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Abstract

For many situations, the predictive ability of a candidate model is its most important
attribute. In light of our interest in this property, we introduce a new cross validation model
selection criterion, the predictive divergence criterion (PDC), together with a description
of the target discrepancy upon which it is based. In the linear regression framework, we
then develop an adjusted cross validation model selection criterion (PDCa) which serves as
the minimum variance unbiased estimator of this target discrepancy. Furthermore, we show
that this adjusted criterion is asymptotically a minimum variance unbiased estimator of the
Kullback-Leibler discrepancy which serves as the basis for the Akaike information criteria

AIC and AlCec.
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1. Introduction

The first model selection criterion to gain widespread acceptance was the Akaike (1973)
information criterion (AIC). AIC was developed as an estimator of the expected Kullback-
Leibler discrepancy between the model generating the data and a fitted candidate model.
AIC serves as an approximately unbiased estimator in instances where the sample size is
large and the dimension of the candidate model is relatively small.

In other settings, AIC may be characterized by a large negative bias which limits its
effectiveness as a model selection criterion. AICc is a corrected version of AIC originally de-
veloped by Sugiura (1978) for linear regression with normal errors. Hurvich and Tsai (1989)
justify AICc for linear and non-linear regression, and exhibit its small-sample superiority
over AIC in these settings. Davies (2002) and Davies, Neath and Cavanaugh (2005) show
that AICc is the minimum variance unbiased estimator of its target discrepancy in a linear
regression framework.

For many situations, the predictive ability of a candidate model is its most important
attribute. In light of our interest in this property, we concentrate on model selection tech-
niques based on cross validation, namely jackknifing. An early selection criterion based on
the cross validatory evaluation of the mean square prediction error is PRESS (Allen, 1974).
Cross validation provides a technique for developing an estimator of an expected discrep-
ancy which need not be bias adjusted (Linhart and Zucchini, 1986). Our basic approach
is to construct an empirical discrepancy which gauges the adequacy of an approximating
model by assessing how effectively each case-deleted fitted model predicts the deleted case,
as measured by the Kullback-Leibler divergence.

We introduce a new model selection criterion based on cross validation, the predictive
divergence criterion (PDC), together with a description of the target discrepancy upon which
it is based. In the linear regression framework, we then develop an adjusted cross validation
model selection criterion (PDCa) which serves as the minimum variance unbiased estimator
of this target discrepancy. Furthermore, we show that PDCa is asymptotically a minimum
variance unbiased estimator of the expected Kullback-Leibler discrepancy which serves as

the target measure for AIC and AICc.



2. The Akaike Information Criteria (AIC/AICc)

A general framework for discrepancy based selection criteria is used to motivate the
predictive divergence criterion, PDC. We begin with a review of the development of AIC
and AICc which will be conducive to our development of PDC.

Suppose we have an n-dimensional vector y of data

Yy = (yla "'7yn),7

where we will assume the elements of y are independent. The likelihood for the generating
or “true” model for the data vector y can be expressed as

n

L(go |y) = Hgi(yi|90)a

i=1
where g;(y;|0,) for i = 1,...,n are the individual probability density functions corresponding
to the generating models for the elements of y. The likelihood function for the candidate or
approximating model is expressed as
L(0 |y) = l_Ilgz(yz|9)
i=

Here, 6, and 6 represent vectors of functionally independent parameters for the generating
model and the candidate model, respectively. Let © denote the parameter space for #, and
let k& denote the dimension of 6.

Note that we are assuming the candidate model to be of the same parametric family
as the generating model. This assumption is implied from a regularity condition needed to
apply the theory used in the development of AIC and AICc. We will discuss this condition
shortly.

A well-known measure of separation between the generating model and the candidate

model is the Kullback-Leibler divergence (Kullback, 1968). For the i" case y;, such a dis-

crepancy is defined as
di(0,00) = Eo{—21ng;(yi[0)},

where F, denotes the expectation under the generating model.



For the candidate model, let 0 denote the maximum likelihood estimator of 6. A useful
measure of separation between the generating model and the fitted candidate model is the

overall Kullback-Leibler discrepancy, which is given by
darc(0,6,) = Y di(0.6,)

S B2l o) 1)

Thus, the expected overall Kullback-Leibler discrepancy is

Aurc(00,k) = Eo{darc(6,0,)}
ZEO{EO{_2lngi(yi|9)}|0:é}' (2'2)

i=1

Model selection criteria based on dAIC(é, 6,) are developed by finding a statistic that
has an expectation which is equal to (2.2) (or at least approximately equal). Thus, the
targeted measure is A 7¢(6,, k). Note that the overall discrepancy (2.1) is not a statistic since
its evaluation requires knowledge of #,. Therefore, dAIC(é, 6,) cannot be used to estimate

Aarc(0o, k). Yet the empirical log-likelihood measure

—2InL(f |y) = Z{ 21n g;(y;|0)} (2.3)

is a statistic and thus can be used to estimate A4rc(0,, k). However, (2.3) serves as a

negatively biased estimator of A;c(6,, k). If we write
AAIC’(gm k) = Eo{dAIC(éa 90)}
= E{—2WL(0 |y)} + Eo{darc(0,6,) — {-2In L(0 |y)}},

then the bias adjustment

E{daic(0,0,) — {—2In L0 |y)}}

is referred to as the expected optimism (Efron, 1983, 1986) in judging the fit of a model
using the same data as that which was used to construct the fit.
A general approach for estimation of the expected optimism was developed by Akaike

(1973, 1974) under the assumption that the candidate family includes the generating model
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(see Linhart and Zucchini, 1986, p. 245). Thus, we require that L(6 |y) subsumes L(0, |y), or
that 6, € ©. This regularity condition has two implications that warrant discussion. First, as
we have seen, it is taken that the candidate parametric family is appropriately specified. The
problem of model selection is then reduced to one of choosing the correct model dimension.
Normal theory linear model selection provides a rich set of examples where model selection
is focused on dimension selection. The second implication regarding this regularity condition
is that results only apply to “overfit models,” since the candidate likelihood must subsume
the generating likelihood. An overall discrepancy, such as (2.1), can be decomposed as a
discrepancy due to estimation and a discrepancy due to approximation. When a model is
overfit, it contains all parameters needed to define the true model. Here, approximation error
is zero and overall discrepancy is due only to estimation error. Underfit models suffering
from large approximation error are easy to distinguish by an obvious lack of fit. In a practical
sense, model selection criteria are judged by their ability to distinguish between models with
little or no approximation error, precisely the condition for which Akaike-type criteria results
will apply.

Yet cross validation procedures do not require this assumption and are applicable in a
wider range of settings than the Akaike criteria.

Under the regularity condition, maximum likelihood asymptotic theory can be used to
argue that in large-sample settings, the expected optimism can be estimated by 2k, which is

twice the dimension of 6. Therefore, the expected value of
AIC = —2In L(f |y) + 2k

should be asymptotically near the value of the expected overall discrepancy, (2.2). Specifi-

cally, one can establish that
E,{AIC} 4 o(1) = Aurc(0,, k). (2.4)

We note that the result (2.4) extends beyond the linear regression setting to many other
modeling frameworks.
AIC provides us with an approximately unbiased estimator of A4rc(6,, k) in settings

where n is large and k£ is small. In other settings, 2k may be much smaller than the expected



optimism, making AIC substantially negatively biased as an estimator of Aq;c(6,,k). To
correct for this negative bias, Hurvich and Tsai (1989) proposed “corrected” AIC for linear
and nonlinear regression.

Suppose that the generating model for the data is given by
y=Xp,+e, € ~ N, (0,02 1), (2.5)
and that the candidate model postulated for the data is of the form
y=XB+e, €~ N,(0,0°1). (2.6)

Here y is an (n x 1) observation vector, € is an (n X 1) error vector, 3, and [ are (p x 1)
parameter vectors, and X is an (n X p) design matrix of full column rank. Assume /3, is such
that for some 0 < p, < p, the last (p — p,) components of (3, are zero. Thus, model (2.5) is
nested within model (2.6). The development for AICc requires the same condition as that
which was imposed by Akaike. Let 6, and 6 respectively denote the & = (p+ 1) dimensional

vectors (3,,02) and (8',02)". Note that the nesting ensures that , is an element of ©, or

that L(6 |y) subsumes L(0, |y).
Let 3 denote the least squares estimator of 3, and let 62 = (y—XB)'(y—XB)/n. Hurvich

and Tsai (1989, p. 300) define AICc as

AlCe = nlng? + M0 FP) (2.7)
n—p—2
One can prove that in the linear regression setting,
E,{AICc} = Aarc(6,, k), (2.8)

establishing that AICc is exactly unbiased for Aa;c(6,, k). (The preceding holds up to o(1)
for other modeling frameworks in which AICc has been justified and developed.)

The derivation of AIC and verification of (2.4) in a general setting (Cavanaugh, 1997)
along with the derivation of AICc and verification of (2.8) (Cavanaugh, 1997) clearly il-
lustrates the way in which AICc improves upon the approximations leading to AIC. Fur-
thermore, Davies, Neath and Cavanaugh (2005) show that AICc is the minimum variance

unbiased estimator of the expected overall Kullback-Leibler discrepancy.
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3. The Predictive Divergence Criterion (PDC)

In the cross validation setting, for the candidate model, let f_; denote the maximum
likelihood estimator of # based on excluding the i** case y; from the vector y. For PDC,

define the overall discrepancy to be

n

dppc(y,0,) = Z di(éfia 0,)
i=1

= Y B2 gi(l60)} s (3.1)

=1

Thus, the expected overall PDC discrepancy is

Appc(0o, k) = Eo{drpc(y,0o)}
= > Eo{B{-2Ingi(yil0)}s—p . }- (3.2)

i=1
Note that (3.1) and (3.2) are respectively analogous to (2.1) and (2.2).

A model selection criterion based on dppc(y, 0,) is constructed by finding a statistic that
has an expectation which is equal to (3.2) (or at least approximately equal). Thus, the
targeted measure here is Appc(6,, k). Again, the overall discrepancy (3.1) is not a statistic
and cannot be used to estimate Appc(f,, k). Yet the case-deleted empirical log-likelihood

measure
n
> —2Ingi(yil0-)
i=1

is a statistic and can therefore be used to estimate Appc(6,, k) Moreover, this statistic is

exactly unbiased for Appc(6,, k), since

Appc(lo, k) = Eo{drpc(y,th)}
= Y Eo{E{—2Ingi(yil0)},_y }

=1

= Eo {Z —21ngl(yl|él)} .
=1

Note that in the preceding, for the second expression on the right-hand side, the inner
expectation is taken with respect to the distribution of y;, and the outer expectation is taken

with respect to the sampling distribution of ;.



Thus, we define the predictive divergence criterion
PDC =" —21In gi(y]0 ).
i=1
PDC serves as an exactly unbiased estimator of Appc(6,, k) regardless of the sample size,
the relationship between L(6, |y) and L(6 |y) or the distribution of the underlying data.

For the linear regression setting in Section 2, PDC is defined as

—1

n a2
PDC =Y {m 62, Wi Bici) } ,

2
i=1 0Z;

where 9; _; is the fitted value for y; with the i'" observation deleted from the data, and 62, is

the maximum likelihood estimate of the variance with the i observation deleted from the

data.

4. The Minimum Variance Unbiased Estimator

of the Expected Overall PDC Discrepancy

We now establish the expected value of PDC in the linear regression setting. This will
provide us with an expression for Appc(6,, k).

For this derivation and subsequent justifications, we return to the regularity condition
used in the development of the Akaike criteria. Thus, we assume henceforth that L(6 |y)
subsumes L(6, |y). Imposing this condition limits the generality of the results, yet ensures
mathematical tractability and is methodologically defensible for the reasons stated in Sec-
tion 2.

Consider

n

Appc(0y, k) = 2[E{1n02}+E{(y;7§‘)2H (4.1)

To evaluate (4.1), we make use of the fact that {((n—1)62%,)/02} has a chi-square distribution

with (n —p — 1) degrees of freedom. From this, we have

E, {mw} —In2+ (%) (4.2)
and
o2 _ 1
Eo{(n—l)&Qi}_n—p—?)’ (4:3)



where 1) is the digamma or psi function. (An overview of this function can be found in
the Appendix.) Also, to evaluate E,{(y; — 9 :)?}, we can make use of the fact that the

" deleted residual is defined by e; ; = y; — §; ; = e;/(1 — hi;), where e; is the residual
for case i based on the full data y and h;; is the i"* diagonal element of the hat matrix,

H = X(X'X)™'X'. Using the expectation and variance of e; ;, we have

E{(yi — §i-0)*} = 1 _Ohii. (4.4)

Utilizing results from (4.2) and (4.3), together with (4.4) and the independence of 6%, and

(y; — 9i.—i)?, we obtain the following expression for (4.1):

31+7ﬂ“/’<n_]23_1> T 2n:1 po (49)

n—p-— 311 —

Appc(b,,k) = nlne’+nln
n

Davies, Neath and Cavanaugh (2005) show that a simplified expression for the expected
overall Kullback-Leibler discrepancy is given by

9 _
Anro(Bo k) = nlno? +nln = + ny (" p>+ nin+p) (4.6)
n 2 n—p—2
The similarity of expressions (4.5) and (4.6) suggests that for large samples
Appc(lo, k) = Aarc(0o, k).
This is established formally in the next section.
The expected overall discrepancy for PDC can be written
—n—1 —
Appc(8u k) = Aarc(B k) +nln—"— +n{¢ (%) -o ("5}
n(n + p) n—-1 &
_ 4.7
n—p—2 n—op-— 3;1 hii (47)

So Appc(0o, k) = Aarc(0,, k) + ¢, where ¢ represents the remainder of the terms in (4.7).
Since AICc is the minimum variance unbiased estimator of A a;¢(6,, k), the minimum vari-
ance unbiased estimator of Appc(6,, k) is AICc + ¢. Equivalently, using (2.7), we define the

adjusted predictive divergence criterion PDCa* as

”ﬁ”{@” (=) (")

n—1 &
4.8
n p— 321 hi; (48)

=1 i

PDCa* = nlné?+nln
n
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PDCa* serves as the minimum variance unbiased estimator of Appc(6,, k). For practical

o () o (15) w

from formula (4.8), and define the criterion as

purposes, we can exclude

nln

n—1 n
PDCa = nlné?
a=nlno +n b— 3;1 h”-’

n—1 n 1
n—p—3 =1 1—h;;

2

where nlng® is the goodness-of-fit term and is the penalty term. The
exclusion of (4.9) from the PDCa* formula in (4.8) is valid since we show in the next section
that (4.9) is asymptotically equal to zero. Moreover, one can establish that convergence to
zero is at a rate of O(1/n). Our simulation results in Section 6 will show that PDCa* and

PDCa have similar behavioral properties, even in small-sample applications.

5. Asymptotic Equivalence

From (4.5) and (4.6) we have

Appc (o, k) — Aarc(0s, k) = nlﬂ

eofo (=) -0 (550}

+{ n_l f:l (n+@} (5.1)

n—p—3:— hi; n p—2

We will show that the difference (5.1) approaches zero asymptotically (as n — oo and p is
held constant).

Making use of L’Hospital’s rule for the first term in (5.1), one can establish that

nln ”1:1+dn. (5.2)

n E—
For the second term in (5.1), we can make use of the following approximation for the

digamma function (see (A.1) in the Appendix):

P(v) = lnl/—2i+0<y12>

for v > 1. Using the preceding expression, we have

v(r=3)=ve) = m(=3) gm0 ()

2

~ I (1 - %) +0 (%) | (5.3)
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Based on (5.3), we can write

nfo (55 - () = m(-5) o ()

= —1+o0(1). (5.4)

For the final term in (5.1), we need to examine the asymptotic behavior of Y1, #

Recall the property that

n

> hi=np, (5.5)
i=1

and thus the h;’s tend to decrease as n increases. Let h,,., = max; h;;. Consider a Taylor

series expansion in hy; of f(h;) = 1+hu about the point h;; = 0. We have

1 =1+h; +7h’2
1 — hy & (1—hz)3’

(5.6)

where 0 < h}; < h;. Summing each of the terms in (5.6) from 1 to n and using (5.5) leads

to the inequality

n
(n+p) <>
i=1

— hz-z- n+p)+7(1_hmam) Zh (5.7)

Focusing on the right-hand side of (5.7), and again using (5.5), we can write

(1—hmm) Zh’ < (1—]12:%,0)3 P (5:8)

We will now employ Huber’s condition (Huber, 1981, p. 164), which states
Pmaz = 0(1).

This condition along with (5.7) and (5.8) implies

> 5 = (n+p) +oll). (5.9)

By (5.9), we have the following asymptotic simplification for the final term in (5.1):

n—-1 & nin+p) (n+p)(p+2) .
3;1 hzi_n—p—Q N (n—p—3)(n—p—2)+ (1)

= o(1). (5.10)
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Using the results from (5.2), (5.4), and (5.10), for the difference (5.1), we see that asymp-
totically

APDC(Hoak)_AAIC’(eoak) = 0(1)-

The preceding establishes that for large samples, we have Appc(0,, k) =~ Aarc(0,, k), or
equivalently E,{PDCa} ~ E,{AICc}. Consequently, one can see that PDCa, the minimum
variance unbiased estimator of its target discrepancy Appc(6,, k), is an asymptotically min-

imum variance unbiased estimator of A 4;¢(0,, k), the target discrepancy for AIC and AICc.

6. Simulations

Consider a setting where a sample of size n is generated from a true linear regression
model, having a design matrix of rank p,. Suppose our objective is to search among a
candidate collection of nested families for the fitted model which serves as the best approxi-
mation to the truth. The strength of the approximation is reflected via the expected overall
discrepancy, either A4;¢ or Appe.

Assume that our candidate models are of the form (2.6), corresponding to design matrices
of ranks p = 2,3,..., P, and that the design matrix of rank p, (2 < p, < P) is correctly
specified. Hence, fitted models for which 2 < p < p, are underfit, and those for which
Po < p < P are overfit. In all design matrices, we assume that the initial column is a vector
consisting of all ones. We will refer to p as the order of the model, and to p, as the true
order.

We examine the behavior of AIC, AICc¢, PDC, and PDCa and their target discrepancies
by simulating a setting where the criteria are used to select p. In each of the simulation sets,
samples of data are generated from a true model of the form y =14+ + ... + xp,_1 + €.
The true model errors, €, are generated from a distribution with median 0 and standard
deviation 2. The input variables x,...,2zp | are generated independently from a uniform
(0, 10) distribution. The sets feature a simulation size of 5000 samples.

Set 1 features a sample size of n = 15, a candidate class size of P = 6, a true order
of p, = 4, and normally distributed errors. Results are displayed in Table 1(a,b,c) and
Figure 1(a). PDCa and AICc choose the correct order on over 90% of the samples. Cross

12



validation procedures such as PDC tend to be affected by small samples. PDC does select
the correct model on over 80% of the samples, although it favors underfit models at a higher
rate than AICc. The criterion based strictly on an asymptotic justification, AIC, performs
poorly with only about 60% correct selections.

The simulation results for criterion PDCa* are presented to verify the claim that the
exclusion of the terms in (4.9) has no practical consequences. Even with a sample size of
only n = 15, the behavioral properties of PDC and PDCa* are similar.

Set 2 and Set 3 feature a slightly larger sample size with n = 25, a candidate class
of size P = 11, and a true order of p, = 5. The results are featured in Tables 2(a,b,c)
and 3(a,b,c) and in Figure 1(b,c). In Set 2, we again consider normally distributed errors.
PDCa obtains the most correct order selections (95%) among the criteria of interest. The
probability of selecting underfit models has become negligible for the predictive divergence
criteria. PDC (91%) outperforms AICc (89%) in this example. AIC and AICc tend to
favor overspecified models relative to PDC and PDCa, with the overfitting tendencies of
AIC much more extreme than those of AICc. Note from Figure 1(b) how Appc provides a
greater distinction than A 4;c between the correctly specified model and overfit models.

The performance of the criteria when the true model is not in the candidate family can
be investigated by simulating a nonnormal error distribution. For Set 3, we generate the
errors from an exponential distribution with standard deviation 2, shifted to a median of 0.
A definite right-skewness to the errors is now present. The candidate models will continue
to be based on the assumption of normally distributed errors.

It has been mentioned that a merit of PDC as a selection criterion is that the true model
need not be represented among the candidate models to achieve unbiasedness. Table 3(a,b,c)
and Figure 1(c) show the results of Set 3. As indicated in Table 3(c), PDCa now demonstrates
a marked bias, underestimating the true prediction error Appc as reflected by the averages
for PDC. Although the values of A 4;¢ and the averages of AIC and AICc are not featured,
these results also indicate a substantial negative bias.

Curiously, PDCa still outperforms PDC in terms of correct selections: although PDCa is
negatively biased for Appc, it estimates the target discrepancy with less variability. The use

of PDCa to measure prediction error is inappropriate here due to model misspecification.
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Set 4 and Set 5 demonstrate the effect of increasing sample size on the selection criteria.
These sets feature a candidate class of size P = 13, a true order of p, = 6, and sample sizes
of n =50 (Set 4) and n = 100 (Set 5). We again consider normally distributed errors. The
results are displayed in Tables 4(a,b,c) and 5(a,b,c) and in Figure 2(a,b). First, note from
Figure 2 how Appc — Aarc converges to zero, as established in Section 5.

The behavior of a model selection criterion is governed by its underlying discrepancy. If
the focus is on predictive ability (PDC, PDCa), or accurate fitted values (AIC, AICc), then
the probability of correct order selection may not converge to 1 as the sample size increases
(Shao, 1993). Note, however, that the relative difference between the discrepancy for the
correctly specified model and the discrepancy for an overfit model becomes smaller as the
sample size becomes larger. An overfit model is incorrect only due to estimation error, which
tapers off as n increases. Predictive ability among overfit models is then nearly identical.
The need and ability to select the true order as opposed to a higher order diminishes for
large samples, as evidenced by the discrepancy Appc.

Referring to Tables 1(c), 2(c), 4(c), 5(c), we see E,{PDC} and E,{PDCa} are essentially
equal. PDCa is more accurate as an estimator of Appc. PDC and other cross validation
methods have an advantage in that a correct specification of the form of the true model is
not required. However, when this form can be characterized and corresponding assumptions
can be imposed, we show through the development of PDCa how one can improve upon

cross validation.
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Appendix: The Digamma Function

The digamma or psi function ¥ (v) can be defined in terms of the gamma function I'(v)

(v >0):
d ' (v)

Y(v) = — Inl(v) =

This function can be expressed as

1
1/) :_C Z( m), v >0,

JHv

where C' = 0.577215664901 . . . is Euler’s constant.
It can be shown (Gradshteyn and Ryzhik, 1965, p. 546) that

00 1
/ 2l (Inz) dz = —T W) [w(w) — (np)],  p>0,0>0.
0 w
Thus, if x? has central chi-square distribution with d degrees of freedom, then

E{lnXQ} = /Ooo(lnz){ﬁ(dﬂ)}zd/?_le%/2 dz

= ln2+w<g>.

For integer v > 1, values of 1)(v) can be found via

Vll
(v :—C+Z—

For real v > 1, values of ¢(r) can be approximated to any degree of accuracy via the

expansion
— By,
= lny— — —
o) = g3
1 1 1 1
= lnyv— —— + — +...,

2 1212 1200t 25206

where the By, are Bernoulli numbers. This expansion leads to the useful approximation

(v) = 1n,,_2i+0<1> (A.1)

2
For further discussion of the digamma function, see Abramowitz and Stegun (1972,

pp. 258-259).

15



Table 1(a). Order selections for AIC, AICc¢, PDC, PDCa, PDCa*: Set 1.

p | AIC | AICc | PDC | PDCa | PDCa*
2 0 171 239 87 79
3 3 46 | 433 163 152
4| 3070 | 4618 | 4092 | 4702 4716
5| 898 265 | 202 47 52
6 | 1029 54 34 1 1

Table 1(b). Percentages of underfit, correctly fit, and overfit models
selected by AIC, AICc, PDC, PDCa, PDCa*: Set 1.

Type of Fitted Model AIC AlICc PDC | PDCa | PDCa*
Underfit 00.06% | 1.26% | 13.44% | 5.00% | 4.62%
Correctly Fit 61.40% | 92.36% | 81.84% | 94.04% | 94.32%
Overfit 38.54% | 6.38% | 4.72% | 0.96% | 1.06%

Table 1(c). Averages and standard deviations (in parentheses) for PDC and PDCa: Set 1.

PDC | 66.5 | 62.7 | 52.5 61.6 75.8
6.0) | (7.2) | (11.6) | (17.0) | (24.0)
PDCa | 66.7 | 62.9 | 514 60.0 73.5
5 | 67| 67) | (7.1) | (7.7)
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Table 2(a). Order selections for AIC, AIC¢, PDC, PDCa, PDCa*: Set 2.

p | AIC | AICc | PDC | PDCa | PDCa*
2 0 0 1 0 0
3 0 0 2 0 0
4 0 1 12 4 3
5 | 2637 | 4433 | 4570 | 4726 4714
6 540 367 | 308 224 229
7| 367 115 76 38 44
8 | 333 o7 25 7 9
9 297 18 5 1 1
10 | 338 8 1 0 0
11 | 488 1 0 0 0

Table 2(b). Percentages of underfit, correctly fit, and overfit models
selected by AIC, AICc, PDC, PDCa, PDCa*: Set 2.

Type of Fitted Model AIC AlICc PDC | PDCa | PDCa”
Underfit 0.00% | 0.02% | 0.30% | 0.08% | 0.06%
Correctly Fit 52.74% | 88.66% | 91.40% | 94.52% | 94.28%
Overfit 47.26% | 11.32% | 8.30% | 5.40% | 5.66%

Table 2(c). Averages and standard deviations (in parentheses) for PDC and PDCa: Set 2.

P 2 3 4 5 6 7 8 9 10 11
PDC | 113.5|107.2 | 96.9 | 72.6 | 76.9 82.2 88.8 97.3 108.1 | 122.2
(6.9) | (7.1) | (7.0) | (9.0) | (9.8) | (10.7) | (12.0) | (13.6) | (16.1) | (20.0)
PDCa | 113.6 | 107.4 | 97.3 | 72.2 | 76.3 81.4 87.9 96.1 106.6 | 120.2
6.9) | (7.0) | 6.8) | (82) ] (8.4) | 8.7) | (89) | (9.2) | (9.5) | (9.9)
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Table 3(a). Order selections for AIC, AIC¢, PDC, PDCa, PDCa*: Set 3.

p | AIC | AICc | PDC | PDCa | PDCa*
2 0 0 43 0 0
3 1 3 96 4 4
4 0 7| 508 12 12
5 | 2505 | 4403 | 3936 | 4736 4725
6 278 379 | 309 210 218
7| 444 144 79 31 34
8 | 307 42 23 7 7
9 | 313 18 6 0 0
10 | 359 2 0 0 0
11| 493 2 0 0 0

Table 3(b). Percentages of underfit, correctly fit, and overfit models
selected by AIC, AICc, PDC, PDCa, PDCa*: Set 3.

Type of Fitted Model AIC AlICc PDC | PDCa | PDCa”
Underfit 0.02% | 0.20% | 12.94% | 0.32% | 0.32%
Correctly Fit 50.10% | 88.06% | 78.72% | 94.72% | 94.50%
Overfit 49.88% | 11.74% | 8.34% | 4.96% | 5.18%

Table 3(c). Averages and standard deviations (in parentheses) for PDC and PDCa: Set 3.

p 2 3 4 5 6 7 8 9 10 11
PDC | 113.7 | 1075 | 97.5 | 79.3 | 84.1 | 90.0 | 97.3 | 106.7 | 118.4 | 133.6
(7.5) | (7.9) | (9.4) | (27.8) | (29.3) | (31.1) | (33.1) | (36.3) | (39.1) | (43.3)
PDCa | 113.7 | 107.6 | 97.3 | 70.0 | 74.1 | 79.1 | 85.6 | 93.8 | 104.2 | 117.9
(7.2) | (7.4) | (7.8) | (13.9) | (14.0) | (14.1) | (14.2) | (14.4) | (14.6) | (14.9)
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Table 4(a). Order selections for AIC, AICc¢, PDC, PDCa, PDCa*: Set 4.

p | AIC | AICc | PDC | PDCa | PDCa*
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
Y 0 0 0 0 0
6 | 3016 | 4073 | 4271 | 4348 4333
7| 636 489 | 443 400 410
8 | 388 222 | 186 157 159
9 241 106 o7 95 %)
10 | 197 60 25 26 27
111 179 22 11 10 12
12| 155 17 5 4 4
13| 188 11 2 0 0

Table 4(b). Percentages of underfit, correctly fit, and overfit models
selected by AIC, AICc, PDC, PDCa, PDCa*: Set 4.

Type of Fitted Model AIC AlICc PDC | PDCa | PDCa*
Underfit 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
Correctly Fit 60.32% | 81.46% | 85.42% | 86.96% | 86.66%
Overfit 39.68% | 18.54% | 14.58% | 13.04% | 13.34%

19



Table 4(c). Averages and standard deviations (in parentheses) for PDC and PDCa: Set 4.

PDC | 234.7 | 223.6 | 208.2 | 184.0 | 129.8 | 132.0
9.7) | (9.7) | (9.6) | (9.2) | (11.0) | (11.2)
PDCa | 234.9 | 223.8 | 208.6 | 184.5 | 129.6 | 131.8
9.7) | (9.7) | (9.6) | (9.2) | (11.0) | (11.1)

PDC | 134.4 | 137.2 | 140.2 | 143.6 | 147.3 | 151.4
(11.4) | (11.5) | (11.7) | (12.0) | (12.3) | (12.6)
PDCa | 134.2 | 136.9 | 139.8 | 143.1 | 146.8 | 150.9
(11.2) | (11.3) | (11.4) | (11.6) | (11.8) | (11.9)
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Table 5(a). Order selections for AIC, AICc¢, PDC, PDCa, PDCa*: Set 5.

p | AIC | AICc | PDC | PDCa | PDCa*
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
Y 0 0 0 0 0
6 | 3436 | 3899 | 4032 | 4069 4058
7| 576 523 | 491 482 486
8 | 305 237 221 199 202
9 208 143 | 125 124 125
10 | 163 83 60 62 63
11| 119 26 39 33 34
12 92 34 24 15 16
13| 101 25 8 16 16

Table 5(b). Percentages of underfit, correctly fit, and overfit models
selected by AIC, AICc, PDC, PDCa, PDCa*: Set 5.

Type of Fitted Model AIC AlICc PDC | PDCa | PDCa*
Underfit 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
Correctly Fit 68.72% | 77.98% | 80.64% | 81.38% | 81.16%
Overfit 31.28% | 22.02% | 19.36% | 18.62% | 18.84%
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Table 5(c). Averages and standard deviations (in parentheses) for PDC and PDCa: Set 5.

PDC | 464.9 | 440.7 | 408.2 | 357.8 | 247.2 | 248.7
(13.6) | (13.3) | (13.1) | (12.6) | (14.9) | (15.0)
PDCa | 465.1 | 441.0 | 408.5 | 359.3 | 247.1 | 248.6
(13.6) | (13.3) | (13.1) | (12.6) | (14.8) | (14.9)

PDC | 250.3 | 251.9 | 253.6 | 255.5 | 257.4 | 259.4
(15.0) | (15.2) | (15.2) | (15.3) | (15.4) | (15.5)
PDCa | 250.2 | 251.8 | 253.5 | 255.3 | 257.2 | 259.2
(15.0) | (15.1) | (15.1) | (15.2) | (15.3) | (15.4)
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Figure 1. A4r¢ (solid line) and Appe (dotted line): (a) Set 1; (b) Set 2; (c) Set 3.

23



240
220
200
— 180
160
140

120

470
430
390
~ 350
310
270

230
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