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Summary

An important statistical application is the problem of determining an appropriate set of

input variables for modeling a response variable. A selection criterion may be formulated by

constructing an estimator of a measure known as a discrepancy function. Such a measure

quantifies the disparity between the true model and a fitted candidate model, where can-

didate models are defined by which input variables are included in the mean structure. A

reasonable approach to gauging the propriety of a candidate model is to define a discrepancy

function through the prediction error associated with the fitted model. An optimal set of

input variables is then determined by searching for the candidate model that minimizes the

discrepancy function. Although this type of variable selection problem has been extensively

studied, attention is less often paid to the problem of accounting for the uncertainty inherent

to the model selection problem. In this paper, we focus on a Bayesian approach to estimating

a discrepancy function based on prediction error in linear regression. It is shown how this

approach provides an informative method for quantifying model selection uncertainty.
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1 Introduction

An important topic in regression theory is the problem of determining which input vari-

ables are needed for estimating a response function. Typical methods for variable selection

in linear regression are based on the goal of including inputs in the mean structure having

nonzero true regression coefficients, and excluding inputs having true coefficients equal to

zero. A regression model which excludes no input with a nonzero coefficient is said to be

correctly specified. A gray area exists for the selection problem when an input variable has a

small, yet nonzero, coefficient. Variable selection techniques based on finding correctly spec-

ified models do not directly address the problem of determining when an input coefficient is

too small for inclusion.

Variable selection in linear regression may be facilitated by the use of a model selection

criterion. A model selection criterion is often formulated by constructing an estimator of a

measure known as a discrepancy function. Such a measure quantifies the disparity between

the true model (i.e., the model which generated the observed data) and a candidate model.

Candidate models in linear regression are defined by which input variables are included in

the mean structure.

In selecting a discrepancy function, one must consider which aspect of a fitted model

should be required to conform with the true model. A reasonable approach in linear re-

gression is to define a discrepancy function through the prediction error associated with a

candidate model. In this setting, the problem of discrepancy function estimation reduces to

the problem of estimating prediction error.
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Much of the discrepancy function based model selection literature is dedicated to the

problem of discrepancy function estimation, and to the companion problem of developing

model selection criteria. Less attention is paid to the problem of accounting for the uncer-

tainty inherent to the model selection problem within the discrepancy function framework.

The focus of the current paper is to provide a Bayesian approach to the problem of estimat-

ing a discrepancy function based on prediction error in linear regression. The goal of the

companion model selection problem is to select those input variables corresponding to the

candidate model with minimum prediction error. We discuss how the posterior distribution

on the candidate model prediction errors can be used in quantifying model selection uncer-

tainty. We present two applications which illustrate how a Bayesian approach leads to an

improved understanding of the issues in a linear regression variable selection problem.

2 Linear Regression Variable Selection

We observe data following the linear regression model

yi = x′

iβ + ei, i = 1, . . . , n, (1)

where e1, . . . , en are iid N (0, σ2) random variables and x1, . . . , xn are (k + 1) × 1 vectors of

nonrandom input variables. The first entry of each xi is 1, corresponding to an intercept

parameter. Let K+ = {0, 1, . . . , k} be a set of indices, where each index identifies k measured

inputs along with an intercept. We will define candidate models by which inputs are included

and which inputs are excluded. Let P denote a subset of K+ with |P | = p elements. We

shall also use the notation P for a candidate model consisting of only the p inputs matching
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the indices in P . Let Q = K+ − P be the complement set with |Q| = q elements. An

all–subsets regression candidate class consists of models representing all possible subsets of

K+. In some situations, we may consider a candidate class smaller than all subsets.

The problem of variable selection requires a decision as to which input variables are

needed for modeling the response variable. With the preceding notation, variable selection

is defined by the selection of a model P from among the candidate class. For a survey of

the variable selection problem, see George (2000), and Clyde & George (2004). A standard

Bayesian approach to model selection proceeds as follows. Denote the candidate class of

models as M1, M2, . . . , ML. Assume candidate model Ml is uniquely parameterized by a

vector θl. A prior π (Ml) is placed on the candidate class of models, and a prior π (θl|Ml)

is placed on the parameters for each model. Data is observed according to π (y|θl, Ml).

Model selection is based on the posterior distribution over the candidate class of models,

where π (Ml|y) represents the probability that candidate model Ml is the true model. In

the regression variable selection problem, the structure of Ml coincides with the structure

of the true model if the input variables included in Ml have nonzero true coefficients, and

the excluded input variables in Ml have true coefficients equal to zero. The philosophy

behind this approach leads one to infer that excluded input variables from models with high

probability are likely to have true coefficients equal to zero.

In this paper, we will consider a discrepancy function approach to variable selection. A

discrepancy function is a measure which quantifies the disparity between the model which
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generated the data and a candidate model. Write the full model in (1) as

y = Xβ + e, (2)

where y is an n×1 response vector, X is the n× (k + 1) input matrix with full column rank,

β is the (k + 1)×1 coefficient vector, and e is an n×1 error vector. Let ZP denote the n×p

input matrix for candidate model P obtained from X by deleting the columns matching the

indices in Q. Let MP = ZP (Z ′

P ZP )−1 Z ′

P project onto the column space of ZP . Define β̂P as

an estimate of β obtained by setting the coefficients with subscripts in Q equal to zero, and

estimating the remaining coefficients using least squares as (Z ′

PZP )−1 Z ′

P y. A discrepancy

for candidate model P , based on the difference between the fitted model and the true model,

is given as

JP =
1

σ2

n∑

i=1

(
x′

iβ̂P − x′

iβ
)2

.

Since JP is a random variable, it is better to think of ∆P = E (JP ) as the discrepancy

function. We will refer to ∆P as the prediction error for candidate model P .

The prediction error can be decomposed into a variance contribution and a bias contri-

bution as

∆P = VP +
1

σ2
BP , (3)

where

VP = |P | = p (4)

and

BP = ‖Xβ − MP Xβ‖2 . (5)
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The variance contribution arises from the need to estimate unknown regression coefficients

in a model, whereas the bias contribution is due to possible model misspecification. One

can easily see that the variance contribution increases as the number of nonzero regression

coefficients to be estimated increases. The bias contribution is the squared distance between

the true mean response vector Xβ and the approximating mean space determined through

the candidate model P by the column space of ZP . As the number of nonzero regression

coefficients in a candidate model increases, the approximating mean space grows larger, and

the bias contribution decreases.

We define the best model in the candidate class as that model which minimizes the

prediction error ∆P . A correctly specified model is one whose bias contribution is zero.

The best model in the candidate class does not need to be a correctly specified model.

Input variables not included in a correctly specified model necessarily have true regression

coefficients equal to zero. Assuming that the best model satisfies this property may be

unrealistic in some applications. Consider a case where the excluded input variables have

true coefficients which are near, but not equal to, zero. Least squares estimates of these

coefficients will be unbiased, but will introduce an increase to the variance contribution.

It may be better under the prediction error framework to set these estimated coefficients

to zero, introduce a small increase to the bias contribution, but without introducing any

additional variance contribution.

The best model according to prediction error is one which balances the variance con-

tribution and the bias contribution. Within this framework, we are not looking to exclude
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just those input variables with true coefficients equal to zero, but rather we are looking to

exclude those input variables with true coefficients near enough to zero that an estimate set

to zero is more accurate than an estimate computed from the data.

A variable selection criterion can be created by deriving an estimator of ∆P for each can-

didate model. Some of the earliest selection criteria were based on minimizing the prediction

error. For example, Mallows (1973) introduced the now famous statistic

CP =

(
RSSP

σ̂2
K+

− n

)
+ 2p,

where RSSP =
∑n

i=1

(
yi − x′

iβ̂P

)2

is the residual sum of squares for candidate model P , and

σ̂2
K+ = RSSK+/ (n − k − 1) is an unbiased estimator of the variance σ2. It can be shown

that E (CP ) ≈ ∆P , so CP is an approximately unbiased estimator of the prediction error

for candidate model P . Fujikoshi & Satoh (1997) introduced the modified CP statistic by

creating an exactly unbiased estimator of ∆P . Furthermore, Davies, Neath & Cavanaugh

(2006) showed that the modified CP statistic is an optimal estimator of the prediction error

in the sense of being minimum variance unbiased. A variable selection criterion would be

defined by the selection of the input variables in P for which CP , or any other estimator of

∆P , is minimum.

As we have discussed, the best model in the candidate class is the one for which ∆P is

minimum. The use of a variable selection criterion would select that model for which the

criterion statistic is minimum. For a given set of regression data, a reasonable question to

ask is how certain are we that the selection criterion has truly selected the best model? A

more general problem is to assess how likely it is for each of the candidate models to truly
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be the best. More general still is the problem of quantifying the uncertainty in the measure

that serves as the basis for the model selection: namely, the prediction error for each of the

models in the candidate class.

3 Bayesian Approach to Model Selection Uncertainty

We will describe the uncertainty inherent to variable selection based on prediction error

using a Bayesian approach. The uncertainty inherent to the specification of the full model

(2) is characterized through the uncertainty associated with the parameters β and σ2. In an

effort to stay objective, we take a noninformative prior on these parameters although it is

not necessary to follow this convention if good prior information is available. After observing

response vector y from this model, the posterior distribution updates easily (see Gelman,

Carlin, Stern & Rubin, 2003, for example) to become

β | σ2, y ∼ Nk+1

(
β̂K+, σ2 (X ′X)

−1
)

, (6)

σ2 | y ∼
RSSK+

χ2 (n − k − 1)
. (7)

Our inferential goals are focused on the prediction errors ∆P , as defined by (3) for each

of the models in the candidate class. From (4) and (5), we see how ∆P is a function of

the parameters β and σ2. Thus, the joint posterior distribution on the set of prediction

errors {∆P} over the candidate class is induced from the posterior distributions in (6) and

(7). Since it is easy to generate outcomes from the multivariate normal and chi–square

distributions, the posterior distribution on {∆P} can be obtained via simulation.

We can use the joint posterior distribution on {∆P} to quantify the uncertainty inherent
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to the problem of selecting the model with minimum prediction error. In the next section,

we present some examples of various ways one can use the information from this joint dis-

tribution. For now, we offer a Bayesian model selection criterion to serve as a solution to

a question posed in the last section: how likely is it that model P is the candidate model

which minimizes prediction error? We look to calculate the posterior probability

ΠP = Pr [∆P is min | y] .

Consider the following algorithm for calculating these posterior probabilities.

1. Generate (β, σ2)(1) , . . . , (β, σ2)(N) from the posterior distributions in (6) and (7).

2. Calculate ∆P (1), . . . , ∆P (N) for each candidate model.

3. Determine P ∗

(j) = ArgMinP

[
∆P (j)

]
for each simulation outcome j (j = 1, . . . , N).

4. Calculate ΠP = 1
N

∑N

j=1 I
{

P = P ∗

(j)

}
for each candidate model.

The algorithm begins with repeated simulated outcomes generated from the posterior distri-

bution on the parameters β and σ2. For each simulation, we calculate prediction errors for

the models in the candidate class. For the jth simulation, call this set
{
∆P (j)

}
. We then de-

termine the candidate model which yields a minimum on the set
{
∆P (j)

}
. Define this model

as P ∗

(j), the best model from the candidate class for the jth simulation. We calculate the

posterior probability of candidate model P being best as the proportion of simulations for

which candidate model P yields a minimum on the set
{
∆P (j)

}
. Instead of merely a selection

of a candidate model, we can use the statistic ΠP to quantify the degree of plausibility for a

model truly being best in the sense of minimum prediction error.
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4 Applications

We begin with the well known Hald data as an illustration of our Bayesian approach

to quantifying model selection uncertainty. See, for instance, Draper & Smith (1998), who

comment: “This particular problem illustrates some typical difficulties that occur in regres-

sion analysis.” A summary of an all–subsets regression using CP is presented in Table 1.

The model with inputs X1 and X2 is selected based on the CP model selection criterion.

However, several other models in the candidate class might plausibly be best in terms of

minimizing prediction error, if one were to account for the uncertainty of CP as an estimate

of ∆P .

Table 1. CP for some Hald data candidate models.

Model CP

4 138.7

1,2 2.7

1,4 5.5

3,4 22.4

1,2,4 3.0

1,2,3 3.0

1,3,4 3.5

2,3,4 7.3

1,2,3,4 5.0

The posterior probability of minimizing prediction error is calculated for each model in

the candidate class to quantify the degree of plausibility for each model truly being best in the

sense of minimum ∆P . The results are displayed in Table 2. Enthusiasm for the minimum CP

model should be appropriately tempered. Although Model 1,2 has the greatest probability of
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actually minimizing ∆P , the ΠP statistic places this probability at only .26. It is interesting

to note that a Bayesian approach can do more than provide an accompanying probability

for each model. We see in this example that the order and degree of preference for some

candidate models is different for ΠP than for CP . In particular, Model 1,2,3 has a higher

probability of minimizing ∆P than Model 1,2,4 even though their CP values are essentially

the same.

Table 2. ΠP for some Hald data candidate models.

Model CP ΠP

1,2 2.7 .26

1,2,4 3.0 .10

1,2,3 3.0 .21

1,3,4 3.5 .15

1,2,3,4 5.0 .09

1,4 5.5 .10

2,3,4 7.3 .09

We can use the joint posterior on {∆P} to further investigate properties of the candidate

models. A pairwise comparison between Model 1,2,3 and Model 1,2,4 is based on calculating

Pr [∆124 < ∆123 | y] = .5144. The two models have nearly equal probability in a pairwise

comparison. So, what accounts for the difference in preference when all candidate models

are considered? An explanation may lie in noting that input variables X2 and X4 are highly

correlated (r24 = −.973). Model 1,2,4 with both X2 and X4 can provide a good fit, and hence

a small CP value, but good fitting models without this redundancy of input information may

be preferred. We can investigate this premise. Since X2 and X4 carry similar information, we

suspect that in cases where Model 1,2,4 is preferred to Model 1,2,3, there is a good chance
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that a simpler model is better. This notion can be checked. Table 3 contains posterior

probabilities conditional on whether or not Model 1,2,4 is preferred to Model 1,2,3. If

∆124 < ∆123, a model without X4 (Model 1,2) and a model without X2 (Model 1,3,4) are

both more likely to minimize prediction error than Model 1,2,4 with both X2 and X4. If

∆123 < ∆124, then the most likely scenario is that Model 1,2,3 is best overall.

Table 3. Probabilities of minimizing ∆P .

Model unconditional given ∆124 < ∆123 given ∆123 < ∆124

1,2 .26 .25 .28

1,2,4 .10 .18 0

1,2,3 .21 0 .43

1,3,4 .15 .27 .02

1,2,3,4 .09 .02 .18

1,4 .10 .14 .06

2,3,4 .09 .14 .03

As a second illustration, we consider an application based on data from a cardiac re-

habilitation program at the University of Iowa Hospitals and Clinics. The data consist of

measurements based on 35 patients who have had a myocardial infarction and have completed

the program. The response variable is the final score on a test that reflects the capability of

the patient to physically exert himself / herself. The score is in units of metabolic equivalents

(METs). One MET corresponds to the rate of oxygen consumption for an average person at

rest. The input variables are the patient’s initial score on the exertion test (I), the patient’s

age (A), the patient’s gender (G), the patient’s baseline body mass index, dichotomized as

greater than 30 or not (B), and interactions for initial score / gender (IG), initial score /

body mass index (IB), age / gender (AG), age / BMI (AB). The candidate class consists
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of those subset models that satisfy the following criteria: the initial score is included as an

input, and if an interaction is included, then both inputs represented in the interaction are

also included.

Table 4 contains a list of the leading candidate models according to the CP selection

criterion, which selects Model I,G,A,B,AG. Also included in Table 4 are the posterior prob-

abilities of minimizing prediction error. As in the first example, the order and degree of

preference for the candidate models is different for ΠP than for CP . In particular, the larger

candidate models are favored according to the posterior probabilities at the expense of mod-

els with fewer input variables. So, what accounts for the difference in preference in this

application?

Table 4. CP and ΠP for rehabilitation data candidate models.

Model CP ΠP

I,G,A,B,AG 5.11 .11

I,G,A,B,IG 5.33 .12

I,G,A,AG 5.36 .07

I,G,A,B,AG,IG 5.60 .10

I,G,A,AG,IG 6.15 .05

I,G,A,B 6.86 .03

I,G,A,IG 6.90 .03

I,G,A,B,AG,IG,IB 7.31 .17

I,G,A,B,AG,IG,AB 7.56 .12

I,G,A 8.38 .01

I,G,A,B,AG,IG,AB,IB 9.0 .19

An explanation may lie in the sampling variability of CP as an estimate of ∆P for models

with fewer inputs relative to the full model. This phenomenon was studied by Mallows
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(1995). In settings where no subset of inputs is strongly preferred, the CP statistic for a

smaller model may greatly underestimate the prediction error for that model. The behavior

of ΠP is consistent with Mallows’ result on the sampling variability of CP for smaller models.

The ΠP statistic accounts for this sampling variability and shifts its probability to the larger

models in the candidate class.

Mallows (1995) derived an asymptotic approximation of the true prediction error for

the ”minimum CP ” model as min CP + 2q. For our application, the minimum CP model

(I,G,A,B,AG) has q = 3 inputs excluded from the full model. Mallows’ approximation of the

prediction error for this model is 5.11+2∗3 = 11.11. We have the capability to investigate this

idea further. Since we have the joint posterior distribution on {∆P}, we have the posterior

distribution on the prediction error for Model I,G,A,B,AG . The mean of this distribution

is computed to be 11.02, right in line with the asymptotic approximation. Yet we can do

more than provide a point estimate. For example, from the posterior distribution, we can

compute a 50% Bayesian confidence interval for this prediction error to be (8.275, 13.096),

and a 90% Bayesian confidence interval to be (6.701, 18.343). It is indeed quite possible that

the prediction error for Model I,G,A,B,AG is greatly underestimated by its CP statistic.

As the two applications illustrate, the Bayesian approach can present information on the

variable selection process well beyond the capabilities of a model selection criterion.

5 Conclusion

Linear regression variable selection based on prediction error seeks to determine the model

from among a candidate class for which ∆P is minimum. An estimate of ∆P can be used
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as a model selection criterion in this framework. Without accounting for the uncertainty

inherent to a model selection problem, model selection criteria alone are not presenting

a complete solution. In this paper, we have taken a Bayesian approach to the problem of

estimating prediction error. This approach provides a method for quantifying model selection

uncertainty. Two applications have been presented to illustrate the efficacy of a Bayesian

approach to variable selection in linear regression.
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