for each model. The extent to which a particular model
accounted for a subject’s trial RT was quantified by the mean squared
error and was taken as (negative) model evidence at the subject level.
Individual model evidence was then submitted to a group-level Bayesian
model selection analysis to evaluate the likelihood that a specific model
generated the data of a randomly chosen subject and to compute the
exceedance probability of one model being more likely than any other
models (Stephan et al., 2009). The exceedance probability of the inde-
pendent PE model was 1.00, suggesting that data from 22 out of 22
subjects favored the independent PE model over the combined PE
model. As a result, we used the parameters estimated by the independent
PE model in the subsequent fMRI analyses.

fMRI acquisition. Images were acquired on a 3.0T GE MR750 Scanner
with an eight-channel head coil. Functional images were acquired with a
T2*-weighted gradient-echo EPI sequence of 40 contiguous axial slices
(TR, 2000 ms; TE, 28 ms; flip angle, 90°; FoV, 192 � 192 mm; voxel size,
3 � 3 � 3 mm). Anatomical images were acquired with a T1-weighted
Spoiled Gradient Echo (SPGR) acquisition in a steady state axial se-
quence of 120 1-mm-thick slices (TR, 7.668 ms; TE, 2.936 ms; FoV,
256 � 256 mm; voxel size, 1 � 1 � 1 mm). The face–name Stroop task
was acquired in six runs (three runs of S–C learning and three runs of S–R
learning) of 176 images each.

fMRI preprocessing. All preprocessing and statistical analysis was per-
formed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)
with the exception that spatial normalization to the MNI template was
performed using Advanced Normalization Tools (ANTS) (Avants et al.,
2011). The first four images of each functional run were discarded, as
these were acquired to allow for saturation of the MR signal. Functional
data were slice-time and motion corrected. Each participant’s EPI vol-
umes were coregistered to that participant’s anatomical scan. Each ana-
tomical scan was then normalized to the MNI template brain, and the
resulting transformation was applied to each EPI volume to achieve
alignment to the common space. Normalized functional data were resa-
mpled into 3 � 3 � 3 mm voxel size and were smoothed using an 8 mm
Gaussian kernel. The standard general linear model (GLM) approach
(Friston et al., 1994) with participants treated as random effects was used
to estimate parameter values.

fMRI analyses. The face–name Stroop task was modeled in the GLM
framework using a design matrix with eight event regressors of interests,
which modeled the full-factorial design described above [i.e., 2 (learning
condition, S–C vs S–R) � 2 (PC association, frequently incongruent vs
rarely incongruent) � 2 (current trial congruency, congruent vs incon-
gruent)]. Importantly, we added to each of these conditions four para-

metric modulators that modeled trial-by-trial congruency prediction
error (PEface and PEname) and whether the face or name stimuli were
repeated from the previous trial. Specifically, the PE regressor modeled
trial-to-trial variance in fMRI signal that varied linearly with trial-to-trial
variance in the PE as determined by an associative learning model with a
subject-specific learning rate (see Modeling of prediction error). The last
two modulators were binary regressors included to control for nuisance
priming effects due to possible repetition of the same physical face/name
from the previous trial. Note that we entered the PE modulator of interest
(i.e., PEface in the S–C learning condition and PEname in the S–R learning
condition) as the last parametric modulator in the GLM model and
imposed serial orthogonalization. This approach ensured that we ob-
tained the specific and unique variance accounted for by the PE modu-
lator of interest (Mumford et al., 2015). Finally, error trials were modeled
in two separate nuisance regressors (one for each learning condition). All
regressors (except for the modulators) were created by convolving a
canonical hemodynamic response function (HRF) with an impulse func-
tion marking the temporal onset of each event. For the parametric mod-
ulators, the magnitude of these regressors modulated the amplitude of an
impulse function, which was then convolved with a HRF. In addition, six
realignment parameters and six run constants were also included in the
GLM to account for participant motion and differences in mean activity
across runs. Note that all six runs of fMRI data were modeled and ana-
lyzed with a single design matrix to facilitate direct within-subject con-
trasts between the two learning conditions.

The following within-subject contrasts were performed on the first-
level GLM result. As our main question lay with determining distinct
neural learning mechanisms underlying the formation of S–C as com-
pared to S–R learning, we focused on model-based fMRI analysis to
assess the neural signature of PE in the S–C and S–R learning conditions.
To this end, we first report the main effects of PEface in the S–C learning
condition and PEname in the S–R learning condition separately. Next, to
identify regions that selectively mediate stimulus–PC associations in the
S–C learning condition but not in the S–R learning condition, and vice
versa, we performed a conjunction (Nichols et al., 2005) between the
contrast of PEface � baseline and PEface � PEname. This conjunctive
analysis thus identified brain regions that were significantly associated
with S–C learning, and significantly more so than with S–R learning. For
completeness sake, we also performed a conjunction between the con-
trast of PEname � baseline and PEname � PEface.

Second, we also performed conventional, condition-based contrasts to
pinpoint neural substrates of the ISPC effect (i.e., attenuated interference for
frequently incongruent items as compared to rarely incongruent items) in
the S–C and S–R learning conditions, respectively. This analysis mirrors the
behavioral analysis as outlined above. Furthermore, it complements the
model-based, learning-focused analysis above by examining the difference
in mean activity between trial types across the two learning conditions. The
ISPC contrasts were obtained by subtracting the trial congruency effect (in-
congruent � congruent) in the frequently incongruent items from the trial
congruency effect in the rarely incongruent items, which should reveal neu-
ral correlates of attenuated interference as a result of learning. We then con-
ducted a direct comparison between the two, to determine regions that were
selectively more involved as a result of one type of association than the other.
All of these within-subject contrasts were entered into a second-level group
analysis where participants were treated as random effects. All group-level
results were corrected for multiple comparisons to yield a whole-brain fami-
lywise error rate at 0.05 by combining a voxelwise threshold of p � 0.005
with a cluster size threshold determined using SPM8 and the CorrClusTh
script (http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-
research/nichols/scripts/spm/spm8/corrclusth.m). The estimated in-
trinsic smoothness was based on residual images in the analysis.
Cluster size thresholds ranged from 67 to 72, depending on the spe-
cific contrast.

Results
Behavioral data
Mean RT and accuracy
Mean RT and accuracy were analyzed in separate 2 (learning
condition, S–C vs S–R) � 2 (PC association, frequently incon-
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gruent vs rarely incongruent) � 2 (current trial congruency, con-
gruent vs incongruent) repeated-measures ANOVAs. Only RT
data from correct trials were analyzed. As expected, we observed
a main effect of congruency (F(1, 21) � 48.04, p � 0.001, �p �
0.70), as participants responded faster on congruent trials (mean,
621; 95% CI, [597, 649]) than on incongruent trials (mean, 653;
95% CI, [626, 683]; Fig. 2a, Table 3). Also as expected, the con-
gruency effects was modulated by PC, as indicated by a PC by
congruency interaction (F(1, 21) � 25.79, p � 0.001, �p � 0.55),
which was due to a significant congruency effect in the rarely

incongruent condition (t(21) � 9.45, p � 0.001, Cohen’s d �
2.06), accompanied by a lack of a congruency effect in the fre-
quently incongruent condition (t(21) � 1.98, p � 0.05, Cohen’s
d � 0.43). This finding represents the classic ISPC effect, which,
importantly, was significant in both the S–R learning condition
(F(1,21) � 17.77, p � 0.001, �p � 0.46) and the S–C learning
condition (F(1,21) � 4.44, p � 0.047, �p � 0.18). In line with
previous findings, the relative benefits derived from the predic-
tive associations were greater in the S–R learning condition (ISPC
mean, 62; 95% CI, [34, 90]) than in the S–C learning condition

Figure 2. Behavioral results. a, Correct RTs as a function of item-specific proportion congruency and trial congruency in the S–C learning condition (left) and in the S–R learning condition (right).
b, Behavioral ISPC effect as a function of block separately for the S–C and S–R learning condition. c, Learning rates for face–PC associations and name–PC/response associations across the S–C and
S–R learning conditions. Each open circle represents a single participant. Error bars show mean � within-subject SEs (Franz and Loftus, 2012).

Table 3. Response time (ms) and accuracy (%) for S–C and S–R learning conditions

Rarely incongruent Frequently incongruent

Learning condition Congruent trial Incongruent trial Congruent trial Incongruent trial

Accuracy (%) S–C 94 	92, 97
 89 	84, 94
 95 	92, 98
 91 	88, 94

S–R 96 	95, 98
 91 	88, 95
 95 	91, 97
 93 	91, 95


Response Time (ms) S–C 621 	593, 653
 663 	628, 703
 622 	595, 653
 651 	620, 686

S–R 604 	584, 626
 662 	636, 691
 639 	612, 668
 635 	611, 659


Data are means with 95% confidence intervals.
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(ISPC mean, 13; 95% CI, [1, 25]), as evidenced by a significant
three-way interaction effect (F(1, 21) � 8.21, p � 0.01, �p � 0.28;
Fig. 2a, Table 3). No other RT main effects and two-way interac-
tions were significant (F values � 2.32, p values �.05). Finally,
the main effect of block as well as the interaction did not ap-
proach significance (block, F(2,42) � 0.06, p � 0.05, �p � 0.003;
interaction, F(2,42) � 0.22, p � 0.05, �p � 0.01). This result indi-
cates that in both learning conditions, the ISPC effect is acquired
fairly quickly and is stable over time (Fig. 2b), which is in line with
previous findings (Jacoby et al., 2003).

Participants performed the face–name Stroop task with high
accuracy (mean, 93; 95% CI, [91, 95]), and they were more accu-
rate on congruent trials (mean, 95; 95% CI, [93, 97]) than on
incongruent trials (mean, 91; 95% CI, [88, 94]; main effect of trial
congruency, F(1, 21) � 18.33, p � 0.001, �p � 0.47; Table 3). No
other main effects or interactions involving accuracy were signif-
icant (F values � 3.59, p values �.05).

In sum, the basic analyses of mean performance data suggest
that our task manipulations were successful in producing two
varieties of ISPC effect, one driven primarily by S–R learning, and
the other one driven by S–C learning. To corroborate this con-
clusion, we next conducted a set of RL model-based analyses that
directly related the associative learning of target (face) and dis-
tracter (name) stimuli to the ISPC effects in the two learning
conditions.

Model-based analyses
First, to ensure that participants had used face–PC associations
and name–PC/response associations in adjusting behavior in a
similar fashion, we performed a paired t test on the learning rates
(�) for faces and names. The learning rates were indeed highly
similar (t(21) � 1.51, p � 0.05; �face, mean, 0.16, 95% CI, [.06,
0.26]; �name, mean, 0.27; 95% CI, [.15, 0.39]; Fig. 2c). Next, to
corroborate that the ISPC effects we observed in the two learning
conditions were in fact the result of learned face–PC associations
in the S–C learning condition, and of learned name–PC/response
associations in the S–R learning condition, we correlated the re-
gression weights of PEface and PEname on RT with the behavioral
ISPC effects from both learning conditions across subjects (see
Materials and Methods, Model-based behavioral analysis). Fig-

ure 3 displays the degree to which participants’ behavior was
affected by the contingency manipulation (i.e., the behavioral
ISPC effect) as a function of the degree to which a participants’
trial-by-trial RT can be explained by the putative association
learning model (i.e., the weights of PEface or PEname, or face–PC
association vs name–PC/response association). Participants who
successfully formed associations between the faces (or names)
and PC/responses and used these associations to optimize their
responding would have larger weights of PEface/PEname, whereas
participants who did not form these associations or used sub-
optimal strategies would have zero or near zero weights. As hy-
pothesized, these analyses revealed a significant positive
correlation for the behavioral ISPC effect in the S–C learning
condition with the regression weight of PEface (r � 0.52, p � 0.05;
Fig. 3a) but not with the regression weight of PEname (r � �0.05,
p � 0.05). Conversely, in the S–R learning condition, the behav-
ioral ISPC effect was highly correlated with the regression weight
of PEname (r � 0.77, p � 0.001; Fig. 3b) but not with the regression
weight of PEface (r � �0.17, p � 0.05). These results validate the
modeling of congruency PE using a simple associative learning
model. Furthermore, they demonstrate that our task design suc-
cessfully dissociated the two signaling sources of PC (face vs
name) because, as shown in Figure 2a, the ISPC effects in RT in
the S–C and S–R conditions are primarily attributed to S–C ver-
sus to S–R learning, respectively.

fMRI data
A selective role for the caudate nucleus in the acquisition of
stimulus– control state associations
To determine neural mechanisms underlying the acquisition of
S–C compared to S–R associations, we derived trial-by-trial esti-
mates of item-level PE of congruency using an associative learn-
ing model and entered them as parametric regressors in the GLM
(see Material and Methods). Based on our task design and the
double dissociation that face–PC associations accounted for S–C
learning whereas name–PC/response accounted for S–R learning
(Fig. 3), we focused on the PEface regressor to identify regions
whose activity tracks the updating of face–PC associations (i.e.,
trial-to-trial variation in PEface) in the S–C learning condition. By
contrast, we focused on the PEname regressor to identify regions

Figure 3. a, Behavioral dissociation of PEface and PEname in the S–C and in the S–R learning conditions. In the S–C learning condition, a large portion of variance in the behavioral ISPC effect across
subjects is accounted for by the individual differences in learning of the face–PC associations (i.e., regression weight of PEface). b, By contrast, in the S–R learning condition, a large portion of variance
in the behavioral ISPC effect across subjects is accounted for by the individual differences in learning of the name–PC/response associations (i.e., regression weight of PEname). Dashed lines indicate
the 95% confidence interval for the regression line.

1034 • J. Neurosci., January 25, 2017 • 37(4):1028 –1038 Chiu et al. • Caudate Nucleus Mediates Learning of S–C Associations



whose activity tracks the updating of name–PC/response associ-
ations in the S–R learning condition. We found that S–C learning
was associated with activation in a prominent cluster in the right
head of the caudate nucleus, extending into the inferior frontal
gyrus and anterior cingulate cortex (Fig. 4a, Table 4), whose ac-
tivity scaled positively with PEface in the S–C learning condition.
By contrast, we did not find significant voxel clusters whose ac-
tivity scaled with PEname in the S–R learning condition. Critically,
to test whether the brain regions implicated in S–C learning were
in fact selectively associated with processing prediction error in
the context of stimulus– control state associations, we performed
a conjunction between a direct contrast of S–C versus S–R learn-
ing and the main effect of S–C learning. This analysis identified
the right caudate as the exclusive brain structure with a selec-
tive, dissociable role in mediating S–C versus S–R learning
(Fig. 4b, Table 4). For completeness sake, we also performed
the analogous reverse analysis to probe any selective involve-
ment in S–R learning; however, no regions were detected in
this analysis. Together, these analyses reveal a selective role for
the caudate nucleus in learning to associate the PC-signaling
face stimuli with appropriate control states in the S–C learning
condition.

A potential caveat concerning the
above conclusion is that, because of our
specific paradigm, any selective activation
revealed in the above S–C versus S–R con-
trast could in theory be due to differences
in learning associations involving faces
versus words rather than due to differ-
ences in S–C versus S–R learning. While
prima facie a preferential involvement of
the caudate in learning face rather than
word associations seems unlikely, to
probe whether this hypothetical con-
found may nevertheless contribute to the
finding described above, we assessed the
observed caudate region’s involvement in
face or word processing using a term-
based meta-analysis tool in Neurosynth
(http://neurosynth.org; Yarkoni et al.,
2011). Specifically, we generated two
forward inference maps [i.e., P(activation�
Term)], one based on the term “face” and
another one based on the term “word.”
We then examined whether voxels in
these meta-analysis maps overlapped with
the caudate region identified by the S–C
versus S–R learning contrast. As sus-
pected, this region contained neither face
nor word hotspots from the meta-analytic
maps. This suggests that the caudate acti-
vation that we attributed to the S–C learn-
ing mechanism is very unlikely due to
differences in learning associations with
faces versus words.

Learned stimulus–response associations
are preferentially represented in
parietal cortex
In addition to the model-based charac-
terization of S–C learning mechanisms
in the above analysis, we also examined
the mean activity difference between
trial types in the two learning condi-

tions; that is, to identify regions that exhibited greater activa-
tion for attenuated interference as a result of learning (i.e., the
ISPC effect in RT), we performed a contrast between the con-
gruency effect (incongruent vs congruent) in the frequently
incongruent items and the congruency effect in the rarely in-
congruent items, separately for the S–C and for the S–R learn-
ing conditions. For the S–C learning condition, this type of
interaction effect was observed in the frontoparietal network
(i.e., middle frontal gyrus, inferior parietal lobe) as well as in
the supplementary motor area and in the fusiform gyrus (Fig.
5a, Table 4). For the S–R learning condition, this interaction
effect was observed in larger swathes of parietal cortex and
fusiform gyrus as well as surrounding temporo-occipital areas
(Fig. 5b, Table 4). Comparing the neural substrates of the ISPC
effects between the two learning conditions directly, we ob-
served greater activity in the left superior parietal cortex for the S–R
learning condition as compared to the S–C learning condition (Fig.
5c, Table 4). However, while the ISPC effect appeared to engage
more frontal involvement in the S–C learning condition than in the
S–R learning condition (Fig. 5, compare a, b), these frontal activa-
tions did not survive statistical correction in the direct contrast. Both

Figure 4. Brain regions associated with model-based prediction error estimates. a, In the S–C learning condition, activity in a
cluster encompassing the right caudate nucleus, part of the inferior frontal gyrus, and anterior cingulate cortex appeared to track
the updating of face–PC associations. b, The conjunction of a direct contrast between the neural correlates of S–C and S–R learning
and the main effect of S–C learning revealed a cluster in the right head of the caudate nucleus, suggesting its distinct role in
updating stimulus– control state associations. All maps were whole-brain corrected to � � 0.05.
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the frontal and parietal regions revealed in
the above analyses have been reported in
previous studies of the ISPC effect (Blais and
Bunge, 2010; Grandjean et al., 2013; Xia et
al., 2015). These studies, however, were un-
able to clearly disambiguate regions associ-
ated with item-specific stimulus–control
learning versus stimulus–response learning.
Instead, here we show that greater parietal
involvement in minimizing Stroop interfer-
ence is likely primarily a reflection of the pa-
rietal cortex’ role in representing S–R
associations.

Discussion
Previous work in experimental psychology
has shown that individual stimuli can be-
come associated with context-appropriate
control states (for review, see Bugg, 2012).
The neural substrates underlying the learn-
ing of stimulus–control state associations
(or “item-level” control), however, have re-
mained unknown. To characterize the brain
mechanism mediating this phenomenon,
we adapted a design by Bugg et al. (2011)
that allowed us to obtain two varieties of
ISPC effect, one dominated by S–R learning
and the other exclusively mediated by S–C
learning. We tracked the acquisition of S–C
and S–R associations in these conditions us-
ing associative learning modeling and used
trial-by-trial S–C and S–R PE estimates in
model-based fMRI analyses to reveal a selec-
tive role for the caudate nucleus of the dorsal
striatum in updating stimulus–control state
associations. Moreover, using conventional
fMRI analyses, it was also found that re-
duced interference effects observed for frequently incongruent stim-
uli were associated with more posterior (parietal) involvements in
the S–R learning condition.

Our finding that the caudate nucleus appears to be responsible
for associating stimuli with control states whereas activity in fronto-
parietal regions scales with interference reduction based on that

learning is consistent with the general notion that cognitive control
involves an intimate interplay between (especially frontal) neocortex
and the basal ganglia (Frank et al., 2001; Bar-Gad et al., 2003;
Chatham et al., 2014). Most relevant to the present findings, prior
nonhuman and human studies have implicated the caudate nucleus
in aiding goal-directed learning, as opposed to stimulus–response,

Table 4. Activation clusters for the contrasts

MNI Coordinates

Peak t No. of voxels Hemisphere Regionx y z

Main effect of PEface (S–C learning) 24 17 13 4.42 264 R Caudate/anterior cingulate/inferior frontal gyrus
Main effect of PEname (S–R learning) n.s.
PEface � PEname and PEface � baseline 21 14 13 4.27 107 R Caudate head
ISPC effecta in the S–C learning condition �27 �76 52 4.57 225 L Inferior parietal lobule

�39 2 31 4.69 148 L Inferior frontal gyrus
�48 �52 �17 4.44 231 L Fusiform gyrus/temporal lobe

0 17 52 3.96 125 L/R Supplementary motor area
54 11 46 5.79 91 R Middle frontal gyrus
69 �28 �8 4.49 148 R Middle temporal gyrus

ISPC effect in the S–R learning condition �33 �43 67 5.26 2069 L Inferior parietal lobule
�51 32 22 4.41 117 L Middle frontal gyrus
�48 �58 �20 5.49 885 L Fusiform gyrus

33 �1 64 4.04 123 R Middle frontal gyrus
45 �49 26 5.84 972 R Fusiform gyrus

ISPC effect S–C learning � S–R learning n.s.
ISPC effect S–R learning � S–C learning �51 �37 55 3.62 94 L Inferior parietal lobe

R, Right; L, left.
aThe ISPC effect is rarely incongruent (incongruent versus congruent) � frequently incongruent (incongruent versus congruent).

Figure 5. Brain regions associated with ISPC effects. a, b, Cortical activations associated with attenuated Stroop interference as
a result of (a) S–C learning and (b) S–R learning. c, A direct comparison between the two above patterns revealed greater activity
in the left superior parietal cortex as a result of using the stimulus–response associations to reduce Stroop interference. All maps
were whole-brain corrected to � � 0.05.
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or habit learning, which is thought to be subserved by the putamen
(for review, see Balleine and O’Doherty, 2010; Grahn et al., 2008 ).
The key distinction between these two learning processes in this
literature is that goal-directed learning depends on the representa-
tions of goal value and of the contingencies between actions and their
consequences. Crucially, the present work represents an important
conceptual extension of the type of associations the caudate may be
involved in forming, because in the context of the current study, the
“action” to be learned is not a specific response (e.g., the pressing of
a particular button). Rather, it is the retrieval of an item-appropriate
control state, most likely in the form of a more selective attentional
filter that reduced the impact of incongruent task-irrelevant infor-
mation on behavior. Therefore, our results suggest that the caudate
nucleus plays a role in associating desired outcomes not only with
concrete actions, but also with abstract, higher-order control states,
which can be generalized across stimulus particulars. For instance,
the benefit derived from retrieving a more selective attentional set
when encountering a target that has frequently been paired with
incongruent distracters is not dependent on the precise nature of the
distracters (cf. Bugg et al., 2011; Egner, 2014).

It is also worth noting that the nature of the item-specific
control adjustments delineated in the present protocol is “reac-
tive” as opposed to “proactive” or anticipatory (Braver, 2012), as
the control state can only be retrieved upon the presentation of a
particular stimulus. The observed involvement of the caudate
nucleus in acquiring S–C associations in the service of such reac-
tive control extends prior work showing that the caudate is also
engaged in predicting control demands proactively to adjust at-
tentional selectivity before the onset of a forthcoming stimulus
(Jiang et al., 2015a). Similarly, another previous study (DePasque
Swanson and Tricomi, 2014) showed that activity in the caudate
not only is modulated by the valence of feedback during learning
but is also sensitive to expectations about task difficulty. This
result implicates the caudate’s unique role in tracking and inte-
grating outcomes along with other contextual information that is
pertinent to achieving optimal performance (e.g., difficulty ex-
pectation). Our finding of selective caudate involvement in item-
level S–C learning thus dovetails with previous studies
implicating the caudate in aiding long-term adaption to dynam-
ically changing control demands (McGuire et al., 2014; Jiang et
al., 2015a) to confer a central role onto the caudate in a variety of
control learning processes.

Subcortically, despite finding a clear dissociation of S–C
learning from S–R learning in the caudate nucleus, we did not
find a selective involvement of the putamen for S–R learning. The
most likely explanation for this null finding is a lack of sensitivity,
as the distracters in our S–R learning condition were not 100%
predictive of responses (Table 2). It is possible that a determinis-
tic mapping or more extensive training might be required to
more robustly drive S–R learning in the putamen (Tricomi et al.,
2009; but see Liljeholm et al., 2015).

Cortically, we observed an anterior versus posterior (or fron-
tal vs parietal) gradient of involvement in the ISPC effect as a
function of whether that effect represents the result of S–C or S–R
learning (although only the parietal activation survived statistical
correction in the direct contrast). This finding is congruent with
much prior work that has implicated the prefrontal cortex as the
primary neocortical source of cognitive control signals (Miller
and Cohen, 2001), whereas parietal cortex has been found to
facilitate cognitive reconfiguration based on retrieved contextual
information (King et al., 2012) as well as in the retrieval of well-
learned stimulus–response associations (Sakai et al., 1998). In
addition to the selective parietal involvement in S–R learning, the

neural ISPC effects for both S–C and S–R learning were largely
overlapping within the frontoparietal network (Fig. 5a,b). This is
not surprising, because, setting aside their differences in the sig-
naling source of proportion congruency, the two learning condi-
tions in our study were expected to partly recruit the same
attentional control processes for conflict detection and resolu-
tion as well as similar episodic retrieval mechanisms for learned
associations.

In conclusion, the present study revealed a selective role for
the caudate nucleus in the acquisition of stimulus– control state
associations. This finding is consistent with the broader literature
implicating the caudate nucleus in aiding goal-directed learning
by forming the contingencies between actions and their conse-
quences. Importantly, we significantly extend this literature by
showing that these goal-directed associations can entail links be-
tween stimuli and control states, in addition to associations be-
tween specific stimuli, motor responses, and outcomes. Our
study therefore highlights the close relationship between associa-
tive learning and cognitive control processes and adds to an
emerging understanding of the underlying neural mechanisms of
control learning (King et al., 2012; Jiang et al., 2015a,b).

References
Ach N (2006) On volition (T. Herz, Trans) (original work published 1910,

Quelle & Mayer Publishing Company, Leipzig) Retrieved March 12, 2016,
from University of Konstanz, Cognitive Psychology Web site: http://
www.uni-konstanz.de/kogpsych/ach.htm.

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A repro-
ducible evaluation of ANTs similarity metric performance in brain image
registration. Neuroimage 54:2033–2044. CrossRef Medline

Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action
control: corticostriatal determinants of goal-directed and habitual action.
Neuropsychopharmacology 35:48 – 69. CrossRef Medline

Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimen-
sionality reduction and reinforcement learning in the basal ganglia. Prog
Neurobiol 71:439 – 473. CrossRef Medline

Blais C, Bunge S (2010) Behavioral and neural evidence for item-specific
performance monitoring. J Cogn Neurosci 22:2758 –2767. CrossRef
Medline

Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict
monitoring and cognitive control. Psychol Rev 108:624 – 652. CrossRef
Medline

Braver TS (2012) The variable nature of cognitive control: a dual mecha-
nisms framework. Trends Cogn Sci 16:106 –113. CrossRef Medline

Braver T, Cohen J (2000) On the control of control: the role of dopamine in
regulating prefrontal function and working memory. In: Control of cog-
nitive processes, Vol. 18, Attention and performance (Monsell J, Driver S,
eds), pp 713–737. Cambridge, MA: MIT.

Bugg JM (2012) Dissociating levels of cognitive control: the case of Stroop
interference. Curr Dir Psychol Sci 21:302–309. CrossRef

Bugg JM, Jacoby LL, Chanani S (2011) Why it is too early to lose control in
accounts of item-specific proportion congruency effects. J Exp Psychol
Hum Percept Perform 37:844 – 859. CrossRef Medline

Chatham CH, Frank MJ, Badre D (2014) Corticostriatal output gating dur-
ing selection from working memory. Neuron 81(4) 930 –942.

Cohen JD, Dunbar K, McClelland JL (1990) On the control of automatic
processes: a parallel distributed processing account of the Stroop effect.
Psychol Rev 97 332– 61.

Cosman JD, Vecera SP (2013) Context-dependent control over attentional
capture. J Exp Psychol Hum Percept Perform 39:836 – 848. CrossRef
Medline

Crump MJ, Logan GD (2010) Contextual control over task-set retrieval.
Atten Percept Psychophys 72:2047–2053. CrossRef Medline

Crump MJ, Milliken B (2009) The flexibility of context-specific control:
evidence for context-driven generalization of item-specific control set-
tings. Quart J Exp Psychol 62:1523–1532. CrossRef

Crump MJ, Gong Z, Milliken B (2006) The context-specific proportion
congruent Stroop effect: location as a contextual cue. Psychonom Bull
Rev 13:316 –321. CrossRef

Chiu et al. • Caudate Nucleus Mediates Learning of S–C Associations J. Neurosci., January 25, 2017 • 37(4):1028 –1038 • 1037

http://dx.doi.org/10.1016/j.neuroimage.2010.09.025
http://www.ncbi.nlm.nih.gov/pubmed/20851191
http://dx.doi.org/10.1038/npp.2009.131
http://www.ncbi.nlm.nih.gov/pubmed/19776734
http://dx.doi.org/10.1016/j.pneurobio.2003.12.001
http://www.ncbi.nlm.nih.gov/pubmed/15013228
http://dx.doi.org/10.1162/jocn.2009.21365
http://www.ncbi.nlm.nih.gov/pubmed/19925177
http://dx.doi.org/10.1037/0033-295X.108.3.624
http://www.ncbi.nlm.nih.gov/pubmed/11488380
http://dx.doi.org/10.1016/j.tics.2011.12.010
http://www.ncbi.nlm.nih.gov/pubmed/22245618
http://dx.doi.org/10.1177/0963721412453586
http://dx.doi.org/10.1037/a0019957
http://www.ncbi.nlm.nih.gov/pubmed/20718569
http://dx.doi.org/10.1037/a0030027
http://www.ncbi.nlm.nih.gov/pubmed/23025581
http://dx.doi.org/10.3758/BF03196681
http://www.ncbi.nlm.nih.gov/pubmed/21097849
http://dx.doi.org/10.1080/17470210902752096
http://dx.doi.org/10.3758/BF03193850


Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical
substrates for exploratory decisions in humans. Nature 441:876 – 879.
CrossRef Medline

DePasque Swanson S, Tricomi E (2014) Goals and task difficulty expecta-
tions modulate striatal responses to feedback. Cogn Affect Behav Neuro-
sci 14:610 – 620. CrossRef Medline

Efron B (1983) Estimating the error rate of a prediction rule: improvement
on cross-validation. J Amer Statist Assoc 78:316 –331. CrossRef

Egner T (2014) Creatures of habit (and control): a multi-level learning per-
spective on the modulation of congruency effects. Front Psychol 5:1–11.
Medline

Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between frontal cor-
tex and basal ganglia in working memory: a computational model. Cogn
Affect Behav Neurosci 1:137–160. CrossRef Medline

Franz VH, Loftus GR (2012) Standard errors and confidence intervals in
within-subjects designs: generalizing Loftus and Masson (1994) and
avoiding the biases of alternative accounts. Psychonom Bull Rev 19:395–
404. CrossRef

Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS
(1994) Statistical parametric maps in functional imaging: a general linear
approach. Hum Brain Mapp 2:189 –210. CrossRef

Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the
caudate nucleus. Prog Neurobiol 86:141–155. CrossRef Medline

Grandjean J, D’Ostilio K, Fias W, Phillips C, Balteau E, Degueldre C, Luxen A,
Maquet P, Salmon E, Collette F (2013) Exploration of the mechanisms
underlying the ISPC effect: evidence from behavioral and neuroimaging
data. Neuropsychologia 51:1040 –1049. CrossRef Medline

Jacoby LL, Lindsay DS, Hessels S (2003) Item-specific control of automatic
processes: Stroop process dissociations. Psychonom Bull Rev 10:638 –
644. CrossRef

Jiang J, Beck J, Heller K, Egner T (2015a) An insula-frontostriatal network
mediates flexible cognitive control by adaptively predicting changing
control demands. Nat Commun 6:8165. CrossRef Medline

Jiang J, Brashier NM, Egner T (2015b) Memory meets control in hippocam-
pal and striatal binding of stimuli, responses, and attentional control
states. J Neurosci 35:14885–14895. CrossRef Medline

King, JA, Korb FM, Egner T (2012) Priming of control: implicit contextual
cuing of top-down attentional set. J Neurosci 32:8192– 8200. CrossRef
Medline

Liljeholm M, Dunne S, O’Doherty JP (2015) Differentiating neural systems
mediating the acquisition vs. expression of goal-directed and habitual
behavioral control. Eur J Neurosci 41:1358 –1371. CrossRef Medline

MacLeod CM (1991) Half a century of research on the Stroop effect: an
integrative review. Psychol Bull 109:163–203. CrossRef Medline

McGuire JT, Nassar MR, Gold JI, Kable JW (2014) Functionally dissociable
influences on learning rate in a dynamic environment. Neuron 84:870 –
881. CrossRef Medline

Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex func-
tion. Annu Rev Neurosci 24:167–202. CrossRef Medline

Mumford JA, Poline JB, Poldrack RA (2015) Orthogonalization of regres-
sors in fMRI models. PLoS One 10:e0126255. Medline

Nichols T, Brett M, Andersson J, Poline JB, Wager T (2005) Valid conjunc-
tion inference with the minimum statistic. Neuroimage 25:653– 660.
CrossRef Medline

Norman DA, Shallice T (1986) Attention to action: willed and automatic
control of behavior. In: Consciousness and Self-regulation: Advances in
Research and Theory (Davidson RJ, Schwartz GE, Shapiro D, eds), vol 4,
pp 1–18. New York: Plenum Press.

Notebaert W, Verguts T (2007) Dissociating conflict adaptation from fea-
ture integration: a multiple regression approach. J Exp Psychol Hum
Percept Perform 33:1256 –1260. CrossRef Medline

Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Pütz B (1998) Tran-
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