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Abstract

Following in the recent work of Hurvich and Tsai (1989, 1991, 1993) and Hurvich, Shumway,
and Tsai (1990), we propose a corrected variant of AIC developed for the purpose of small-sample
state-space model selection. Our variant of AIC utilizes bootstrapping in the state-space frame-
work (Stoffer and Wall (1991)) to provide an estimate of the expected Kullback-Leibler discrepancy
between the model generating the data and a fitted approximating model. We present simulation
results which demonstrate that in small-sample settings, our criterion estimates the expected dis-
crepancy with less bias than traditional AIC and certain other competitors. As a result, our AIC
variant serves as an effective tool for selecting a model of appropriate dimension. We present an

asymptotic justification for our criterion in the Appendix.
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1. Introduction

In time series modeling, an investigator is generally confronted with the problem of choosing
an appropriate model from a class of candidate models. Many approaches to this problem have
been proposed over the last twenty years, stimulated largely by the ground-breaking work of Akaike
(1973, 1974). The Akaike information criterion, AIC, remains the most widely known and used tool
for time series model selection, although many competitors and variants have gained acceptance
since its introduction. Among these are FPE (Akaike (1969)), SIC (Schwarz (1978), Rissanen
(1978)), BIC (Akaike (1978)), HQ (Hannan and Quinn (1979)), and more recently, AICc (Hurvich
and Tsai (1989)).

AIC is both computationally and heuristically appealing, which partly explains its enduring
popularity among practitioners. Yet the criterion suffers from one commonly observed drawback:
it has a tendency to favor high dimensional models in a candidate class when the sample size is
small relative to the larger model dimensions represented within the class. The development of
“corrected” AIC, AICc, was motivated by the need to adjust for this weakness. First suggested
by Sugiura (1978) and later investigated and generalized by Hurvich and Tsai (1989, 1991, 1993)
and Hurvich, Shumway, and Tsai (1990), AICc often dramatically outperforms AIC as a selection
criterion in small-sample simulation studies. Yet the basic form of AICc is similar to that of AIC,
meaning that the improvement in selection performance comes without an increase in computational
cost.

Originally proposed for linear regression, AICc has been extended to univariate autoregressive
modeling (Hurvich and Tsai (1989)), univariate autoregressive moving-average modeling (Hurvich,
Shumway, and Tsai (1990)), and vector autoregressive modeling (Hurvich and Tsai (1993)). The
demonstrated effectiveness of AICc as a selection criterion in these settings motivates the need for
a corrected variant of AIC for state-space modeling. Yet the derivation of AICc is less general
than that of AIC, involving distributional results which do not extend in an obvious manner to
the state-space setting without the addition of certain restrictive assumptions. Thus, we propose
a criterion which achieves the same degree of effectiveness as AICc, but which can be used within
a broad state-space framework. This new AIC variant involves a bootstrap-based correction that
can be justified and applied in a very general context, one which includes (but is not limited to)
the state-space setting of interest. We call our criterion AICb.

The idea of using the bootstrap to improve the performance of a model selection rule has

been suggested and investigated by Efron (1983, 1986), and is discussed by Efron and Tibshirani



(1993, Chapter 17). Ishiguro and Sakamoto (1991) proposed an AIC variant called WIC based on
Efron’s methodology, and Ishiguro, Morita, and Ishiguro (1991) used this variant successfully in an
aperture synthesis imaging problem. In a recent manuscript, Shibata (1996) proves the asymptotic
equivalence of AICb and WIC under a general set of assumptions, and indicates the existence of
other asymptotically equivalent bootstrap-based AIC variants. In small-sample settings, the type of
variant which would perform optimally most likely depends on the nature of the modeling problem.
For our state-space application of interest, our simulation results indicate that AICb outperforms
WIC, although further investigation is needed before substantive conclusions can be drawn.

In Section 2, we briefly review the motivation behind AIC, and discuss why the criterion works
poorly in small-sample applications. This leads to the introduction of AICb. In Section 3, we
present an overview of the state-space model along with a brief discussion of Gaussian maximum
likelihood parameter estimation in the state-space setting. Finally, in Sections 4 and 5, we compare
the performance of AICb to that of other selection criteria in simulation studies based on small

sample sizes. A theoretical asymptotic justification of AICD is presented in the Appendix.

2. Presentation of AICb

A well-known measure of separation between two models is given by the non-normalized Kullback-
Leibler information, also known as the cross entropy or discrepancy. If 6, represents the set of pa-
rameters for the “true” or generating model and 0 represents the set of parameters for a candidate

or approximating model, the discrepancy between the models is defined as
dn(0,0,) = Eo{—21log L(0 |Yy,)},

where E, denotes the expectation under the generating model, and L(6 |Y},) represents the likelihood
corresponding to the approximating model.

Now for a given set of estimates 6, we could determine the discrepancy between the fitted

approximating model and the generating model if we could evaluate

&:Amsﬂmov = m_oﬁlw _ONN\AQ _M\va_qﬂms AM.:

Yet evaluating (2.1) is not possible, since it requires knowledge of 6,. Akaike (1973), however, noted

that —2log L(0, |Y;) serves as a biased estimator of (2.1), and that the bias adjustment

Eo{Eo{~2l0g L(0 |Yn)}y_g,} — Eo{~2log L(0n [Yn)} (2.2)



can often be asymptotically estimated by twice the dimension of 0. Thus, if we let k£ represent the

dimension of w? then under appropriate conditions, the expected value of
AIC = —2log L(,, |Y,) + 2k

should be asymptotically close to the expected value of (2.1), say
An(k,05) = Eo{dy(6n,0,)}.

Alternatively, AIC should serve as an asymptotically unbiased estimator of the expected discrepancy

A, (k,0,), where
An(k,0,) = Eo{Eo{—2logL(0 _M\zvv_qﬂm:v
= moﬁlw_omhﬁwz _M\svw#n
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Note that the “goodness of fit” term in AIC, —2log L(0, |Y;), estimates the first of the terms in
(2.3), whereas the “penalty” term in AIC, 2k, estimates the bias expression (2.2).

AIC provides us with an approximately unbiased estimator of A, (k,60,) in settings where n
is large and k is comparatively small. In settings where n is small and %k is comparatively large
(e.g., k = n/2), 2k is often much smaller than the bias adjustment (2.2), making AIC substantially
negatively biased as an estimator of A, (k,6,) (Hurvich and Tsai (1989)). If AIC severely underes-
timates A, (k,0,) for higher dimensional fitted models in the candidate set, the criterion may favor
the higher dimensional models even when the expected discrepancy between these models and the
generating model is rather large. Examples illustrating this phenomenon appear in Shumway (1988,
page 169) and in Linhart and Zucchini (1986, pages 86-88), who comment (page 78) that “in some
cases the criterion simply continues to decrease as the number of parameters in the approximating
model is increased.”

AICc was developed to yield an estimator of A, (k,60,) which is less biased in small-sample
applications than traditional AIC (Hurvich and Tsai (1989)). Our criterion achieves the same goal
through utilizing the bootstrap. Specifically, we propose a bootstrap-based estimator for the bias
adjustment (2.2), which in small-sample settings should estimate (2.2) more accurately than 2k.

Suppose that T@wsu i =1,...,N} represents a set of N bootstrap replicates of 0,. Let E,
denote the expectation with respect to the bootstrap distribution of @m In the Appendix, we will

show that under suitable conditions, the difference between

2 [Ei{~2log L(9;, |Y2)} — {~2log L(B, [Yn)}]



and the bias expression (2.2) converges almost surely to zero (as n — oo). This follows from the

observation that (2.2) can be decomposed into the sum of
Eo{Eo{~21log L(0 [Yn)}Hy_p, } — Eo{~2l0g L6, [Yn)} (2.4)
and
m_oﬁlw_omhmwo _M\:vw |@oﬁlw_omhmwz _M\:VT Awmv

and that the difference between
B{~210g L(B, |Y)} — {~21og L(0n [Ya)} (2.6)

and either (2.4) or (2.5) tends almost surely to zero (as n — 00).

Now by the strong law of large numbers, as N — oo,

||MU 2log L0 (i) |Y)
Pt
converges almost surely to

E.{~2log L(6], |Y;)}.

Thus, for N — oo,
MU 2log L(0;, (i) [Yn)} — {~2log L(0x |Ya)}

is almost surely the same as (2.6). This leads us to the following large-sample estimator of A, (k, 6,):

AICh = |w_om:_@; 1Y)
42 M ~21log L(0; (i) [Ya)} — {~210g L(0a |Y)}]
= —2log L(6, |Y) M 210g A0l [1n) Ou) I¥)

A n [Yn)

Note that AICb is composed of the same “goodness of fit” term as AIC, and an inherently
positive “penalty” term which is asymptotically equivalent to the bias term in (2.3) (as both n,
N — o0).

We should note that the asymptotic justifications of AIC and AICc both involve the assumption
that the “true” parameter vector 6, corresponds to a model in the candidate class. (See Hurvich
and Tsai (1989).) This is admittedly a strong assumption, and one which is also required in our

asymptotic justification of AICb. The behavior of AIC and AICc when this condition is not met



has been investigated by Hurvich and Tsai (1991). In future work, we hope to explore the same
issue with regard to AICb.

Our asymptotic defense of AICb demonstrates that our criterion fulfills the same large-sample
objective as AIC, in that it provides an approximately unbiased estimator of A, (k,0,). Yet the
computational burden required to evaluate AICD is justifiable only if it can be shown that AICb
is superior to AIC in settings where the sample size is small enough to cast doubt on asymptotic
arguments. Thus, in Sections 4 and 5, we describe and present a collection of simulation results
to examine the small-sample behavior of AICb and AIC, as well as that of certain other criteria of

interest.

3. The State-Space Model and Gaussian ML Estimation

The state-space model has the form

ye = Azt (3.1)
ry = Py + wy, (3.2)
fort =1,...,n time periods, where y; is an observed vector process, x; is an unobserved vector

state process, A is a known design matrix, ® is an unknown transition matrix, and v; and w; are
zero-mean vector noise processes. Equations (3.1) and (3.2) are respectively called the observation
equation and the state equation. We will let R denote the covariance matrix of the observation
noise process vy, and let () denote the covariance matrix of the state noise process w;. We will let
1 and 3 respectively denote the mean and covariance matrix of the initial state x,.

It is routinely assumed that
e 1z, the wy, and the v; are mutually independent, (3.3)
and often additionally assumed that
e 1, the w;, and the v; are multivariate normal. (3.4)

To represent the unknown parameters, we will let # denote a kx1 vector that uniquely determines
the model coefficients and correlation structure: i.e., p = pu(0), ¥ = X(0), @ = ¢(0), Q = Q(0), R
= R(#). We will let Y; denote the observed data up until time ¢ (i.e., Y; = [y1,...,u])-

The likelihood L(6 |Y;,) is generally written in its innovations form (Schweppe (1965)). The

innovation at time ¢ is defined as

er(0) = yr — Azt 1(0)  where i 1(0) = E(z; |Yi1).



We will let 3;(0) denote the covariance matrix of e;(#). (Note that E(e;(0)) = 0.) The well-known
Kalman filter equations (Kalman (1960), Kalman and Bucy (1961)) provide us with a recursive
algorithm for evaluating successive values of e;(f) and (), as well as the state estimators =/~ *(6)
and z!(#) = E(z; |V;) and their respective covariance matrices P{~'(#) and P!(6). The starting
values z5(0) = p and P2(f) = ¥ are used to initialize the filter.

Under the assumptions (3.3) and (3.4), the innovations are mutually independent and multi-

variate normal. Thus, for the log of the likelihood L(f |Y},), we can write

N =

H_y n
log L(0 [Yy) oc =5 > log [%4(6)| -
t=1

n
> eu6) 5 (0)en(0). (3.5)
t=1

Since (3.5) is generally a highly non-linear function of the parameters, the maximum likelihood
estimates are usually found by using an iterative optimization algorithm. Maximum likelihood
estimation can also be carried out via the EM algorithm. Details are provided in Shumway and
Stoffer (1982).

Henceforth, we will assume 6,, denotes the set of Gaussian maximum likelihood (GML) estimates
for the kx1 vector 6.

If the normality assumption (3.4) is not imposed, L(f |Y;,) does not represent the joint density of
the innovations. In this case, 6,, is viewed as the set of estimates which minimizes the loss function
—log L(0 Yy,). Although our asymptotic justification of AICb assumes that the parameter estimates
are obtained through Gaussian maximum likelihood (or some asymptotically equivalent method),
our development does not require (3.4). Thus, we expect AICb to be fairly robust to violations of
this assumption.

A nonparametric bootstrap procedure for the state-space model is presented as a four-step algo-
rithm by Stoffer and Wall (1991). In the first step, the estimated innovations e;(6,) are evaluated
and standardized. In the second step, the standardized innovations are resampled, and in the third
step, the resampled innovations are used to construct a bootstrap sample of y,’s, say Y,*(¢). This
construction is accomplished through utilizing analogues of equations (3.1) and (3.2), where the
terms v; and w; are replaced by functions of the innovations. In the fourth step, the bootstrap
sample Y*(i) is used to compute a bootstrap GML vector 0*(i). Repeating steps two through
four N times results in a sample of bootstrap GML vectors ng, i=1,...,N}. The sampling
distribution of 6, is estimated by the relative frequency distribution of the mms

Stoffer and Wall (1991) establish that the asymptotic behavior of the bootstrap GML estimator

~

@u is the same as that of the GML estimator 6,. Their justification relies upon an asymptotic



theory proposed by Ljung and Caines (1979) for a general class of estimators. We will utilize
results from both Stoffer and Wall (1991) and Ljung and Caines (1979) in providing a formal

asymptotic justification for AICb in the Appendix.

4. Description of Simulations

Two different types of time series models are used in our simulation sets: the univariate au-
toregressive model, and the univariate autoregressive model with observation noise. The univariate

autoregressive model of order p can be written as
2y = &HNw\H + &wNﬁ\w + ...+ &ﬁNﬁ\ﬁ + €y €~ 11d Aoﬂqmv.

We denote this model as AR(p). The univariate autoregressive model of order p with observation
noise can be written as
Y=z + v v ~ did (0,0%);
2= Pr2—1 + pozi—2+ ...+ Ppzi—p + €5 € ~ iid APQWV.
We denote this model as ARN(p).

The ARN(p) model is expressed in state-space form by writing the observation equation (3.1)

as

2t—1
$H?P..;8 ) + v,

Zt—p+1

b1 p2 ... Pp1 Py
Zt Zt—1 €t
1 0 0 0
Zt—1 22 0
= 0 1 0 0 +
S 0 0 1 0 o !

Here, the covariance matrix () of the state noise vector is a pxp matrix with all zero entries except

for the entry in the upper left-hand corner, which is Qw. The observation noise is scalar, and has

variance R = Qw.



The AR(p) model is expressed in state-space form in the same manner, except that the noise
process v; does not appear in the observation equation.

For each of the models considered in our simulations, the eigenvalues of ® are all within the
unit circle. This ensures that the state process z; is weakly stationary.

The parameter vectors for the AR(p) and ARN(p) models are, respectively, the (p+ 1) x 1 and
(p+2) x 1 vectors

!

= (¢1,-. . bp,05)  and 0= (f1,...,¢p 08, 05) -

The parameter estimates 6, are obtained using the EM algorithm (Shumway and Stoffer (1982)).
The true parameter values are used to initialize the algorithm. For the initial state vector z,, the
mean vector p is fixed at zero, and the covariance matrix ¥ is found by solving the equation
¥ = ®X® + Q. (See Harvey (1989, pages 120 and 121).) In fitting the models, the mean of the
observed process y; is subtracted from each y;, t=1,...,n.

In addition to AICb and AIC, the other criteria considered in our simulations are FPE (Akaike
(1969)), SIC (Schwarz (1978), Rissanen (1978)), BIC (Akaike (1978)), HQ (Hannan and Quinn
(1979)), AICc (Hurvich and Tsai (1989)), and WIC (Ishiguro, Morita, and Ishiguro (1991)). (The
justifications of some of these criteria do not extend in an obvious manner to the state-space setting.
Thus, their definitions and usages for ARN(p) model selection are somewhat ad hoc.)

The complete set of criteria is listed below. In the definitions involving &, k is (p + 1) when
applied to the AR(p) model and (p 4+ 2) when applied to the ARN(p) model. The estimate of the
steady-state innovations variance is denoted by #2: i.e., 62 = M%@sv where ¢ is “large”. In the
definition of WIC, Y,*(i) represents the bootstrap sample corresponding to the bootstrap GML

vector 0% (7).

AICb = —2logL(6, |Y;) MU Eom 0, (0) [¥2) (4.1)
S_f
5 1 & L(6; i) [Y)
WIC = —2logL(0, |Y,) + (=Y —2log 2" 4.2
B0+ \F 2 % D) mew) 2
AIC = —2logL(0, |Yy) + 2k (4.3)
B R wﬁ@._.c
FPE = n ANWU &2 (4.5)
HQ = nlogé? +2kloglogn (4.6)



~9 n 9y .9
BIC = (n-—p) log ) 4 plog (i1 9i) — 1oy

—2log L(0,, |Yy) + klogn (4.8)

(4.7)

SIC

In each simulation set, 100 realizations of size n are generated from a known model of order p,.
For each of the realizations, candidate models of orders 1 through P are fit to the data (p, < P),
the criteria (4.1) through (4.8) are evaluated, and the fitted candidate model selected by each
criterion is determined. In the computation of AICb and WIC, N = 250 bootstrap replications
@m@ are used. The distribution of selections by each criterion is recorded for the 100 realizations
and presented in tabular form. (On an occasional realization, a criterion is minimized for two
different model orders. If the minima agree out to two decimal places, the case is treated as a tie,
and both selections are recorded.)

For each of the AIC-type criteria (AICb, WIC, AIC, and AICc), the average criterion value
over the 100 realizations is computed for each of the candidate model orders 1 through P. The
value of A, (k,6,) is simulated for each of these orders. The averages for AICb, WIC, AIC, and
AICc are then compared to the simulated values of A, (k, 6,) by plotting the criterion averages and
the simulated A, (k,0,) against several of the initial orders. Using this approach, we can judge the

relative effectiveness of AICh, WIC, AIC, and AICc as unbiased estimators of A, (k,#,).

5. Presentation of Simulation Results

The first simulation set involves a generating model and sample size originally considered in
a simulation study presented by Hurvich and Tsai (1989) to assess the effectiveness of AICc in

autoregressive model selection. The model is the AR(2) model
2zt =0.992, 1 — 08022 +€¢; € ~ iid N(0,1). (5.1)

The sample size is n = 23. The candidate class consists of AR(p) models where 1 <p < 12.
Although AICc performs well here, Table 1 indicates that AICb results in considerably more
correct order selections than any other criterion. Moreover, AICb does not incorrectly select any
high dimensional models, whereas most of the other criteria exhibit a propensity to overfit.
Figure 1 illustrates that over the first eight model orders, the average AICb curve more closely
follows the simulated A, (k,6,) curve than either the average AIC or AICc curve. The WIC curve
follows A, (k,0,) effectively, but WIC results in fewer correct order selections than AICb.



The second simulation set uses as the generating model the ARN(1) model
Y=z +uv; v ~ iid N(0,0.2); (5.2)

2zt =0.602,—1 + €5 € ~ did N(0,1).

The sample size is n = 15. The candidate class consists of ARN(p) models where 1 < p < 8.

As shown in Table 2, AICb obtains the most correct order selections, followed by AICc. Of the
remaining criteria, only SIC and WIC perform acceptably, although WIC exhibits a tendency to
favor higher dimensional models. AIC, FPE, HQ, and BIC all exhibit this overfitting tendency to
an even greater degree than WIC.

Figure 2 demonstrates that the average AICb and AICc curves reflect the general shape of
the simulated A, (k,#,) curve, although the AICc curve better represents the increasing slope in
A, (k,0,) past model order 6. The AIC curve remains relatively constant over all model orders.
The WIC curve initially follows the AICc curve, but appears flat past model order 6.

The third simulation set is based on the generating AR(2) model

zp = 14021 — 049249 +€¢;; € ~ did N(0,1). (5.3)

The sample size is n = 50. The candidate class consists of AR(p) models where 1 < p < 14.

Table 3 indicates that SIC and BIC obtain the most correct order selections. The AIC-type
criteria all perform comparably due to the relatively larger sample size used in this set: AICb and
AICc obtain the most correct selections, followed by WIC and AIC.

Figure 3 illustrates that over the first eight model orders, the average AICb curve tracks the
simulated A, (k,0,) curve quite closely. The WIC and AICc curves also effectively reflect the
general shape of the A,,(k,6,) curve.

The fourth and final simulation set is based on a generating ARN(2) model where the observation
noise and state noise have scaled t distributions with five degrees of freedom. This simulation set is
included so that the sensitivity of the criteria to the normality assumption (3.4) may be assessed.
Since the asymptotic justification of AICb does not require such an assumption, the performance
of AICb should not be greatly impaired by using heavy-tailed distributions for the model errors.

The generating model is a modification of the AR(2) model used in the first simulation set:
Y = 2 + v V¢ ~ id mmAO.Hmvw AW.NC
Zt = O.@@NH\H - O.@ONH\M + €t € 11d wwﬁ.v.
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Here, tq ¢ (o) represents a t distribution with d.f. degrees of freedom, scaled to have a standard
deviation of 0. The sample size is n = 23. The candidate class consists of ARN(p) models where
1<p<12.

Table 4 indicates that AICb obtains the most correct order selections, followed by SIC. As
in the first simulation set, AICb does not exhibit the overfitting tendency of many of the other
criteria.

Figure 4 again illustrates that over the first eight model orders, the average AICb curve closely
tracks the simulated A, (k,6,) curve. The WIC curve also reflects the shape of A, (k,6,). The
AICc curve follows A, (k,6,) to a lesser degree, whereas the AIC curve appears flat past the true
model order.

We close this section with a brief discussion of two computational issues. These issues are
relevant not only in evaluating the results of the preceding simulations, but also in assessing how
AICD and its competitors may perform in practice.

First, one may question how the behavior of the criteria is affected by the choice of the maximum
order P for the class of candidate models. In the simulations sets, the criteria which perform poorly
tend to choose an excessive number of high dimensional models. How would these criteria behave
if lower maximum orders were employed?

To address this question, the criterion selections for each of the four simulation sets are recom-
piled using smaller maximum orders than those originally considered. The number of correct order
selections corresponding to the original and the new maximum orders are reported in Table 5.

Table 5 indicates that as the maximum order is decreased, those criteria which are prone to
overfitting become more competitive, and as a result, the disparities in the correct selection rates of
the criteria become less extreme. Although AICD still tends to outperform other AIC-type criteria
for smaller maximum orders, its advantage in such settings is less pronounced. This is perhaps
expected in light of Figures 1 through 4, which show that the average AICb, WIC, AIC, and AICc
curves are only substantially discrepant for larger model orders.

Second, one may question how the behavior of AICb and WIC is affected by the choice of N,
the number of bootstrap replications used in the evaluation of these criteria. As IV increases, the
averages which comprise the “penalty” terms of AICb and WIC stabilize. Choosing a value of N
which is too small may result in inaccurate estimation of the bias expression (2.2), yet choosing
a value of N which is too large will waste computational time. How is the behavior of AICb and

WIC affected by the selection of N7

11



To gain insight into this question, each of the four simulation sets are re-run using N of 50,
100, 150, 200, and 250 (and a maximum candidate model order of P = 8). The number of correct
order selections for AICb and WIC are reported in Table 6.

Table 6 indicates that while a value of 50 for N appears insufficient, values of 100 and higher
seem to yield acceptable results. Although the number of correct selections for both AICb and
WIC tends to increase with increasing N, the differences among the results for N of 100 to 250
are of debatable importance. Thus, our choice of NV = 250 in the original simulation sets may
seem somewhat conservative. (This value of N was chosen since in these sets and in others not
reported, smaller values seemed to marginally diminish selection performance while larger values
did not seem to appreciably improve the results.)

Of course, an appropriate choice for N depends on several factors: most importantly, the
sample size n, the dimension of the candidate model which minimizes the expected discrepancy
A, (k,0,), and the dimension of the largest model in the candidate class. In practice, we recommend
monitoring the values of AICb (or WIC) for increasing values of N, until the criterion values are
stable enough to clearly discern the minimum. If for even large N, the minimum tends to oscillate
among the criterion values corresponding to two or more fitted candidate models, this may serve
as an indication that the expected discrepancies for these models are not significantly different. In
such an instance, it would be reasonable to select the model having the smallest dimension among

these final few candidates.

6. Conclusion

For large-sample applications, AICb is designed to serve the same purpose as traditional AIC, in
that it provides an asymptotically unbiased estimate of the expected discrepancy A, (k,6,) between
the generating model and a fitted approximating model. However, for small-sample applications,
our simulation results illustrate that in the state-space setting of interest, AICb seems to outperform

traditional AIC in three important ways:

e AICD provides an estimate of the expected discrepancy A, (k,6,) which is considerably less
biased than AIC.

e When data is generated from a known finite dimensional model, AICb has a higher success

rate in identifying the correct model dimension than AIC.
e AICb does not exhibit the same tendency to overfit that AIC exhibits.

12



AICD also appears to outperform WIC and AICc in the same three ways, although to a somewhat
lesser degree.

AICbD is developed in the context of a general model formulation and a nonrestrictive set of
conditions. Our justification and application of the criterion focuses on the state-space framework,
yet the criterion could certainly be used in other model selection settings. (See Shibata (1996).)
And although AICDb is more computationally expensive to evaluate than either AIC or AICc, it
has a simplistic form, and would be convenient to compute as part of an overall bootstrap-based

analysis.
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Table 1. Model Selections for (5.1) (Maximum Order: 12)

Order | AICb | WIC | AIC AICc | FPE HQ BIC SIC

1 1 1 1 1 0 1 1 2
2 90 72 45 69 25 23 60 7
3 8 18 11 7 6 ) 6 7
4 1 1 0 1 0 0 0 1
Y 0 2 4 1 1 1 0 0
6 0 1 1 1 1 2 1 0
7 0 1 4 1 4 3 1 0
8 0 0 2 1 0 0 2 1

9 to 12 0 4 33 18 63 65 29 12

Table 2. Model Selections for (5.2) (Maximum Order: 8)

Order | AICb | WIC | AIC | AICc | FPE HQ | BIC SIC
1 79 o7 45 74 27 18 13 64
2 3 3 o 8 6 4 Y 8
3 4 6 3 3 4 2 4 2
4 2 4 6 6 9 6 8 4
Y 2 4 o 4 6 Y 12 Y
6 3 Y 6 3 12 15 17 Y
7 3 7 13 2 17 17 19 7
8 4 14 17 0 19 33 24 Y
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Table 3. Model Selections for (5.3) (Maximum Order: 14)

Order | AICb | WIC | AIC | AICc | FPE HQ | BIC | SIC

1 1 1 3 4 2 ) 11 11
2 78 73 73 78 63 79 88 86
3 13 12 9 7 9 5 1 2
4 3 4 8 6 8 6 0 1
Y 2 6 0 0 0 0 0 0
6 2 3 3 1 2 1 0 0
7 0 0 1 0 1 0 0 0
8 1 0 2 2 2 1 0 0

9 to 14 0 2 2 2 13 3 0 0

Table 4. Model Selections for (5.4) (Maximum Order: 12)

Order | AICb | WIC | AIC | AICc | FPE HQ | BIC | SIC

1 4 1 0 0 0 0 1 1
2 84 62 48 73 25 21 74 80
3 8 20 2 6 1 0 2 6
4 3 6 4 5 8 6 2 1
Y 1 Y 1 3 1 1 1 2
6 0 1 0 0 1 1 0 0
7 0 1 1 1 0 0 1 0
8 0 0 3 2 Y Y 1 1

9 to 12 0 4 41 10 60 66 18 9
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Table 5. Number of Correct Order Selections

Based on Various Maximum Orders for the Candidate Classes

Set | Max. Order | AICb | WIC | AIC | AICc | FPE HQ | BIC | SIC
4 90 78 81 86 78 78 90 89
(5.1) 8 90 74 69 83 ol o4 83 88
12 90 72 45 69 25 23 60 7
4 87 74 68 80 51 50 41 79
(5.2) 6 82 64 99 76 39 34 27 70
8 79 o7 45 74 27 18 13 64
4 82 81 79 82 77 83 88 86
(5.3) 8 78 74 73 78 69 80 88 86
14 78 73 73 78 63 79 88 86
4 85 69 79 84 72 77 87 89
(5.4) 8 84 66 69 81 53 59 86 88
12 84 62 48 73 25 21 74 80

Table 6. Number of Correct Order Selections for AICb and WIC

Based on Various Numbers of Bootstrap Replications

(Maximum Orders: 8)

AICbH WIC
Bootstrap Replications Bootstrap Replications
Set | 50 | 100 | 150 | 200 | 250 | 50 | 100 | 150 | 200 | 250
(5.1) | 79 | 84 | 87 | 87 | 90 | 67 | 73 | T4 | T6 | T4
(5.2) | 64 | 75 | 75 | T4 | 79 | 46 | 51 | 52 | 50 | 57
(5.3) | 66 | 73 | 79 | 77T | 78 | 56 | 64 | 66 | 68 | T4
(5.4) | 73 | 76 | 84 | 84 | 84 | 59 | 69 | 69 | 7O | 66
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Appendix

Here, we present a formal justification of AICb as a large-sample estimator of A, (k,6,).

We will require the following fundamental assumptions:
e The parameter space © is a compact subset of k-dimensional Euclidean space.

e Derivatives of the log-likelihood up to order three exist with respect to 8, and are continuous

and suitably bounded over ©.
e 0, is an interior point of ©.

e For all § € O, the eigenvalues of ®(f) are within the unit circle, and AQ(0)A + R(0) is

positive definite.

Our arguments rely on an asymptotic theory developed by Ljung and Caines (1979) for a general
class of estimators. This theory can be used to justify the strong consistency and asymptotic
normality of the state-space GML estimator w? even in the absence of the normality assumption
(3.4). (See Caines (1988, page 499).) The results of Ljung and Caines (1979) were utilized by Stoffer
and Wall (1991) to provide an asymptotic justification of a nonparametric state-space bootstrap
procedure based on GML estimation. Neither the development in Stoffer and Wall (1991) nor the
development which follows requires the normality assumption (3.4).

We begin by briefly outlining the theory of Ljung and Caines (1979). (For further details, see
Ljung and Caines (1979), Theorem 1 and its corollary.)

Let

1 & /
Va(0) = Wmﬁom |6(0)] + ex(8) Ty (0)ex(6) ).

Let d\:ﬁvgv denote the kx1 vector of first partials of V,,(6) with respect to 6, and let v, (9) denote

the kxk matrix of second partials of V;,(#) with respect to 6. Let

Wa(0) = E{Va(0)}, W [D(0) = E{V,V(0)}, W, (0) = E{V,?(0)}, and

Un(0) = n B{(V V@)V ,D(0)) '}

Let 6, represent the unique global minimum of W, (#) (assumed to exist). We assume W, (#) —

W () uniformly in 6 as n — oo, W(#) has a unique global minimum at 6,, \/n S\%VQL — 0
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as n — oo, and W (¥(8,) is invertible. We assume U(6,) = lim, o Up(#,) exists, and U(8,) is
invertible.
Let P (0) = (Wn'®(0))~! U, (0) (W,® (6))~!. Theorem 1 of Ljung and Caines (1979) provides

us with the following results:

(0, — 0,) — 0 almost surely as n — oo, (A.1)

Vv Py(0,)7'% (6, — 0,) — Ni(0, I) as n— oo. (A.2)

We will use much of the preceding development in what follows.

We begin our justification by obtaining a useful expansion for A,,(k,6,).
Lemma 1

DsQﬁ%ov = mo,ﬂmeﬁlwwomh% _M\:vw_mﬂmsw
— B {2l0gL(0, )

|_l

’ —

+ @aﬁ%: - m:v <: @ O@:v Amz - m:: A>.wv

o3I 3

~ —

Here, n, and By, are random vectors which lie between 0, and 6,,.

Proof:

First, we expand E,{-2log L(0 |Y5)}|,_; about 0, to obtain

Eo{—2log L(0 _M\:vw_muw: = Eo{-2log L(6 |Y,)}

W, (mn) (6 — 6n). (A.4)

Here, 7, is a random vector which lies between @: and 6,,.
Next, we expand —2log L(f, |Y;) about 0,,, and take expectations of both sides of the resulting

expression to obtain

E,{—2log L(f, |Y,)} = E,{—2logL(f, |Y,)}

+ 5 Bof (6 = 62) V@ (B) (60— 0)}- (A.5)

Here, (3, is a random vector which lies between m: and 6,,.
The lemma is established by taking expectations with respect to both sides of (A.4), and
substituting (A.5) for E,{—2log L(f,, |Y;)} in the result. o
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We next derive a result which leads to a bootstrap estimator of both

~ — 7

Eo{(6, — 6y) S\:Sv (n) Amz —0n)} (A.6)

AR

and

Eo{(0n — 0n) V,, P (Bn) (0 — 6)}. (A.7)

|3

Note by comparing (A.3) to (2.3) in Section 2 that the sum of (A.6) and (A.7) is equivalent to the

bias expression (2.2).

Lemma 2

~ ~ 7 ~

n . . 2 - >
5 Bd(0h — ) VD () (05 — 0n)} = E{—210g L(6}, [Yn)} — {—2log L(0, [Yn)}.
Here, 7y, is a random vector which lies between @m and m:

Proof:

~ ~

Consider expanding —2log L(#;; |Y,,) about 6, to obtain

N* A n s PN - ~
—2log L(0;, [Y) = =210g L(0n |Y) + 3 (0, — 0.) V) () (0} — 0n).
Here, 7, is a random vector which lies between @m and m:
Taking expectations of both sides of this expression with respect to the bootstrap distribution

of @w: we have
B{~2log L(6;, |Y,)} = {~2log L(B, |Y.)} + 5 Eo{(0; —6.)

Thus, the result is established.
At the end of the Appendix, we will state and prove a final lemma (Lemma 3) that will show

as n — oo, the difference between

~ ~ 7 ~ ~

5 B0 = 00) V) (8~ 0))

and either (A.6) or (A.7) converges almost surely to zero. By the strong law of large numbers, as

N — oo,
1 Y R
" —2log L(B;(9) Ya)
i=1

converges almost surely to

@*ﬁlw_omhﬁmm _M\:vw
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Thus, with Lemma 2, we will be able to conclude that for n, N — oo,

N
{5 D0 ~2108 L) [¥a)} — {~21og L(Bn [Y:)) (43)
i=1

is almost surely the same as either (A.6) or (A.7). This will justify AICb as a large-sample estimator
of Ap(k,6,), in that it will show the “penalty” term of AICb (twice (A.8)) is asymptotically equal
to the sum of (A.6) and (A.7), or equivalently, to the bias expression (2.2).

We first introduce some additional notation and results.

In the bootstrap setting, to parallel the definitions for
Vo (0), V,00), v,,20), w,(0), W D@©), W, 0), U,(0), 6,, and 6,,,

let
Vi) = = S {log [Si(0)] + ¢ (6)' S\ (B)e} (6))

L)

where the innovations ej(6) correspond to a bootstrap sample, let d\wﬁv%v denote the kx1 vector
of first partials of V;*(#) with respect to 0, and let V;, @ (@) denote the kxk matrix of second partials
of V¥(0) with respect to 0. Let

Wi(0) = B4V, (0)), Wi 0) =BV, VO), W, @) = Efv; P(0)}, and

’

Un(0) =n BV, WOV 10)}.

Also, let 8 = argmin 4o V,*(#), and 0 = argmin 5o W (6).

We will make use of the following important result from Lemma 3 of Ljung and Caines (1979):
2(0) - 0 almost surely as n — oo, uniformly in 6. (A.9)
Now from Lemma 1 of Stoffer and Wall (1991),

W (0) = V,(0) for all € ©, (A.10)

meaning

)
*
Il
>
3

(A.11)

Also, from Lemma 2 of Stoffer and Wall (1991),

U (0n) — Un(6,) — 0 almost surely as n — oco. (A.12)
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Let PX(0) = (Wi P(0)~! Uz(0) (Wi P (0))~. Stoffer and Wall (1991) appeal to Theorem 1
of Ljung and Caines (1979) to establish the following analogue of (A.2) for the bootstrap GML

estimator 6:

Vi Po(0,)7 V% (67 = 6,) = Ni(0, I) as n — oo. (A.13)

n

One can also appeal to Theorem 1 and Lemma 3 of Ljung and Caines (1979) to establish the
bootstrap analogues of (A.1) and (A.9):

(0, —60,) = 0 almost surely as n — oo, (A.14)

V@) —wr @ () - 0 almost surely as n — oo, uniformly in 6. (A.15)

n

We now present the statement and proof of our final lemma.

Lemma 3

~ ~ ~

(a) n BA(0% = 6,) Vi@ (1) (05 = 00)} — n Eo{(0n — 02) Vi ® (Ba) (60 — 0)} — 0

n

almost surely as n — oc.

(5) n B0 = 02) Vo' () 0 = 00)} = 1 Eo{(0n = 02) Wa® (1) (0 = 0,)} = 0
almost surely as n — oc.
Here, vy, s a random vector which lies between mw and @:“ and By and 0, are random vectors which

lie between @: and 0,,.

Proof:
First, we will consider the expression

7 ~ ~

n @*me - @:v <:§ () (6, — 0n)}-

We will show that as n — oo, this quantity differs from

tr{ (W, @ (6n)) " Un(0)} (A.16)

by an amount tending to zero almost surely.

Using (3.5) of Ljung and Caines (1979) along with (A.11), we can write

~

Vi (05, = 60,) = n V3, (0n) (Vi P (en)) (A17)

where aj, is a random vector between 6% and 6,. Now by (A.15), (A.10), (A.9), and the consistency
results (A.14) and (A.1),
V. () = W, 2(80,) + 04.6.(1). (A.18)
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Also, by (A.9), and the consistency results (A.14) and (A.1),
<§Amv AQ\SV = S\Smwvm%lsv + DQ.M.A:. A>.va

Using representation (A.17) along with (A.18) and (A.19), we can establish that

~ ~ 7 ~ ~

n (0, 0,) 'V, () (60, = 00) = n (V3. D(00)) (7, (02)) 7 (V3D (00)) + 00..(1).

Applying the bootstrap expectation operator to both sides of the preceding expression and utilizing

(A.12), we obtain

= tr{(W,P ()" n BV 1(00)) (V5D (00) )} + 00s.(1)
= tr{(W,

n

= tr{(W,@(0,)) " Un(0)} + 00.s.(1). (A.20)

Next, consider the quadratic expressions

n O —0,) V,P(By) O —0,) and  n (0, —6,) W, (n,) (6, —by).
We will show that as n — oo, the difference between these quadratics tends almost surely to zero.
We will then show that as n — oo, the difference between the expectation of either quadratic and
(A.16) tends to zero. This combined with (A.20) will establish the lemma.
Using (3.5) of Ljung and Caines (1979), we can write

Vi (0 = 0,) = n vV D(0,) (V, 2 (6,) 7, (A.21)

~ —

where 0, is a random vector between 6, and 6,. Now by (A.9) and the consistency result (A.1),

we have

V, @ (60) = W, (0n) + 04.5.(1). (A.22)

Also by (A.9) and (A.1),
<:§ (Bn) = S\:@ %zv +04.5.(1)  and S\:@ (n) = S\:Amv %:v + 04.5.(1). (A.23)

Using representation (A.21) along with (A.22) and (A.23), we can argue that as n — oo,

— !

n(6n—0,) V., DB 6n—0,) and n (6, —60,) W, D (n,) (6n — 6p)
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each differ from

n (V{0 (00) (W, (82)) " (V1D (8)

by an amount which tends almost surely to zero.

Thus, as n — oo,

n @oﬁ%: - %\:v\ <:§ (Bn) Amz —0,)} and n @aﬁ%: — 0n) S\@@ (1) (O — 0n)}

each differ from

n Bo{ (V{7 (02)) (W, (0,) " (V) (0a))}
= tr{(W,(0n)) " [0 Bo{(V " (0n)) (V{7 (62)) 1]}

= tr{(W,?) ()" Un(0n)}

by an amount which converges to zero.

This completes the proof of the lemma. e
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