Inaccessible or Unstable? Further Applications of the IA Model

Carolyn Wilshire School of Psychology, Victoria University of Wellington, New Zealand

Thanks to	
Caroline Fisher	
Leonie Keall	
Liz Stuart	
Royal Society of New Zealand	

"Decay" Impairments

- Martin et al (1994): Global increase in decay rate (all nodes affected)
- Produces Deep dysphasia:
 - Frequent formal paraphasias in naming and speech
 - Can't do tasks requiring maintenance of activation:
 - » word repetition (semantic and other errors)
 - > nonword reptition
 - short-term memory
- This idea of "unstable" or "fast fading" info not new (e.g. Michel & Andreewsky, 1983)
- BUT, IA model provides a formal framework for describing this idea.

"Decay" Impairments

- Later work: group study varied *global* decay impairments and *global* connection strengths (Dell, Schwartz, Martin, Saffran & Gagnon,1997).
- Variation in these two parameters explains some differences between individuals, but not as many as S-P model

Our Research

- Perhaps we need to consider both dimensions:
 - Not only *locus* of impairment (lexical or phonological)
 - But also nature of impairment (weak connections or decay)
- Two fluent aphasic individuals: MS and GE
- For both, phonemic paraphasias are main error type in naming
 i.e. both have same *locus* of impairment
- BUT performance of the two differs qualitatively, suggesting *nature* of impairment is different.

Case Descriptions

Patient MS

- CVA; small lesion in left posterior parietal lobe; 12 months post stroke
- $\boldsymbol{\cdot}$ Speech is well-articulated, grammatical, but many phonological errors
- Comprehension impaired
- · Can't repeat words/sentences, zero performance on nonwords repetition
- BDAE: Borderline Wernicke's/Conduction Aphasia

Patient GE

- · CVA; moderately large lesion in left parietal lobe; 4 months post stroke
- Speech well-articulated, grammatical but hesitant; many phonological errors
- Comprehension preserved
- BDAE: Conduction Aphasia

Performance in Naming and Repetition

	Naming		Repetition	
Response type ^a	MS	GE	MS	GE
Correct	47.3	21.7	30.1	55.6
Phonemic paraphasia	19.5	33.3	34.7	31.1
Formal paraphasia	13.6	7.2	14.5	4.4
Semantic paraphasia	4.7	5.6	0.6	0
Unrelated word	6.5	7.2	3.5	0.6
Neologism	4.1	12.2	7.5	0.6
Other	4.2	12.8	9.2	8.0
Word Length Effects	no	yes	no	yes
Word Frequency Effects	yes	yes	no	no

Auditory Comprehension

Patient MS:

- -Phoneme discrimination (e.g. cub- cut) : 75%
- -Auditory lexical decision: 79%; missed many real words
- -Word-picture matching with semantic distractors (e.g *crab-octopus*) 100%
- -Word-pic matching with with phonological distractors (e.g. comb-cone) 58%

Patient GE:

- -Phoneme discrimination (e.g. cub- cut): 85%
- -Auditory lexical decision: 85%
- -Word-picture matching with semantic distractors (e.g crab-octopus) 94%
- -Word-pic matching with with phonological distractors (e.g. comb-cone) 80%

Summary					
Both patients produce phonemi -> can't correctly access phone BUT	c paraphasias as main error type eme nodes				
PATIENT MS	PATIENT GE				
Many formal paraphasias	Few formal paraphasias				
Repetition << naming	Repetition > naming				
No length effects are weak	Strong length effects				
	Dhanal input processing still				

Predicts

- MS's will produce a high rate of formal paraphasias
- MS will perform poorly on tasks requiring maintenance of phonological information, such as word (and especially nonword) repetition
- If network is used in both production AND comprehension, then MS will also have comprehension difficulties (fast decay means fast "fading" of phonological input)

