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Abstract:
A model selection criterion is often formulated by constructing an approx-

imately unbiased estimator of an expected discrepancy, a measure that gauges
the separation between the true model and a fitted approximating model. The
expected discrepancy reflects how well, on average, the fitted approximating
model predicts “new” data generated under the true model. A related measure,
the estimated discrepancy, reflects how well the fitted approximating model pre-
dicts the data at hand.

In general, a model selection criterion consists of a goodness-of-fit term
and a penalty term. The natural estimator of the expected discrepancy, the
estimated discrepancy, corresponds to the goodness-of-fit term of the criterion.
However, the estimated discrepancy yields an overly optimistic assessment of
how effectively the fitted model predicts new data. It therefore serves as a
negatively biased estimator of the expected discrepancy. Correcting for this
bias leads to the penalty term.

Cross validation provides a technique for developing an estimator of an
expected discrepancy which need not be adjusted for bias. The basic idea is
to construct an empirical discrepancy that evaluates an approximating model
by assessing how accurately each case-deleted fitted model predicts the deleted
case.

The preceding approach is illustrated in the linear regression framework
by formulating estimators of the expected discrepancy based on Kullback’s I-
divergence and the Gauss (error sum of squares) discrepancy. The traditional
criteria that arise by augmenting the estimated discrepancy with a bias ad-
justment term are the Akaike information criterion and Mallows’ conceptual
predictive statistic. A simulation study is presented.
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33.1 Introduction

A model selection criterion is often formulated by constructing an approxi-
mately unbiased estimator of an expected discrepancy, a measure that gauges
the separation between the true model and a fitted approximating model. The
natural estimator of the expected discrepancy, the estimated discrepancy, cor-
responds to the goodness-of-fit term of the selection criterion.

The expected discrepancy reflects how well, on average, the fitted approx-
imating model predicts “new” data generated under the true model. On the
other hand, the estimated discrepancy reflects how well the fitted approximat-
ing model predicts the data at hand. By evaluating the adequacy of the fitted
model based on its ability to recover the data used in its own construction, the
estimated discrepancy yields an overly optimistic assessment of how effectively
the fitted model predicts new data. Thus, the estimated discrepancy serves as
a negatively biased estimator of the expected discrepancy. Correcting for this
bias leads to the penalty term of the selection criterion.

Cross validation provides a technique for developing an estimator of an
expected discrepancy which need not be adjusted for bias. The basic idea
involves constructing an empirical discrepancy that evaluates an approximating
model by assessing how accurately each case-deleted fitted model predicts the
deleted case.

Cross validation facilitates the development of model selection procedures
based on predictive principles. In this work, we attempt to establish a more
explicit connection between cross validation and traditional discrepancy-based
model selection criteria, such as the Akaike (1973) information criterion and
Mallows’ (1973) conceptual predictive statistic.

In section 2, we outline the framework for discrepancy-based selection cri-
teria. In section 3, we discuss the bias-adjustment approach for developing a
model selection criterion, and in section 4, we present the cross-validatory ap-
proach. Section 5 features examples of discrepancy-based selection criteria de-
veloped using both approaches. The linear regression framework is considered.
In section 6, we present simulation results to evaluate the performance of the
criteria. Our results show that the cross-validatory criteria compare favorably
to their traditional counterparts, offering greater protection from overfitting in
small-sample settings.
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33.2 Framework for Discrepancy-Based Selection Cri-
teria

Suppose we have an n-dimensional data vector y = (y1, . . . , yn)
′
, where the yi’s

may be scalars or vectors and are assumed to be independent. A parametric
model is postulated for y. Let θ denote the vector of model parameters.

Let F (y) denote the joint distribution function for y under the generating
or “true” model, and let Fi(yi) denote the marginal distribution for yi under
this model. Let G(y, θ) denote the joint distribution function for y under the
candidate or approximating model.

A discrepancy is a measure of disparity between F (y) and G(y, θ), say
Δ(F,G), which satisfies

Δ(F,G) ≥ Δ(F,F ).

A discrepancy is not necessarily a formal metric, which would additionally
require that Δ(F,F ) = 0, that Δ(F,G) is symmetric in F (y) and G(y, θ), and
that Δ(F,G) satisfies the triangle inequality. However, the measure Δ(F,G)
serves the same basic role as a distance: i.e., as the dissimilarity between F (y)
and G(y, θ) becomes more pronounced, the size of Δ(F,G) should increase
accordingly.

We will consider discrepancies of the following form:

Δ(F,G) = Δ(θ) =
n∑

i=1

EFi {δi(yi; θ)} .

In the preceding, δi(yi; θ) represents a function that gauges the accuracy with
which the ith case yi is predicted under the approximating model (parameterized
by θ).

Let θ̂ denote an estimator of θ. The overall discrepancy results from evalu-
ating the discrepancy between F (y) and G(y, θ) at θ = θ̂:

Δ(θ̂) =
n∑

i=1

EFi {δi(yi, θ)} |
θ=θ̂

.

The expected (overall) discrepancy results from averaging the overall discrep-
ancy over the sampling distribution of θ̂:

EF

{
Δ(θ̂)

}
=

n∑
i=1

EF

{
EFi {δi(yi, θ)} |

θ=θ̂

}
.

The estimated discrepancy is given by

Δ̂(θ̂) =
n∑

i=1

δi(yi, θ̂).
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Model selection criteria are often constructed by obtaining a statistic that
has an expectation which is equal to EF

{
Δ(θ̂)

}
(at least approximately). In

the next two sections, we explore the bias-adjustment and cross-validatory ap-
proaches to obtaining such statistics.

33.3 The Bias-Adjustment Approach to Developing
a Criterion

The overall discrepancy Δ(θ̂) is not a statistic since its evaluation requires
knowledge of the true distribution F (y). The estimated discrepancy Δ̂(θ̂) is
a statistic and can be used to estimate the expected discrepancy EF

{
Δ(θ̂)

}
.

However, Δ̂(θ̂) serves as a biased estimator.
Consider writing EF

{
Δ(θ̂)

}
as follows:

EF

{
Δ(θ̂)

}
= EF

{
Δ̂(θ̂)

}
+

[
EF

{
Δ(θ̂) − Δ̂(θ̂)

}]
.

The bracketed quantity on the right is often referred to as the expected optimism
in judging the fit of a model using the same data as that which was used to
construct the fit. The expected optimism is positive, implying that Δ̂(θ̂) is a
negatively biased estimator of EF

{
Δ(θ̂)

}
. In order to correct for the negative

bias, we must evaluate or approximate the bias adjustment represented by the
expected optimism.

There are numerous approaches for contending with the bias adjustment.
These approaches include deriving an asymptotic approximation for the ad-
justment (e.g., Akaike, 1973), deriving an exact expression (e.g., Hurvich and
Tsai, 1989), or obtaining an approximation using Monte Carlo simulation (e.g.,
Bengtsson and Cavanaugh, 2006).

We will now introduce a general cross-validatory estimate of the expected
discrepancy that need not be adjusted for bias. As a model selection criterion,
such an estimate has several advantages over a bias-adjusted counterpart.

First, the form of a cross-validatory criterion facilitates a convenient inter-
pretation of the statistic as a measure of predictive efficacy. Broadly speaking,
such a criterion evaluates an approximating model by gauging how accurately
each case-deleted fitted model predicts a “new” datum, represented by the
deleted case. The criterion provides a composite measure of accuracy result-
ing from the systematic deletion and prediction of each case. In contrast, the
form of a bias-adjusted criterion is more esoteric, consisting of an additive com-
bination of a goodness-of-fit term and a penalty term. These terms work in
opposition to balance the competing modeling objectives of conformity to the
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data and parsimony. However, the connection between achieving such a balance
and predictive efficacy is not transparent.

Second, a cross-validatory criterion serves as an exactly unbiased estimator
of a cross-validatory expected discrepancy that may be viewed as a natural
analogue of the expected discrepancy EF

{
Δ(θ̂)

}
. This unbiasedness holds

without imposing conditions that may restrict the applicability of the resulting
criterion, conditions which are routinely required for the justifications of bias
corrections.

Third, the difference between the cross-validatory expected discrepancy and
its traditional counterpart converges to zero. Thus, in large sample settings, the
cross-validatory criterion estimates the traditional expected discrepancy with
negligible bias.

The key assumption for establishing the asymptotic equivalence of the cross-
validatory and traditional expected discrepancies is that the difference in ex-
pectation between the full-data estimator and any case-deleted estimator is
o(n−1). The proof is provided in the appendix. For settings where the method
of estimation is maximum likelihood and the approximating model is correctly
specified or overspecified, the asymptotic condition on the estimators is verified.

33.4 The Cross-Validatory Approach to Developing

a Criterion

Let y[i] denote the data set y with the ith case yi excluded. Let θ̂[i] denote an
estimator of θ based on y[i].

Recall that the overall discrepancy is defined as

Δ(θ̂) =
n∑

i=1

EFi {δi(yi, θ)} |
θ=θ̂

. (33.1)

Now consider the following variant of the overall discrepancy:

Δ∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

EFi {δi(yi, θ)} |
θ=θ̂[i]

. (33.2)

The expected (overall) discrepancy corresponding to (33.1) is given by

EF

{
Δ(θ̂)

}
=

n∑
i=1

EF

{
EFi {δi(yi, θ)} |

θ=θ̂

}
; (33.3)

the expected (overall) discrepancy corresponding to (33.2) is given by

EF

{
Δ∗(θ̂[1], . . . , θ̂[n])

}
=

n∑
i=1

EF

{
EFi {δi(yi, θ)} |

θ=θ̂[i]

}
. (33.4)
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Under the assumption that the difference in expectation between the full-
data estimator θ̂ and any case-deleted estimator θ̂[i] is o(n−1), it can be es-
tablished that the difference between EF

{
Δ(θ̂)

}
and EF

{
Δ∗(θ̂[1], . . . , θ̂[n])

}
is o(1). (The proof is outlined in the appendix.) Hence, an unbiased estimator
of (33.4) is approximately unbiased for (33.3).

Now the estimated discrepancy

Δ̂(θ̂) =
n∑

i=1

δi(yi, θ̂)

is negatively biased for (33.3). However, the empirical discrepancy defined as

Δ̂∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

δi(yi, θ̂[i]) (33.5)

is exactly unbiased for (33.4). The justification of this fact is straightforward.
Since EF

{
Δ∗(θ̂[1], . . . , θ̂[n])

}
≈ EF

{
Δ(θ̂)

}
, it follows that Δ̂∗(θ̂[1], . . . , θ̂[n])

is approximately unbiased for EF

{
Δ̂(θ̂)

}
. Thus, the empirical discrepancy

Δ̂∗(θ̂[1], . . . , θ̂[n])

(a) estimates EF

{
Δ∗(θ̂[1], . . . , θ̂[n])

}
without bias,

(b) estimates EF

{
Δ(θ̂)

}
with negligible bias for large n.

33.5 Examples in the Linear Regression Setting

Consider a setting where a continuous response variable is to be modeled using
a linear regression model.

Under the approximating model, assume the yi are independent with mean
x

′
i β and variance σ2. Let θ = (β

′
σ2)

′
. Further, let g(y, θ) denote the approx-

imating density for y, and let gi(yi, θ) denote the approximating density for
yi.

Kullback’s I-divergence and the Gauss (error sum of squares) discrepancy
have applicability to many modeling frameworks, including linear regression.
In the context of model selection, the I-divergence may be defined as

ΔI(θ) = EF {−2 ln g(y, θ)} =
n∑

i=1

EFi {δ I
i (yi; θ)} , (33.6)
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where δ I
i (yi; θ) = −2 ln gi(yi, θ). (See Linhart and Zucchini, 1986, p. 18; Hur-

vich and Tsai, 1989, p. 299.) For the linear regression framework, the Gauss
discrepancy may be expressed as

ΔG(θ) = EF

{
n∑

i=1

(yi − x
′
iβ)2

}
=

n∑
i=1

EFi {δ G
i (yi; θ)} , (33.7)

where δ G
i (yi; θ) = (yi − x

′
iβ)2. (See Linhart and Zucchini, 1986, p. 118.)

Provided that the approximating model of interest is correctly specified
or overspecified, the Akaike information criterion provides an asymptotically
unbiased estimator of the expected discrepancy corresponding to (33.6). In the
present setting, AIC is given by

AIC = −2 ln g(y, θ̂) + 2(p + 1),

where p denotes the number of regression parameters, and θ̂ denotes the max-
imum likelihood estimator (MLE) of θ. Under the additional assumption that
the errors are normally distributed, the “corrected” Akaike information crite-
rion, AICc, provides an exactly unbiased estimator of the expected discrepancy
(Hurvich and Tsai, 1989). AICc is given by

AICc = −2 ln g(y, θ̂) +
2(p + 1)n
n − p − 2

.

Provided that the largest approximating model in the candidate collection
is correctly specified or overspecified, a simple variant of Mallows’ conceptual
predictive statistic (with identical selection properties) provides an exactly un-
biased estimator of the expected discrepancy corresponding to (33.7). Mallows’
statistic is given by

Cp =
SSE

MSEL
+ (2p − n),

where SSE denotes the error sum of squares. The aforementioned variant is
given by (Cp + n)MSEL, where MSEL denotes the error mean square for the
largest approximating model.

The cross-validatory criterion (33.5) based on the I-divergence (33.6) is
given by

n∑
i=1

−2 ln gi(yi, θ̂[i]),

where θ̂[i] represents the case-deleted MLE of θ. Assuming normal errors, the
preceding reduces to

n∑
i=1

ln σ̂2
−i +

n∑
i=1

(yi − ŷi,−i)2

σ̂2−i

,
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where ŷi,−i denotes the fitted value for yi based on the case-deleted data set y[i],
and σ̂2−i denotes the case-deleted MLE for σ2. Davies, Neath, and Cavanaugh
(2005) refer to the preceding criterion as the predictive divergence criterion,
PDC. (See also Stone, 1977.)

The cross-validatory criterion (33.5) based on the Gauss discrepancy (33.7)
is given by

n∑
i=1

(yi − ŷi,−i)2,

the well known PRESS (predictive sum of squares) statistic (Allen, 1974).
The preceding development indicates that PDC and PRESS may be respec-

tively viewed as the cross-validatory analogues of AIC and Cp. In simulation
studies, such cross-validatory criteria compare favorably to their traditional
counterparts. In settings where the generating model is among the collection
of candidate models under consideration, the cross-validatory criteria tend to
select the correctly specified model more frequently and to select overspecified
models less frequently than their bias-adjusted analogues. In the next section,
we present representative sets from the simulation studies we have conducted.

33.6 Linear Regression Simulations

Consider a setting where samples of size n are generated from a true linear
regression model of the form yi = 1 + xi1 + xi2 + xi3 + xi4 + xi5 + xi6 + εi,
where εi ∼ iid N(0, 4). For every sample, nested candidate models with an
intercept and k regressor variables (k = 1, . . . , 12) are fit to the data. (Note that
p = k + 1.) Specifically, the first model fit to each sample is based on only the
covariate xi1, the second is based on the covariates xi1 and xi2, etc. The sixth
fitted model (k = 6, p = 7) is correctly specified. Subsequent fitted models
are overspecified, since they contain the regressor variables for the generating
model (xi1 through xi6) in addition to extraneous covariates (xi7, . . . , xi,12). All
regressor variables are generated as iid replicates from a uniform distribution
over the interval (0, 10).

Suppose our objective is to search the candidate collection for the fitted
model which serves as the best approximation to the truth. The strength of the
approximation is reflected via the expected discrepancy, either (33.3) or (33.4).

We present six simulation sets based on the preceding setting. In the first
three sets, we examine the effectiveness of AIC, AICc, and PDC at selecting the
correctly specified model. In the next three sets, we examine the effectiveness
of Cp and PRESS at achieving the same objective. We group the criterion
selections into three categories: underfit (UF), correctly specified (CS), and
overfit (OF).
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The results of sets 1–3 are presented in Table 1. These sets feature sample
sizes of n = 25, 50, and 75, respectively. In each set, PDC obtains the most
correct selections, followed by AICc. The performance of AIC is relatively poor.
In general, AIC favors overspecified models in settings where the sample size is
insufficient to ensure the adequacy of the criterion’s bias correction.

Table 1. Selection results for AIC, AICc, PDC.

Criterion
Set n Selections AIC AICc PDC

UF 0 1 18
1 25 CS 418 913 929

OF 582 86 53
UF 0 0 0

2 50 CS 606 815 870
OF 394 185 130
UF 0 0 0

3 75 CS 685 789 833
OF 315 211 167

For the results from set 3, the figure on page 10 features a plot of criterion
averages versus k. The expected overall discrepancies (33.3) and (33.4) are
also plotted. The plot illustrates the exact unbiasedness of PDC for (33.4) and
AICc for (33.3), yet also indicates the negative bias of AIC for (33.3) resulting
from the poor bias approximation. This negative bias creates the criterion’s
propensity to favor over parameterized models.

The figure also reflects the similarity of the curves for the expected overall
discrepancies (33.3) and (33.4). As the sample size increases, the difference
between these curves becomes negligible. Thus, in large sample settings, the
selections of PDC, AICc, and AIC should agree. However, in smaller sample
settings, where the predictive accuracy of the selected model may be greatly
diminished by the inclusion of unnecessary covariates, PDC and its target dis-
crepancy favor more parsimonious models.

The results of sets 4–6 are presented in Table 2. These sets feature sample
sizes of n = 15, 20, and 25, respectively. In sets 4 and 5, PRESS obtains more
correct selections than Cp. This is mainly due to the difference in the behaviors
of the targeted discrepancies: in smaller sample settings, (33.4) penalizes more
heavily than (33.3) to protect against the inflation in predictive variability that
accompanies the incorporation of extraneous regressors. However, in this set-
ting, the asymptotic equivalence of (33.3) and (33.4) takes effect for relatively
small n: in the third set, where n is 25, the selection patterns are the same for
the two criteria.
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Table 2. Selection results for Cp and PRESS.

Criterion
Set n Selections Cp PRESS

UF 22 19
4 15 CS 491 587

OF 487 394
UF 4 1

5 20 CS 634 671
OF 362 328
UF 0 0

6 25 CS 668 668
OF 332 332
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The simulation results presented constitute a small yet representative sam-
ple from a larger simulation study. In general, our results show that cross-
validatory criteria perform well relative to their traditional counterparts, offer-
ing greater protection from overfitting in smaller-sample settings, and exhibiting
similar behavioral tendencies in larger-sample settings.

In conclusion, cross-validatory model selection criteria provide an appealing
alternative to traditional bias-adjusted selection criteria (such as AIC and Cp).
For many traditional expected discrepancies, a cross-validatory criterion may
be easily formulated. Such a criterion is approximately unbiased for the tra-
ditional expected discrepancy, and exactly unbiased for an analogous expected
discrepancy based on cross validation. The preceding unbiasedness properties
hold without requiring stringent conditions which may limit applicability. More-
over, the form of a cross-validatory criterion facilitates a convenient, intuitive
interpretation of the statistic as a measure of predictive efficacy.
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Appendix

In what follows, we establish the asymptotic equivalence of (33.3) and (33.4);
specifically

EF {Δ(θ̂)} − EF {Δ∗(θ̂[1], . . . , θ̂[n])} = o(1). (33.8)

We assume that the estimator θ̂ converges weakly to some interior point
θ∗ of the parameter space Θ: i.e., θ̂ = θ∗ + op(1). Thus, we should also have
θ̂[i] = θ∗ + op(1) for each i = 1, . . . , n.

Let Δi(θ) = EFi {δi(yi, θ)} , so that

Δ(θ̂) =
n∑

i=1

Δi(θ̂), Δ∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

Δi(θ̂[i]),

and

Δ(θ̂) − Δ∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

[
Δi(θ̂) − Δi(θ̂[i])

]
. (33.9)

Our approach is to show that for each i,

EF{Δi(θ̂) − Δi(θ̂[i])} = o(n−1). (33.10)
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Clearly, (33.10) in conjunction with (33.9) will establish (33.8).
We assume that Δi(θ) has continuous first-order derivatives with respect to

θ. Let Di(θ) = ∂Δi(θ)/∂θ. Using a first-order Taylor series expansion, we have

Δi(θ̂) = Δi(θ̂[i]) + Di(ξ)′(θ̂ − θ̂[i]), (33.11)

where ξ = θ̂[i] + λ(θ̂ − θ̂[i]) for some 0 ≤ λ ≤ 1. Thus, ξ converges to θ∗, and
Di(ξ) converges to Di(θ∗). From (33.11), we therefore have

Δi(θ̂) − Δi(θ̂[i]) = [Di(θ∗) + op(1)]′(θ̂ − θ̂[i]). (33.12)

Now assume that
EF {(θ̂ − θ̂[i])} = o(n−1). (33.13)

Since Di(θ∗) = O(1), (33.13) together with (33.12) implies (33.10).
We now verify that (33.13) holds in a specific setting, namely one in which

the method of estimation is maximum likelihood, and the approximating model
is correctly specified or overspecified.

The latter assumption implies that the joint distribution function F (y) un-
der the generating model belongs to the same class as the joint distribution
function G(y, θ) under the approximating model. We may therefore write F (y)
as F (y, θo), where θo is an interior point of Θ. Thus, θo defines the “true”
parameter vector.

Let L(θ|y) =
∏n

i=1 gi(yi, θ) denote the likelihood function for θ based on y.
Assume that each of the likelihood contributions gi(yi, θ) is differentiable and
suitably bounded: specifically, that for some function h(·) with

∫
h(u) du < ∞,

we have ∣∣∣∣∂gi(u, θ)
∂θ

∣∣∣∣ < h(u) for all (u, θ). (33.14)

For the overall likelihood L(θ|y), assume that ln L(θ|y) has first- and second-
order derivatives which are continuous and bounded over Θ. Let

Vn(θ) = − 1
n

ln L(θ|y), V (1)
n (θ) =

∂Vn(θ)
∂θ

, and V (2)
n (θ) =

∂2Vn(θ)
∂θ∂θ′

.

Here, θ̂ = argminθ∈ΘVn(θ); i.e., θ̂ is the maximum likelihood estimator of θ.
Let Wn(θ) = EF {Vn(θ)}. Assume that as n → ∞, Wn(θ) converges to a

function W (θ) uniformly in θ over Θ, and that W (θ) has a unique global mini-
mum at θo. Further, suppose that W (θ) has first- and second-order derivatives
which are continuous and bounded over Θ. Let W (2)(θ) = (∂2W (θ))/(∂θ∂θ′).
Assume that W (2)(θ) is positive definite in a neighborhood of θo.

Finally, assume that Vn(θ) converges to W (θ), that V
(2)
n (θ) converges to

W (2)(θ), and that the convergence is uniform in θ over Θ.
The preceding regularity conditions are typical of those used to ensure the

consistency and the asymptotic normality of the maximum likelihood estimator
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of θ̂. (See, for instance, section 3 of Cavanaugh and Neath, 1999.) In the setting
at hand, the point of convergence θ∗ for the estimator θ̂ corresponds to the true
parameter vector θo.

Expand V
(1)
n (θ̂) about θo to obtain

0 = V (1)
n (θ̂)

= V (1)
n (θo) + V (2)

n (θ̃)(θ̂ − θo),

where θ̃ = θo + γ(θ̂ − θo) for some 0 ≤ γ ≤ 1. Then,

θ̂ = θo − [V (2)
n (θ̃)]−1V (1)

n (θo).

The preceding relation along with the assumed regularity conditions and the
consistency of θ̂ leads to

θ̂ = θo − [W (2)(θo) + op(1)]−1V (1)
n (θo).

Now without loss of generality, take θ̂[i] = θ̂[1]. Then we have

θ̂ − θ̂[1] = −[W (2)(θo) + op(1)]−1[V (1)
n (θo) − V

(1)
n−1(θo)], (33.15)

where

V (1)
n (θ) = − 1

n

n∑
i=1

∂ ln gi(yi, θ)
∂θ

and V
(1)
n−1(θ) = − 1

n − 1

n∑
i=2

∂ ln gi(yi, θ)
∂θ

.

Note that

V (1)
n (θo) − V

(1)
n−1(θo) = − 1

n

∂ ln g1(y1, θo)
∂θ

− 1
n

V
(1)
n−1(θo). (33.16)

Using (33.16) in conjunction with (33.15), we obtain

n(θ̂ − θ̂[1]) = [W (2)(θo) + op(1)]−1
[
∂ ln g1(y1, θo)

∂θ
+ V

(1)
n−1(θo)

]
. (33.17)

Now the assumed regularity conditions along with the consistency of the
maximum likelihood estimator allow us to conclude that the difference between
V

(1)
n−1(θo) and V

(1)
n−1(θ̂[1]) = 0 is op(1), which implies that V

(1)
n−1(θo) = op(1).

Moreover, one can argue that EF {(∂ ln g1(y1, θo))/(∂θ)} = 0. This result is
established by exchanging the order of differentiation and integration, which
is permissible via the Lebesgue Dominated Convergence Theorem under the
imposed assumption (33.14). The preceding results along with (33.17) allow us
to argue

EF {n(θ̂ − θ̂[1])} = o(1).

Thus, (33.13) is established.
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