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Abstract

Statistical problems in atmospheric science are frequently characterized by large spatio-temporal data sets
and pose difficult challenges in classification and pattern recognition. Here, we consider the problem of
identifying geographically homogeneous regions based on similarities in the temporal dynamics of weather
patterns. Two disparity measures are proposed and applied to cluster time series of observed monthly
temperatures from locations across Colorado, USA. The two disparity measures are based on state-
space models, where the monthly temperature anomaly dynamics and seasonal variation are represented
by latent processes. Our disparity measures produce clusters consistent with known atmospheric flow
structures. In particular, the temporal anomaly pattern is related to the topography of Colorado, where,
separated by the Continental Divide, the flow structures in the western and eastern parts of the state
have different dynamics. The results further suggest that seasonal variation may be affected by locally-
changing solar radiation levels primarily associated with elevation variations across the Rocky Mountains.
The general methodology is outlined and developed in the Appendix. We conclude with a discussion of
extensions to time varying and non-stationary systems.

Keywords: classification, pattern recognition, geostatistics, principal component analysis, principal oscilla-
tion pattern, state-space process.



1 Introduction

The goal of this work is to identify geographically homogeneous regions based on similarities in the temporal

dynamics of weather patterns. To this end, we formulate two disparity measures for clustering time series

of observed monthly temperatures, one based on anomaly dynamics and one based on seasonal component

variation. Data is obtained through the National Climatic Data Center, which collects and archives US

weather data for research and industrial users. We focus on mean monthly temperatures from weather

stations located in Colorado, a state which comprises many different climatic zones along varying elevation

contours, potentially related to topographical temperature clusters and patterns.

Cluster analysis is a commonly used tool for grouping weather events into climatologically homogeneous

geographical regions (e.g., Gong and Richman 1995; Richman and Lamb 1985; Fovell and Fovell 1993), and

for grouping time periods into clusters of homogeneous weather patterns (e.g., Alsop 1989). The application

of classification techniques to atmospheric time series data is generally based on a decomposition of covari-

ance structures using empirical orthogonal functions. Examples are given by Stone (1989) and Mo and Ghil

(1988); see also Jolliffe (2002). However, this research typically does not directly account for the temporal

associations of a series. In contrast, within the framework of the state-space model, we explicitly represent

temporal associations using multivariate autoregressive models, and propose methods for allocation and sep-

aration based expressly on modeling temporal dynamics. More generally, our methodology allows clustering

and discrimination according to unobserved structural components of a state-space process.

A related body of research exists in the statistical sciences, where discrimination and clustering of time

series are based on assessing “distance” between a collection of observations. As in the general study of

time series, procedures are developed in both the frequency and time domain; Shumway and Stoffer (2006)

detail both approaches. Since the discrete Fourier transform asymptotically yields normally distributed and

uncorrelated random variables, resulting in disparity functions that are straightforward to evaluate and in-

vestigate, most work in the statistical literature has focused on the frequency domain. This research includes

developments by Liggett (1971), Shumway and Unger (1974), Dargahi-Noubary and Laycock (1981), Alagon

(1989), Chaudhuri (1992), and Kakizawa, Shumway, and Taniguchi (1998). When dealing with multivariate
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time series, a potential practical drawback of frequency domain methods is the sample variability of non-

parametric spectral estimates. For time series of small to moderate length, the effects of such variability

in the multivariate case will likely be pronounced, and may result in high miss-classification rates. An al-

ternative approach is to assume (and possibly estimate) a lower-dimensional statistical model and evaluate

the disparity measures in the time domain. Assuming univariate autoregressive moving-average (ARMA)

models, Chan, Chinipardaz, and Cox (1996) derive a linear disparity function and its asymptotic distribu-

tion. Similarly relying on ARMA models, Gersch (1981) uses Kullback information measures to develop a

classification procedure for stationary and locally stationary Gaussian time series. Related work include the

methods of Melard and Roy (1983) and Coates and Diggle (1986).

For long series, the computational requirements of time domain approaches can be prohibitive as they

typically require specification and inversion of high dimensional, possibly ill-conditioned matrices. The meth-

ods and analyses presented here rely on an existing or estimated state-space model, and address the heavy

computational issues associated with evaluating disparity measures in the time domain through the Kalman

filter recursions. Additionally, our approach allows for classification according to unobserved processes, a

feature not available in maximum-likelihood based methodologies unless the data is pre-processed.

In the next section, we describe our problem, introduce our disparity measures, and use these tools

to cluster monthly temperature records from across Colorado. We evaluate the propriety of the results

using an alternative clustering approach derived from a principal component analysis. In the Appendix,

we outline and develop our general methodology, which allows clustering and discrimination based on the

latent structural components of a state-space process. Section 3 discusses extensions to systems with time

dependent dynamics and to non-linear processes.

2 Methodology and Results

With the objective of identifying geographically homogeneous regions based on similarities in the temporal

dynamics, two disparity measures are formulated and applied to cluster observed monthly temperatures

from locations across Colorado, USA. Starting from the late-1800s, the complete data set contains daily

measurements on a set of weather related variables from approximately 23.000 stations across the nation.
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Figure 1: Left panel: Locations (lon/lat) of the 24 weather stations used in study. The shading represents
elevation contours. Right panel: Covering the period 1947-1997, the series on the left show mean monthly
temperatures (Celsius) for stations 22 (bottom) and 10 (top). Based on the same data, the series on the
right depict deviations from monthly means for stations 22 and 10.

The complete records contain many missing observations, with numerous stations operating only for a brief

time. Our focus is on mean monthly temperatures from stations located across Colorado, a state which

comprises many different climatic zones along varying elevation contours - potentially defining topographical

temperature clusters and patterns. The data is obtained through the National Climatic Data Center. For

a detailed description of the data, including collection procedures and quality checks, we refer the reader

to the webpage http://dss.ucar.edu/datasets/ds510.0 (Scientific Computing Division-National Center

for Atmospheric Research 2006).

Within Colorado we choose a subset of 24 (out of approximately 280) weather stations, selecting only

those with at most 10% missing observations for the period 1895-1997. The left panel of Figure 1 shows

the geographic locations of the weather stations used in the study. For reference, the cities of Denver,

Boulder, and Grand Junction are located in the figure. Also depicted are three elevation contours: dark

shade indicates elevations above 1000 meters (m), light shade indicates elevations above 2000m, and no shade

indicates elevations above 3000m.

To illustrate the data, the mean monthly temperature of the last 50 years for stations 22 and 10 are

depicted in the right panel of Figure 1 (bottom and top left). As expected, the monthly mean temperature

series are dominated by a strong yearly cycle, with highest temperatures during summer months. However,
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close inspection of Figure 1 shows slowly varying departures (anomalies) from the seasonal cycle. To give

examples, the monthly temperature anomalies for stations 22 and 10, estimated by subtracting the individual

monthly sample means from the data, are also shown in the right panel (bottom and top right). As can

be seen, the estimated anomalies contain slowly varying modes. Subsection 2.3 provides nearest-neighbor

clustering results targeting the anomaly and seasonal patterns for the mean monthly temperature series.

To further describe the data, Table 1 provides sample statistics for the western- and eastern-most stations

(i.e., for stations 1-12 and 13-24, respectively). The overall sample means for the 24 stations varied between

.7oC and 11.8oC, with slightly warmer and more variable average temperatures on the plains. The distribu-

tions of mean monthly temperatures are approximately Gaussian, although some stations have slightly left

skewed winter temperatures. With data from station 22, the histograms of Figure 2 provide examples of the

distribution of monthly means.

Station# 1 2 3 4 5 6 7 8 9 10 11 12 mean
μ̂i 9.5 11.5 8.1 7.8 9.7 3.5 0.7 2.3 3.7 5.6 6.4 5.3 6.2

σ̂Yi
9.6 9.7 9.0 8.2 9.0 6.9 9.0 10.0 9.5 7.9 8.4 9.0 8.9

Nmiss 11 11 95 36 71 123 11 2 35 11 59 11 N/A
Station# 13 14 15 16 17 18 19 20 21 22 23 24 mean

μ̂i 6.4 9.5 10.7 8.4 10.3 9.4 10.9 11.8 11.5 9.9 9.7 11.8 10.0
σ̂Yi 7.4 8.0 7.9 8.7 8.0 9.8 9.3 9.6 9.9 9.4 9.8 9.7 9.0

Nmiss 11 59 11 11 11 16 11 11 13 71 59 11 N/A

Table 1: Sample means, μ̂i, and standard deviations, σ̂Yi , for stations i = 1, . . . , 24. Nmiss denotes the
number of missing observations out of a total of 1236 months for the period 1895-1997.

2.1 State-space data model

We fit the monthly data using an additive, structural state-space model. For station i, the model represents

the monthly mean as a sum of an overall constant mean, a seasonal component, a monthly temperature

anomaly, and a white noise term. The structural components are denoted respectively by μi, sit, ait, and

εit, where sit and ait are latent processes. Thus, with yit representing the observed mean temperature for

station i and month t, we have yit = μi + sit + ait + εit.

Differing mean temperature levels among the various stations could easily be used to delineate different

geographic regions; however, as our main interest is in the dynamics of the monthly series, we remove

the overall mean of each series. For simplicity, this is done approximately by subtracting sample means,
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Figure 2: Histograms of the monthly mean temperatures (oC) for station 22.

yielding the data model ỹit = yit − μ̂i = sit + ait + εit, where μ̂i is the overall sample mean of station i

(see Table 1). The seasonal components are thought of as slowly varying processes, and are modeled by

letting (
∑t

j=t−11 sij) = δit
iid∼ N(0, σ2

δi
) (see, e.g., Janacek and Swift 1993), and the monthly temperature

anomalies are modeled by AR(1) processes, ait = φiai,t−1 + ηit, with ηit
iid∼ N(0, σ2

ηi
). Here, following our

previous assessment of the distribution of monthly means (see Figure 2), the state-error processes are taken

as Gaussian. The white noise term is viewed as contributing variability that is unexplained by the structural

components. We let εit
iid∼ N(0, σ2

εi
).

For this data, geographically nearby stations covary, implying correlated state error processes; i.e., for

two stations i �= j and cov(yit, yjt) �= 0, we have cov(δit, δjt) �= 0 and (or) cov(ηit, ηjt) �= 0. However, since

the spatial domain of our study includes varying elevation and climate zones, no prior knowledge of the

spatial structures of the noise processes is assumed. (In fact, the purpose of our study is to identify spatial

and temporal patterns.) Hence, for modeling purposes, we set cov(ηit, ηjt) = 0 and cov(δit, δjt) = 0, i �= j, ∀t.

Ignoring non-zero across-station error covariances will not affect the clustering results, but will yield inefficient

(yet unbiased) parameter estimation and state prediction. Finally, to “separate” seasonal and anomaly
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patterns, we assume cov(δit, ηjt) = 0, ∀i, j, t.

For computational convenience, we represent the preceding monthly temperature model in general state-

space form. Our notation and setup for the linear state-space model is similar to that of Shumway and Stoffer

(2006, p 324-325). The general form of the model allows for straightforward implementation of the Kalman

filter and smoother recursions, which recover the latent processes, as well as the expectation-maximization

(EM) algorithm, which provides maximum likelihood (ML) estimates of the model parameters (see Shumway

and Stoffer 1982; and Shumway and Stoffer 2006, p 342-344).

A linear state-space process yt is represented by two sets of equations:

yt = Atxt + vt, (1)

xt = Φxt−1 + wt, t = 1, . . . , N. (2)

In the observation equation (1), the design matrix At relates the unobserved state vector xt to the observed

vector yt. In the state equation (2), the transition matrix Φ relates xt to its previous value xt−1 via an

autoregression. The vectors vt and wt represent zero-mean white noise processes with covariance structures

R and Q, respectively. The model assumes a prior distribution for x0 with E(x0) = µ and cov(x0) = V, and

x0 is taken to be uncorrelated with vt and wt for all t. Normality is often assumed for both error processes

as well as for x0. We will let Θ = {µ,V,Φ,Q,R} denote the set of parameters for the model defined in (1)

and (2), and let Y = [y′
1,y

′
2, . . . ,y

′
N ]′ and X = [x′

0,x
′
1, . . . ,x

′
N ]′ represent the vectors of observed data and

unobserved states.

For station i, let xit = [ait, sit, . . . , si,t−10]′. With this state vector, the structural model of monthly

mean temperature for station i is put into state-space form as follows. For the observation equation (1), we

have

ỹit =
(
1 1 0 · · · 0

)
⎛⎜⎜⎜⎝

ait

sit

...
si,t−10

⎞⎟⎟⎟⎠+ εit, (3)
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and for the state equation (2),

⎛⎜⎜⎜⎝
ait

sit

...
si,t−10

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
φi 0 · · · · · · 0
0 −1 · · · · · · −1
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ai,t−1

si,t−1

...
si,t−11

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
ηit

δit

0
...
0

⎞⎟⎟⎟⎟⎟⎠ . (4)

Here, Ait and Φi are as defined in (3) and (4), and Θi = {φi, σ
2
ηi

, σ2
δi

, σ2
εi
}.

2.2 Parameter estimates and model fit

The four rows of Tables 2 and 3 show parameter estimates for the 12 western- and 12 eastern-most stations

in the study. A clear pattern among the parameters can be seen by comparing the entries of the tables. For

example, stations at higher elevation, i.e., the western-most stations, have smaller autoregressive coefficients,

with a mean of .620 (.867 for the eastern stations), and higher anomaly innovations variances, with a mean

of 1.19 (.139). Clearly, the temporal dynamics of monthly temperature are associated with spatial location.

ID 1 2 3 4 5 6 7 8 9 10 11 12 mean

φ̂ .562 .442 .650 .730 .645 .771 .677 .582 .765 .463 .668 .492 .620
σ̂2

η 1.60 2.16 .735 .470 .867 .354 1.12 2.13 .434 1.56 1.23 1.69 1.19
σ̂2

δ × 102 .150 .029 .368 .001 .322 .641 .273 .340 .077 .058 .207 .221 .200
σ̂2

ε 1.43 1.12 1.71 1.58 1.59 1.58 1.71 1.31 2.16 1.10 1.38 1.00 1.47

Table 2: Parameter estimates for the 12 western-most stations.

To verify that the model in (3) and (4) fits the data adequately, residual analyses were performed for each

of the 24 temperature series. Satisfactory fits were obtained for all station data. As examples, Figure 3 depicts

autocorrelation and QQ-plots for the residuals of stations 10 and 22. As indicated in the autocorrelation

plots, the seasonal component has effectively been removed and there does not exist strong evidence against a

white-noise (null) hypothesis on the residuals. Although the QQ-plots indicate slightly left-skewed residuals,

severe departures from normality are not evident.

ID 13 14 15 16 17 18 19 20 21 22 23 24 mean

φ̂ .858 .830 .830 .998 .831 .902 .900 .939 .705 .862 .998 .745 .867
σ̂2

η .226 .152 .112 .002 .114 .166 .055 .087 .418 .124 .001 .216 .139
σ̂2

δ × 102 .001 .093 .064 .003 .135 .125 .086 .002 .212 .083 .303 .115 .100
σ̂2

ε 2.43 3.61 2.97 3.83 2.59 4.01 3.17 3.46 3.26 3.62 4.28 3.40 3.39

Table 3: Parameter estimates for the 12 eastern-most stations.
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Figure 3: Autocorrelation plots and QQ-plots of residuals for stations 22 (top) and 10 (bottom). The plots
are based on sample sizes of 1225 and 1165 data points, respectively. Approximate 95% upper and lower
points (dashed) for the null distribution are shown in the autocorrelation plots.

2.3 Discrepancy measures and clustering results

Using the ML-parameter estimates of Tables 2 and 3, which were obtained using the EM algorithm, two

discrepancy measures are formulated, calculated, and used for clustering the temperature data. The first

discrepancy measure matches the densities of the anomaly process, and the second discrepancy matches the

densities of the seasonal cycle. To provide a context for our results, a principal component analysis based

on estimated monthly anomalies is performed.

To introduce our discrepancy measures we define the following notation. Let Ni denote the sample size

for station i, and let Yi = [ỹi1, ỹi2, . . . , ỹi,Ni ]′ denote the (mean adjusted) time series for this station. Also,

let Xi = [x′
i1,x

′
i2, . . . ,x

′
i,Ni

]′ and ai = [ai1, ai2, . . . , ai,Ni ]′ represent the latent state and anomaly processes.

Let Sit(0), Sit(1), and Si,t−1(0) represent the smoothing matrices with respect to Yi and Θi, as defined by

(11) and (12) in Subsection A.2 of the Appendix, and let S11
it (0), S11

it (1), and S11
i,t−1(0) denote the upper

left-hand entries of these matrices.

The first discrepancy measure is based solely on the autoregressive anomaly process as defined in (4). For
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each station i, under the assumption of independent state-error processes, f(ait, sit|Θi) = f(ait|Θi)f(sit|Θi).

Then, following the developments in Subsection A.3 of the Appendix, we define a discrepancy measure based

on the anomaly part of the state vector by considering the Kullback information (Kullback 1968) for the

anomaly densities:

da(Yi,Θi;Θj) =
∫

log
f(ai|Θi)
f(ai|Θj)

f(Xi|Yi,Θi)dXi. (5)

A computational formula for da(Yi,Θi;Θj) is derived by considering the two terms in (15). Following

the developments in the Appendix that lead to (14), we obtain

da(Yi,Θi;Θj) = − Ni

2
(log σ2

ηi
− log σ2

ηj
)

−{ 1
2σ2

ηi

[S11
it (0) − 2φiS

11
it (1) + φ2

i S
11
i,t−1(0)] − 1

2σ2
ηj

[S11
it (0) − 2φjS

11
it (1) + φ2

jS
11
i,t−1(0)]}.

Clustering algorithms require the use of symmetrized discrepancy measures (see, for instance, Kakizawa,

Shumway, and Taniguchi 1998). Thus, based on (5), we define a form of the J-divergence (Kullback 1968)

that accounts for the different lengths of each series in the data sets by averaging over time:

J̄a(Yi,Θi;Yj ,Θj) = N−1
i da(Yi,Θi;Θj) + N−1

j da(Yj ,Θj ;Θi).

Employing output from the EM-algorithm, including the ML parameter estimates, the sample J̄a-divergence

reduces to

J̄a(Yi, Θ̂i;Yj , Θ̂j) =
1

2Njσ̂2
ηi

[S11
jt (0) − 2φ̂iS

11
jt (1) + φ̂2

i S
11
j,t−1(0)]

+
1

2Niσ̂2
ηj

[S11
it (0) − 2φ̂jS

11
it (1) + φ̂2

jS
11
i,t−1(0)] − 1. (6)

Using the parameter estimates of Tables 2 and 3 in calculating J̄a(Yi, Θ̂i;Yj , Θ̂j), i, j = 1, . . . , 24,

produced the nearest neighbor results of Figure 4. (Connecting nearest neighbors produces results similar to

those obtained by a minimum spanning tree, which recursively connects the closest centroids.) It can be seen

from the plot, with the exception of station 21, that all stations have nearest neighbors within their respective

east-west geographic region. (We remind the reader that light colors correspond to higher elevations, and

that the Rocky Mountains, which pass through the western region of the state, are represented by the light

grey and white shadings.) As seen in the plot, the two cluster structures are distinctly separated along the

9



mid-longitude elevation contours. Results from three different hierarchical cluster methods, Ward’s, single

linkage, and complete linkage, confirm the depicted visual clusters.
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Figure 4: Nearest neighbors based on J̄a(Yi, Θ̂i;Yj , Θ̂j). Neighbors are indicated by arrows: e.g., station
9 is the nearest neighbor of station 6. Based on the covariance matrix of the anomalies, negative factor
loadings from the second PC are shown by downward pointing triangles (positive-upwards), with loading
magnitude proportional to triangle size.

To provide a comparison with existing methodology we performed a principal component analysis (PCA)

targeting the anomaly process. It should be noted that a number of fairly involved approaches to empirical

orthogonal function analysis of spatio-temporal data sets (e.g., principal oscillation pattern analysis) have

been developed in recent years, each method addressing slightly different aspects of the covariance structures

of atmospheric data (see, e.g., Jolliffe 2002, and Wikle 2002). However, as these methods are rather complex,

we compare our results only with those produced by decomposition of the correlation matrix of the scalar

observations.

To obtain factor loadings appropriate for comparison with the clusters depicted in Figure 4, the PCA is

based on the estimated anomaly series. As with the anomaly data depicted in Figure 1, the anomaly series are

calculated by subtraction of station-specific monthly means from the original data. The correlation matrix

was chosen as a basis for the principal components because anomaly variability differed somewhat from
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ID 1 2 3 4 5 6 7 8 9 10 11 12 mean
êia .226 .229 .221 .183 .222 .162 .208 .242 .155 .203 .206 .209 .206
ID 13 14 15 16 17 18 19 20 21 22 23 24 mean
êia .004 -.180 -.170 -.184 -.097 -.180 -.206 -.216 -.265 -.242 -.256 -.255 -.187

Table 4: Sample loadings, êia, based on the second principal component. The loadings are based on the
correlation matrix of the anomaly data.

station to station. (For this data, the factor loadings based on the covariance matrix differ only marginally

from those based on the correlation matrix.) To address numerous missing values, element-wise correlation

estimates were used to define the sample correlation matrix. The factor loadings from the first principal

component (not depicted), accounting for 67.7% of total variability, are spatially unstructured (i.e., positive

and of approximately equal size) and indicative of a climatologically homogeneous, or limited, geographical

region.

The factor loadings from the second principal component, accounting for approximately 10% of total

variability, are given in Table 4. With means of .206 and -.187, the factor loadings for the western and

eastern stations are clearly delineated by longitude. The spatial distribution of the factor loadings is also

depicted in Figure 4, with a negative factor loading indicated by a downward pointing triangle (upward for

a positive loading), and with loading magnitude proportional to triangle size. For this data, the anomaly

pattern of the second principal component is identical to the cluster pattern derived from J̄a(Yi, Θ̂i;Yj , Θ̂j).

As previously mentioned, the temporal (and spatial) temperature anomaly pattern is related to the

topography of Colorado. Separated by the Continental Divide, the flow patterns in the western and eastern

parts of the state have different dynamics, here reflected by different parameter estimates, during strong

winter and summer anomalies. However, the spatial pattern among the factor loadings may at least partially

be due to the fact that a limited area is studied, potentially producing boundary effects determined by large

scale (global) anomaly temperature patterns (Richman 1986). Nevertheless, the results of both methods

confirm the existence of clearly defined anomaly patterns. In fact, as no direct information about the

temporal covariance structures is obtained by the principal component analysis performed here, the two

methods target different information yet produce very similar results.

The second discrepancy measure is based on the seasonal process defined in (4). By developments similar

to those producing the computational formula (6), targeting the anomaly process, one can show that the
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sample discrepancy for the seasonal process is given by

J̄s(Yi, Θ̂i;Yj , Θ̂j) =
1
2

(
σ̂2

δi

σ̂2
δj

+
σ̂2

δj

σ̂2
δi

)
− 1. (7)

It should be noted that the simple form of equation (7) is partly due to the fact that the EM-algorithm is

used to produce output. We note further the dependence of J̄s(Yi, Θ̂i;Yj , Θ̂j) on the estimated state noise

variances σ̂2
δi

and σ̂2
δj

, the parameters defining the covariance structures of the seasonal processes.

Nearest-neighbor clustering results for the seasonal process, based on J̄s(Yi, Θ̂i;Yj , Θ̂j), are shown

in Figure 5. Although somewhat complex, east-west and north-south patterns are discernable. To more

clearly identify potential clusters, the discrepancy matrix produced by evaluation of J̄s(Yi, Θ̂i;Yj , Θ̂j), i, j =

1, . . . , 24, was subjected to Ward’s, single linkage, and complete linkage clustering procedures (e.g., Hartigan

1975; Gordon 1999). As the results from the three methods are similar, each essentially identifying four

clusters, we discuss only the results of Ward’s method. Detailed results from Ward’s method are provided by

the dendrogram in Figure 6. As seen in the plot, the identified clusters are given by stations 3, 13; stations

5, 7; stations 4, 6, 8, 10, 11, 16, 19, 20, 21, 22; and stations 1, 2, 9, 12, 14, 15, 17, 18, 23, 24.
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Figure 5: Nearest neighbors based on J̄s(Yi, Θ̂i;Yj , Θ̂j).

As the seasonal phase is primarily attributable to latitude, only the south-north grouping of cluster three
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Figure 6: Dendrogram based on Ward’s method.

can be clearly associated to obvious spatial variability in the seasonal cycle. The east-west grouping of cluster

four may potentially result from different albedo (solar radiation reflection) levels between the mountains

and the plains. Also, the topography of the Rocky Mountains may limit amplitude changes in the seasonal

cycle. Absent physical explanation, the clusters of stations 3 and 13, and stations 5 and 7 remain obscure,

but the existence of such clusters will likely diminish when a larger spatial domain, with more variability

in the seasonal cycle, can be observed. In fact, the domain under consideration here is likely too small to

produce robust seasonal clusters.

There is no simple method with which to compare the obtained seasonal clusters. One possibility is to

fit a spatially varying mean to each of the 12 months of the year, and treat the residual seasonal deviations

as data. However, this procedure will likely be dominated by regions of similar mean structure and yield

little insight about the dynamics of the seasonal cycle. Another possibility is to perform a PCA that directly

takes into account the seasonal cycle, e.g. periodically extended empirical orthogonal function analysis, as

in Kim and Wu (1999). As mentioned, these methods are somewhat involved and will not be pursued here.

Next we discuss generalizations of the disparity function and suggest extensions to time varying and

non-linear systems.
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3 Extensions to Time Varying Systems

The measures developed in Subsection A.2 and A.3 of the Appendix can be extended to time varying systems.

One useful example of a time varying state-space process allows the state transition matrix to change: i.e.,

in (2) we may consider xt = Φtxt−1 + wt. For example, the time series data considered in Section 2 could

be modeled by letting the autoregressive component φ vary with month. Thus, depending on the month, let

φt be from {φjan, φfeb, . . . , φdec}. Another important class of time varying processes is obtained by letting

the system depend non-linearly on the state, e.g., consider xt = Φ(xt−1) + wt, where Φ(xt−1) is a function

of xt−1. The extended Kalman filter (cf. Jazwinski 1970) can then be used to approximately evaluate the

statistics of the Kalman recursions, with transition matrix at time t given by Φt = ∂Φ(c)/∂c evaluated at

the forecast c = x̃t(Θ,Yt−1). To apply the discriminant and clustering methods presented here to time

varying systems, expressions based on Φ must be adapted to depend on the parameter set {Φ1, . . . ,ΦN}

(see the computational formulae (13) and (14) in Subsections A.2 and A.3). The extension yields somewhat

more complicated expressions, but the development is mostly a matter of bookkeeping.

It should be noted that strongly non-linear processes with rapid error growth, i.e., chaotic systems

or any system which depends sensitively on initial conditions, cannot be modeled using linear approxi-

mations (Miller, Ghil, and Gauthiez 1994). In such scenarios, Monte-Carlo based filtering methods are

often used to produce (approximate) samples from the posterior distribution. Assuming such samples

X̃k
� ∼ f(X|Y�,Θ�), k = 1, 2, . . . , m, are available, the general discrepancy measure (8) in Subsection A.2

could (in principle) by estimated by d̂(Y�,Θ�;Y,Θ) = m−1
∑m

i=1 log[f(X̃k
� |Y�,Θ�)/f(X̃k

� |Y,Θ)]. The en-

semble Kalman filter (and smoother), a widely used data assimilation method in the atmospheric community

(e.g., Houtekamer and Mitchell 1998; Bengtsson, Nychka, and Snyder 2003), emulates the extended Kalman

filter by propagating the first two moments of the filter distribution, and can be adapted to evaluate the

Monte Carlo based discrepancy even for strongly non-linear systems.

4 Summary

Using Kullback information, new disparity measures for classification of state-space processes are used to

cluster monthly temperature records from stations across Colorado, USA. The results confirm known at-
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mospheric flow patterns, and agree with those produced by a principal component analysis. Further, the

results suggest that the seasonal cycle may be locally affected by albedo levels associated with the elevation

variations of Colorado. The disparity measures are model-based and provide a general, structural approach

to pattern recognition in time series analysis. In particular, classification according to unobserved latent

components, hitherto not directly possible using existing methods, is feasible. Efficient computational eval-

uation of the disparity measures is provided by output from the Kalman smoother. The work is concluded

with a discussion of extensions of our methods to time varying systems. A detailed development of the

general methodology is presented in the Appendix.
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A Appendix: Development of Disparity Measures for State-Space
Processes

In this Appendix, we present the relevant technical results that pertain to our clustering procedures. Sub-

section A.1 introduces the linear state-space framework, and describes notation for the required prediction

quantities. We then present new disparity measures for gauging similarity between time series data modeled

within this framework. Specifically, Subsection A.2 introduces a general state-space divergence measure for

time series data based on the Kullback information, and Subsection A.3 adapts this measure to focus more

specifically on the latent state process. Formulae that permit exact computational evaluation of the proposed

measures are also derived. Finally, in Subsection A.4, we discuss the use of these formulae in discrimination

and clustering algorithms.

A.1 Linear state-space model

The state-space model is a general dynamic linear model and subsumes a rich class of specialized models

for time series and stochastic processes (Jazwinski 1970; Brockwell and Davis 1991). A primary tool in

engineering and signal processing (Anderson and Moore 1979; Chen and Liu 2000), the state-space model is

also widely applied in other disciplines, e.g., economics (Harvey 1989; Durbin and Koopman 2001), medicine

(Jones 1993), and the atmospheric sciences (Wikle and Cressie 1999; Houtekamer and Mitchell 2001).

Let Yt = [y′
1,y

′
2, . . . ,y

′
t]
′ and Xt = [x′

0,x
′
1, . . . ,x

′
t]
′ represent the vectors of observed data and unobserved

states through time t (t = 1, . . . , N). Of primary concern in state-space modeling is prediction and recovery

of the unobserved states in XN . Under the model assumptions listed in Subsection 2.1, prediction of xt

using the conditional mean E(xt|Θ,Yk), here denoted x̃t(Θ,Yk), yields the best predictor of xt given Yk,

1 ≤ k, t ≤ N. For k ≤ t, the predictors are obtained recursively using the Kalman filter (Kalman 1960): the

one-step ahead predictors x̃t(Θ,Yt−1) and the filters x̃t(Θ,Yt) are obtained through the forward Kalman

filter recursions, which also generate the innovations et(Θ,Yt) = yt − AtE(xt|Θ,Yt−1) along with the

covariance matrices Σt(Θ) = E{et(Θ,Yt)et(Θ,Yt)′|Θ,Yt−1}. For t ≤ k ≡ N , the smoothers x̃t(Θ,YN )

are obtained recursively using the backwards smoothing algorithms (Anderson and Moore 1979), which also

produce the error covariances PN
t (Θ) = E{[xt − x̃t(Θ,YN )][xt − x̃t(Θ,YN )]′|Θ,YN}.

16



Estimates of the unknown parameters in Θ are usually obtained using maximum likelihood. We use the

EM-algorithm method of ML estimation, adapted to the state-space framework by Shumway and Stoffer

(1982), as our disparity functions can be obtained as by-products of the output.

In what follows, for notational simplicity, we drop the superscripts on the data and state vectors and

write Y and X to mean YN and XN , respectively. (This simplified notational convention was also followed

in the body of the paper.) Additionally, we assume that N is the same for all of the data and state vectors

introduced in the subsequent development.

A.2 General state-space divergence measure

As the primary interest of state-space modeling is often the unobserved process X, a natural way to compare

state-space processes is to match the mechanisms generating the states. Following Cavanaugh and Johnson

(1999), we use an information theoretic approach to develop a disparity measure that gauges the similarity

of two state-space processes by comparing posterior (conditional) densities of the unobserved states. (Based

on these results, a measure targeting the marginal densities of the states is developed in the next subsection.)

We wish to assess the disparity between two state-space processes Y� and Y, each process generated

according to (1) and (2) with parameter structures Θ� and Θ, respectively. Our general discrepancy function

assesses the similarity of the unobserved states of Y� and Y by comparing f(X|Y�,Θ�) with f(X|Y,Θ).

Since X is unobserved, we consider the comparison suggested by the Kullback information (Kullback 1968),

also known as the I-divergence:

d(Y�,Θ�;Y,Θ) =
∫

log
f(X|Y�,Θ�)
f(X|Y,Θ)

f(X|Y�,Θ�)dX. (8)

In addition to contrasting parameters (the objective of the traditional Kullback information based on

marginal as opposed to conditional densities), the preceding divergence also compares data. To provide

further insight about d(Y�,Θ�;Y,Θ), the next proposition delineates the defined divergence in terms

of the smoothed representations of Y� and Y, and the posterior covariance matrices cov(X|Θ�,Y�) and

cov(X|Θ,Y).

Proposition 1. Let x̃� = E(X|Θ�,Y�) and x̃ = E(X|Θ,Y) contain the complete sets of smoothed values

of Y� and Y under the models defined by Θ� and Θ. Also, let Σ� = cov(X|Θ�,Y�) and Σ = cov(X|Θ,Y).
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Then, with p = dimension of xt,

d(Y�,Θ�;Y,Θ) =
1
2
{log

( |Σ|
|Σ�|

)
+ tr(Σ−1Σ�) + (x̃� − x̃)′Σ−1(x̃� − x̃) − Np}. (9)

Proposition 1 follows by noting that d(Y�,Θ�;Y,Θ) is the I-divergence of two multivariate normal distri-

butions (see Kullback 1968, p 306).

As indicated by (9), d(Y�,Θ�;Y,Θ) compares posterior means as well as posterior covariance matrices.

The point-wise comparison of posterior means provides evaluation of the measurement scales and potential

phase shifts between yt,� and yt. In contrast, the posterior covariance structures are not dependent on Y� or

Y under Gaussian model assumptions, and will reflect only differences between parameter structures. Thus,

assuming Θ� and Θ represent the same measurement process, the temporal dynamics of xt under the two

models are indirectly contrasted by comparison of the posterior covariance matrices Σ� and Σ.

Since the posterior covariance matrices Σ� and Σ are assumed high-dimensional (at least N × N),

and furthermore require specification and inversion, Proposition 1 is not computationally useful. An exact

computational formula that allows for efficient evaluation of d(Y�,Θ�;Y,Θ) is given in Proposition 2.

Proposition 2. Let L(Θ|X,Y) represent the complete-data likelihood of Y and X, and define

Q(Θ�,Y�;Θ,Y) = E{log L(Θ|X,Y)|Θ�,Y�}. Then,

d(Y�,Θ�;Y,Θ) = [Q(Θ�,Y�|Θ�,Y�) − Q(Θ,Y|Θ�,Y�)] + [log L(Θ|Y) − log L(Θ�|Y�)]. (10)

Proof. The result follows by noting that f(X|Y,Θ) = f(X,Y|Θ)/f(Y|Θ). The first two terms in (10)

can be calculated using the Kalman smoother, while the latter two terms are obtained through calculation

of likelihoods.

Using output from the backward smoothing recursions, Shumway and Stoffer (1982, p 256-7) and

Shumway and Stoffer (2006, p 343) present an explicit form for Q(Θ,Y|Θ�,Y�). With x̃t(Θ,Y) =

E(xt|Θ,Y), and PN
t,t−1(Θ) = E{[xt−x̃t(Θ,Y)][xt−1−x̃t−1(Θ,Y)]′|Θ,Y} representing the cross-covariance
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cov(xt,xt−1|Θ,Y), Shumway and Stoffer (1982) argue

2Q(Θ,Y|Θ�,Y�) =

− log |V| − tr(V−1{PN
0 (Θ�) + [x̃0(Θ,Y�) − µ][x̃0(Θ,Y�) − µ]′})

− N log |Q| − tr{Q−1[St(0) − St(1)Φ′ − ΦSt(1)′ + ΦSt−1(0)Φ′]}

− N log |R| − tr(R−1{
N∑

t=1

[yt − Atx̃t(Θ�,Y�)][yt − Atx̃t(Θ�,Y�)]′ + AtPN
t (Θ�)A′

t}),

where

St(j) =
N∑

t=1

[PN
t,t−j(Θ�) + x̃t(Θ�,Y�)x̃t−j(Θ�,Y�)′], (11)

and

St−1(0) =
N∑

t=1

[PN
t−1(Θ�) + x̃t−1(Θ�,Y�)x̃t−1(Θ�,Y�)′]. (12)

Then, with x̃t = E(xt|Θ�,Y�), one can show

d(Y�,Θ�;Y,Θ) = − N

2
(log |Q�| − log |Q|)

− 1
2
tr({Q−1

� [St(0) − St(1)Φ′
� − Φ�St(1)′ + Φ�St−1(0)Φ′

�]}

− {Q−1[St(0) − St(1)Φ′ − ΦSt(1)′ + ΦSt−1(0)Φ′]})

− N

2
(log |R�| − log |R|)

− 1
2
tr({R−1

�

N∑
t=1

[(yt,� − Atx̃t)(yt,� − Atx̃t)′ + AtPN
t (Θ�)A′

t]}

− {R−1
N∑

t=1

[(yt − Atx̃t)(yt − Atx̃t)′ + AtPN
t (Θ�)A′

t]})

+ [logL(Θ|Y) − logL(Θ�|Y�)], (13)

where the smoothing matrices St(0), St(1), and St−1(0) are evaluated using Y� and the model defined by

Θ�. In the computational formula, the contribution from the prior density of x0 on d(Y�,Θ�;Y,Θ) is

ignored.

Evaluation of d(Y�,Θ�;Y,Θ) simplifies somewhat when ML parameter estimates are used to calculate

the involved smoothing quantities. For instance, with p = dimension(xt), q = dimension(yt), and with Θ̂�

estimated from Y�, using the EM algorithm: Np ≡ tr{Q̂−1
� [St(0) − St(1)Φ̂

′
� − Φ̂�St(1)′ + Φ̂�St−1(0)Φ̂

′
�]},

and Nq ≡ tr[R̂−1
�

∑N
t=1{[yt,� − Atx̃t][yt,� − Atx̃t]′ + AtPN

t (Θ̂�)A′
t}]. •
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As can be seen from the computational formula in Proposition 2, the defined I-divergence results in

discrimination directly dependent on the observation equation, a potentially undesirable effect if the primary

interest is the state process. However, as shown next, the divergence in (8) can be used to obtain an estimate

of the Kullback information between f(X|Θ�) and f(X|Θ).

A.3 State disparity measure

In many cases it may be desirable to have a disparity function based solely on the state process, even for

state-space series with different measurement processes. Consider then, as an alternative to d(Y�,Θ�;Y,Θ),

defining a discrepancy that targets only the state densities f(X|Θ�) and f(X|Θ):

dstate(Y�,Θ�;Θ) =
∫

log
f(X|Θ�)
f(X|Θ)

f(X|Y�,Θ�)dX. (14)

As stated by the next result, dstate(Y�,Θ�;Θ) provides an unbiased estimate of the Kullback information

between f(X|Θ�) and f(X|Θ).

Proposition 3.

∫
dstate(Y�,Θ�;Θ)f(Y�|Θ�)dY� =

∫
log

f(X|Θ�)
f(X|Θ)

f(X|Θ�)dX.

Proof. Since the support of X and Y� are independent, we have

∫
dstate(Y�,Θ�;Θ)f(Y�|Θ�)dY� =

∫
Y�

{∫
X

log
[f(X|Θ�)

f(X|Θ)

]f(Y�|X,Θ�)f(X|Θ�)
f(Y�|Θ�)

dX
}

f(Y�|Θ�)dY�

=
∫
X

log
[f(X|Θ�)

f(X|Θ)

]
f(X|Θ�)

{∫
Y�

f(Y�|X,Θ�)dY�

}
dX

=
∫
X

log
[f(X|Θ�)

f(X|Θ)

]
f(X|Θ�)dX.

The result also follows readily from the law of iterated expectations. •

Based on reasoning similar to that used in establishing Proposition 2, the computational formula for

dstate(Y�,Θ�;Θ) is given by

dstate(Y�,Θ�;Θ) = − N

2
(log |Q�| − log |Q|)

− 1
2
tr({Q−1

� [St(0) − St(1)Φ′
� − Φ�St(1)′ + Φ�St−1(0)Φ′

�]}

− tr{Q−1[St(0) − St(1)Φ′ − ΦSt(1)′ + ΦSt−1(0)Φ′]}), (15)
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where the smoothing matrices St(0),St(1), and St−1(0), are as previously defined.

Proposition 3 does not guarantee the positivity of dstate(Y�,Θ�;Θ), but when the EM algorithm is used

to estimate Θ� from Y� and to smooth the data, it can be verified that dstate(Y�, Θ̂�;Θ) ≥ 0. Thus, the

sample state disparity measure can be used as a pseudo-distance measure for discrimination and clustering

purposes.

Using an argument similar to that of Proposition 3, one can develop a divergence that targets a subset

of the state vector. That is, suppose the state vector can be partitioned, e.g., X = [X′
1,X

′
2]

′, and is such

that f(X|Θ�) = f(X1|Θ�)f(X2|Θ�), then the Kullback information divergences

∫
log

f(X1|Θ�)
f(X1|Θ)

f(X1|Θ�)dX1 and
∫

log
f(X2|Θ�)
f(X2|Θ)

f(X2|Θ�)dX2

can be targeted using output from dstate(Y�,Θ�;Θ). The use of such discrepancy functions is illustrated in

the application.

Importantly, Proposition 3 and the computational formula for dstate(Y�,Θ�;Θ) provide a basis for data-

dependent classification targeting only the density of the unobserved processes, a result that cannot be

obtained by a likelihood-based method in the state-space setting.

A.4 Discrimination and clustering using d(Y�,Θ�;Y,Θ) and dstate(Y�,Θ�;Θ)

A flexible non-parametric discriminant rule with asymptotically optimal properties is given by the nearest

neighbor rule (Cover and Hart 1967). The nearest neighbor rule assigns to an unclassified sample point

the classification of the nearest, with respect to some distance/similarity measure, of a set of previously

labeled sample points. Because of lack of distributional assumptions and simple use of d(Y�,Θ�;Y,Θ) and

dstate(Y�,Θ�;Θ), we utilize the nearest neighbor rule to classify a new time series into a previously labeled

population (Gersch 1981).

Suppose we wish to determine population membership of Y� (generated under Θ�), and have available a

set of n time series, S(n) = {Y1, . . . ,Yn}, each series drawn from one of k mutually exclusive populations,

uniquely defined by the parameters Ω(k) = {Θ1, . . . ,Θk}. Then, given (Y�,Θ�), the nearest neighbor of

Y� is a function of both Y and Θ, and evaluation of d(Y�,Θ�;Y,Θ) requires selection of Y from S(n)

and Θ from Ω(k). If Yj ∈ S(n) is generated under the state-space model defined by Θi ∈ Ω(k), the
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obvious choice is to select the data-parameter pair (Y,Θ) = (Yj ,Θi). However, this choice results in

simultaneous data-parameter comparison, and is sensitive to scale and phase differences between Y� and

Yj . Thus, for discrimination based on population characteristics (here synonymous with parameters), we

propose the discrepancy resulting from comparing the smoothed density of Y� under the models defined by

Θ� and Θj . With (Y,Θ) = (Y�,Θj) in (8), we define the discrepancy d1(Y�,Θ�;Y�,Θj), with nearest

neighbor allocation of Y� based on min{1≤j≤k} d1(Y�,Θ�;Y�,Θj). Similarly, with Θ = Θj in (14), we

define dstate(Y�,Θ�;Θj), with allocation of Y� according to min{1≤j≤k} dstate(Y�,Θ�;Θj). The symmetric

J-divergences defined by

J1(Y�,Θ�;Y�,Θj) = d1(Y�,Θ�;Y�,Θj) + d1(Y�,Θj ;Y�,Θ�), or (16)

Jstate(Y�,Θ�;Y�,Θj) = dstate(Y�,Θ�;Θj) + dstate(Y�,Θj ;Θ�), (17)

can also be used for classification of Y�.

For clustering purposes we assume n = k. Then, the symmetric disparity measures

J1(Y�,Θ�;Yj ,Θj) = d1(Y�,Θ�;Y�,Θj) + d1(Yj ,Θj ;Yj ,Θ�), or (18)

Jstate(Y�,Θ�;Yj ,Θj) = dstate(Y�,Θ�;Θj) + dstate(Yj ,Θj ;Θ�), (19)

may be used to define a k×k distance matrix, DS(k), reflecting the similarity of the series contained in S(k).

Clustering of the series in S(k) into homogeneous subgroups may then be performed by decomposition of

DS(k) using classical partitioning procedures (e.g., Johnson and Wichern 1992). (Note the difference between

(16) and (18) and between (17) and (19).)

In our application, we use two variants of Jstate(Y�,Θ�;Yj ,Θj) for clustering our monthly temperature

time series: one based on the anomaly process and one based on the seasonal process.
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