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ABSTRACT
Distance weighted discrimination (DWD) is an interesting large margin classifier that has been shown to
enjoy nice properties and empirical successes. The original DWD only handles binary classification with
a linear classification boundary. Multiclass classification problems naturally appear in various fields, such
as speech recognition, satellite imagery classification, and self-driving vehicles, to name a few. For such
complex classification problems, it is desirable to have a flexible multicategory kernel extension of the
binary DWD when the optimal decision boundary is highly nonlinear. To this end, we propose a new
multicategory kernel DWD, that is, defined as a margin-vector optimization problem in a reproducing
kernel Hilbert space. This formulation is shown to enjoy Fisher consistency. We develop an accelerated
projected gradient descent algorithm to fit the multicategory kernel DWD. Simulations and benchmark data
applications are used to demonstrate the highly competitive performance of our method, as compared with
some popular state-of-the-art multiclass classifiers.
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1. Introduction

Classification is a task of identifying observations to one of
several pre-defined categories, and its applications are extremely
diverse, ranging from daily life to frontiers of science and
engineering. Two classic examples are detecting spam e-mail
based on the message content and categorizing tissues as tumor
or benign based on DNA microarray data. Many real-world
problems have multicategory responses. Speech recognition has
been formulated as a multicategory classification problem to
analyze voice input, which enables the translation of spoken
language into text and has many promising applications in as
court reporting, mobile e-mail, and robotics (Rabiner 1989;
Rabiner and Juang 1993; Hansen and Hasan 2015; Yu and Deng
2016). Speech recognition has also greatly helped people with
hearing disturbances (Chen et al. 2016; Takashima et al. 2017;
Wang 2017). Image classification (Haralick and Shanmugam
1973; Krizhevsky, Sutskever, and Hinton 2012; Russakovsky
et al. 2015) is another hot application, referring to detection of
an object in digital images: for instance, satellite remote images
have been used to successfully predict earthquakes (Dong and
Shan 2013; Lillesand, Kiefer, and Chipman 2014; Maulik and
Chakraborty 2017), vision-based road detection inspires the
study of self-driving vehicles (Chen et al. 2015; Xu et al. 2016;
Bojarski et al. 2017), and facial expression extraction facilitates
interactions between humans and machines (Liu et al. 2012;
Barsoum et al. 2016). Besides engineering applications, binary
and multicategory classifications are also abundant in biology,
climatology, geology, economics, and finance, among many
others.

For binary classification, the support vector machine (SVM,
Vapnik 1995) is a commonly used large-margin classifier.

CONTACT Hui Zou zouxx019@umn.edu School of Statistics, University of Minnesota, Minneapolis, MN 55455.

Another large margin classifier is the distance weighted
discrimination (DWD) proposed by Marron, Todd, and Ahn
(2007). Although the SVM and DWD are originally designed for
binary classification, they can be generalized to multicategory
classification problems. Two simple approaches are one-
versus-one and one-versus-rest that decompose multicategory
classification into a set of multiple binary classification problems
(Hastie and Tibshirani 1998; Hsu and Lin 2002). In particular,
one-versus-one approach solves each of the pairwise two-class
problem and predicts the class that wins the most comparisons,
but it may suffer from the tie-in-vote issue. One-versus-rest
approach alternatively treats each class as positive and all the
other classes as negative; however, this approach has shown
to be inconsistent in many situations (Lee et al. 2004; Liu
2007). In addition, error-correcting coding is an information-
theoretic approach that turns the multicategory response into
a coding matrix; details are seen in Dietterich and Bakiri
(1995), James and Hastie (1998), and Allwein, Schapire, and
Singer, (2000). Instead of reducing multicategory classification
to binary problems, another approach is to propose a unified
framework that considers all classes at once. With such a
simultaneous fashion, there are several multicategory SVMs
developed in Vapnik (1998), Weston and Watkins (1999), and
Lee et al. (2004), as well as multicategory extension of other
large-margin classifiers including import vector machine (Zhu
and Hastie 2005), ψ-learning (Liu and Shen 2006), large-margin
unified machines (Zhang and Liu 2013), and angle-based large-
margin classification (Zhang and Liu 2014; Zhang et al. 2016).

In the context of DWD, Huang et al. (2013) proposed a
multiclass generalization of linear DWD. From methodological
and theoretical viewpoint, the linear classifier will be inade-
quate because the optimal Bayes rule can often be nonlinear.
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However, it is unclear how to generalize the linear multiclass
DWD (Huang et al. 2013) to its kernel counterpart. The same
difficulty appeared in the development of the original binary
linear DWD (Marron, Todd, and Ahn 2007), and a kernel
binary DWD, that is, computationally efficient and theoretically
justified, was only recently proposed in Wang and Zou (2018).
Moreover, the kernel binary DWD in Wang and Zou (2018)
has been shown to enjoy very competitive classification per-
formance against popular classifiers such as the SVM, random
forest, gradient boosting, and k-nearest neighbors, etc. Given
its excellent performance for binary classification, it will be
interesting and natural to ask whether the DWD idea could also
be competitive for multiclass classification. Hence, it is neces-
sary to derive the kernel version of the multicategory DWD in
order to handle multiclass classification problems with complex
nonlinear decision boundaries.

In this article, we develop a multicategory kernel DWD by
formulating the multicategory DWD in a reproducing kernel
Hilbert space (RKHS). We used the concept margin vector intro-
duced by Zou, Zhu, and Hastie (2008), where the margin vector
is defined to be a multicategory generalization of the margin in
binary classification and can be regarded as a proxy of the con-
ditional class probability. With the device of margin vector, we
propose multicategory kernel DWD, and we then demonstrate
that our proposal is multicategory Fisher-consistent, in the sense
that the class with the largest conditional class probability always
has the largest margin. To compute the multicategory kernel
DWD, we present a multicategory representer theorem, and
we develop a projected gradient descent algorithm. We further
implement the Nesterov’s acceleration to improve the rate of
convergence, thereby reducing the number of iterations effec-
tively. Note that our formulation of multicategory DWD is
completely different from the approach (Huang et al. 2013) that
generalizes the linear DWD by involving the pairwise differ-
ences in terms of the discriminate functions. We shall review
the formulation of Huang et al. (2013) in Section 2.

To give a quick illustration, Figure 1 delineates the decision
boundaries of multicategory kernel DWD and the Bayes rule for
a simulation example based on mixture Gaussian distributions.
Figure 1 shows that the Bayes rule has a nonlinear decision
boundary and our method resembles the Bayes rule. This exam-
ple clearly reveals the inadequacy of the multicategory linear
DWD as well as the excellent performance of our new method.

The rest of the article is organized as follows. In Section 2,
we briefly review DWD in binary classification and multicate-
gory linear DWD proposed in Huang et al. (2013). Section 3
describes our proposal of multicategory kernel DWD and we
explore its multicategory Fisher consistency. In Section 4, we
derive an efficient convex optimization algorithm to solve the
proposed classifier. Simulations and benchmark data examples
are presented in Section 5.

2. Review of DWD

Before introducing the multicategory kernel DWD, it is neces-
sary to review the basic idea of the original binary DWD. Sup-
pose that a training dataset consists of n pairs of observations,
{xi, yi}n

i=1, where xi ∈ R
p and yi ∈ {−1, 1}. Linear DWD seeks

a hyperplane {x : β̂0 + x�β̂ = 0} where

(
β̂0, β̂

)
= argmin

β0,β

n∑
i=1

(
1
ri

+ Cξi

)
,

subject to ri = yi(β0 + x�
i β) + ξi ≥ 0, ξi ≥ 0, ∀i, ‖β‖2

2 = 1,
(2.1)

where C is a tuning parameter controlling the slack variables
ξi. DWD predicts the class label of a new observation xnew
by sgn(β̂0 + x�

newβ̂). The problem (2.1) was originally solved
by second-order cone programming (Marron, Todd, and Ahn
2007). Other developments of linear DWD include weighted
DWD (Qiao et al. 2010), distance weighted SVM (Qiao and

Figure 1. Decision boundaries of multicategory kernel DWD (left panel) and the Bayes rule (right panel). We simulated three classes, each of which follows a mixture
Gaussian distribution 1

3
∑3

i=1 N(μi , τ2I), where μ1, μ2, μ3 are three centers independently drawn from standard normal distribution. In the right panel, the centers of
class 1, 2, and 3 are depicted as squares, circles, and triangles, respectively. We set τ = 0.4 and Bayes error is 13.4% in this example. The proposed multicategory kernel
DWD is fit based on 100 training data and its misclassification error rate is 15.9%. In contrast, the multicategory linear DWD (Huang et al. 2013) has a misclassification error
rate of 34.5%.
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Zhang 2015a), flexible assortment machines (Qiao and Zhang
2015b), and sparse DWD (Wang and Zou 2016).

Huang et al. (2013) proposed a multicategory linear DWD.
Suppose the response of a training dataset {xi, yi}n

i=1 has k cate-
gories, that is, yi ∈ {1, . . . , k}. A vector of discriminant functions
f = (f1, . . . , fk) is introduced, where each element corresponds
to one class. For any new observation xnew, the label is predicted
by ŷnew = argmaxj f̂j(xnew), where each f̂j(x) = β̂0 + x�β̂ and
(β̂0j, β̂ j) are estimated by

min
β0j,β j

n∑
i=1

∑
j �=l

(
1

r(jl)
i

+ Cξ
(jl)
i

)
,

subject to r(jl)
i = fj(xi) − fl(xi) + ξ

(jl)
i , for yi = j, l �= j,

fj(xi) = β0j + x�
i β j,

r(jl)
i ≥ 0, ξ (jl)

i ≥ 0,
k∑

j=1
β0j = 0,

k∑
j=1

β j = 0, ‖β j‖2
2 ≤ 1.

(2.2)

Like the binary linear DWD, the problem (2.2) is solved by
second-order cone programming. However, it is unclear how
to extend the formulation (2.2) to a reproducing kernel Hilbert
space so that one can fit a nonlinear kernel classifier. It is difficult
even when the problem (2.2) degenerates to the binary DWD,
when k = 2. Only recently, Wang and Zou (2018) derived a
kernel DWD based on a different formulation of linear DWD.

3. A New Multicategory Kernel DWD

In this section, we develop a multicategory DWD in an RKHS,
and we elucidate its Fisher-consistent property.

3.1. Statistical View of DWD

Wang and Zou (2018) showed that the linear DWD classifier
can be equivalently derived from a regularized empirical risk
minimization approach as

(
β̂0, β̂

)
= argmin

β0,β

[
1
n

n∑
i=1

φ
{

yi(β0 + x�
i β)

}
+ λβ�β

]
,

where

φ(u) =
{

1 − u, if u ≤ 1/2,
1/(4u), if u > 1/2,

(3.1)

and the DWD classifer is sgn(β̂0 +x�β̂). The loss function φ(u)

has also appeared in Qiao et al. (2010), Liu, Zhang, and Wu
(2011), and Wang and Zou (2016). For the kernel DWD, Wang
and Zou (2018) formulated kernel DWD as sgn(f̂ (x)), where f̂
is given by

f̂ = argmin
f ∈HK

[
1
n

n∑
i=1

φ
{

yif (xi)
}+ λ‖f ‖2

HK

]
, (3.2)

in which HK is an RKHS generated by a positive definite kernel
function K. The popular kernel functions include the Gaussian
kernel and the polynomial kernel. By Mercer’s theorem, kernel
K has an eigen-expansion K(xi, xj) =∑∞

t=1 γtϕt(xi)ϕt(xj) with
γt ≥ 0 and

∑∞
t=1 γ 2

t < ∞. The function f in the space HK has
an expansion in terms of eigen-functions, f (x) =∑∞

t=1 ctϕt(x),
where ‖f ‖2

HK
≡∑∞

t=1 c2
t /γt < ∞.

By the representer theorem (Wahba 1990), the solution of
problem (3.2) has a finite form

f̂ (x) =
n∑

i=1
α̂iK(x, xi).

Then the reproducing property of the RKHS (Wahba 1990)
implies ‖f̂ ‖2

HK
=∑n

i=1
∑n

i′=1 α̂iα̂i′K(xi, xi′), and problem (3.2)
becomes

α̂ = argmin
α∈Rn

[
1
n

n∑
i=1

φ
{

yiK�
i α
}

+ λα�Kα

]
, (3.3)

where K is an n × n matrix whose (i, i′)th element is K(xi, xi′).
Problem (3.3) can be efficiently solved based on the MM princi-
ple (Wang and Zou 2018), which is much faster than the second-
order cone programming algorithm. The reproducing property
of the RKHS largely facilitates the computation algorithms, as
the implicit and infinite-dimensional problem (3.2) reduces to
an explicit and finite-dimensional problem (3.3). The explicit
feature map of the RKHS induced by the Gaussian kernel has
been studied in Steinwart, Hush, and Scovel (2006).

3.2. Our Proposal

The empirical loss minimization formulation of the original
DWD is the first step toward the multicategory DWD. In the
literature many efforts have been devoted to the multiclass
generalization of the binary large margin classifier that can
be formulated as an empirical loss minimization problem. For
example, the multicategory SVM (Lee et al. 2004), the mul-
ticategory ψ-learning (Liu and Shen 2006), and so on. Here,
we take a different approach from the existing multicategory
large margin classifiers in the literature. Specifically, we take
advantage of the concept of margin vector, which is introduced
by Zou, Zhu, and Hastie (2008) and is conceptually identical to
the binary margin. In binary classification, the margin is defined
as yf , which assigns margin f (xi) to a data point (xi, yi) from
positive class and assigns margin −f (xi) to datum from negative
class. The binary margin definition explicitly uses the special
1, −1 coding of the class label. For a k class problem, a margin
vector has the form of f = (f1, . . . , fk)� with a sum-to-zero
constraint

∑k
j=1 fj = 0. Data point (xi, yi) belonging to class yi

has margin fyi(xi), where yi ∈ {1, 2, . . . , k}. When k = 2, by the
sum-to-zero constraint we have f1(xi) = −f2(xi). Thus, when
we use 1, −1 to code the classes 1 and 2, we have f = f1 and
the margin for (xi, yi) is yif (xi), which is the definition of the
margin.

Now we replace the margin yif (xi) with the margin vector
fyi(xi) in problem (3.2) and end up with the formulation
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f̂ = argmin
fj∈HK

⎡
⎣ 1

n

n∑
i=1

φ
{

fyi(xi}
)+ λ

k∑
j=1

||fj||2HK

⎤
⎦ ,

subject to
k∑

j=1
fj = 0, (3.4)

where φ is the DWD loss (3.1) and HK is an RKHS generated
by a positive definite kernel K. The multicategory DWD clas-
sifier is ŷ = argmaxj∈{1,2,...,k} f̂j(x). For the actual multiclass
classification problem with k ≥ 3, the formulation (3.4) is
fundamentally different from the binary case in problem (3.2)
in terms of computational and theoretical treatments. Thus,
the multicategory kernel DWD is not a trivial extension of
the binary kernel DWD. The computation of f̂ is discussed in
Section 4, and its competitive performance is demonstrated in
Section 5.

To appreciate the formulation (3.4), let us consider the
ideal case when n is infinity and λ = 0. Define pj(x) =
P(y = j|x), j ∈ {1, . . . , k}. Note that

∑n
i=1 φ{fyi(xi}/n becomes∑k

j=1 φ{fj(x)}p(y = j|x). Thus, the problem (3.4) becomes

f �(x) = argmin
f

⎡
⎣ k∑

j=1
φ{fj(x)}pj(x)

⎤
⎦ , subject to

k∑
j=1

fj(x) = 0.

(3.5)
The population multicategory DWD classifier is ŷ =
argmaxj∈{1,2,...,k} f �

j (x).
Conceptually speaking, the population multicategory DWD

classifier is the target of the proposed multicategory DWD
classifier f̂ . In the next theorem, we show that the population
multicategory DWD classifier is actually the Bayes rule, which
indicates that the proposed multicategory DWD classifier esti-
mates the right target for the multiclass classification problem.
Such a property is called Fisher consistency (Lin 2004).

Theorem 1. (Multicategory fisher consistency). Assume that for
each x (or with measure one) there is a most likely label j� such
that pj� (x) > pj(x) ∀j �= j�, and there is the least possible label
j∗ such that pj(x) > pj∗(x) ∀j �= j∗. Then the solution of the
problem (3.5) is given by

f �
j (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

√
pj(x)

pj� (x)
, j �= j∗,

−1
2
∑
l �=j∗

√
pl(x)

pj� (x)
, j = j∗.

(3.6)

Consequently, Theorem 1 indicates that argmaxj∈{1,2,...,k}
f �
j (x) = argmaxj∈{1,2,...,k} pj(x), that is, the population multi-

category DWD is identical to the Bayes rule.

Huang et al. (2013) also proved the Fisher consistency of their
multicategory DWD, that is, based on pairwise differences in
discriminant functions. However, their method only considered
the linear DWD but not the more flexible kernel DWD. Based
on its meaning, Fisher consistency is much more relevant when
the classifier can be flexible and nonlinear. In Section 5 the
multicategory linear DWD is shown to be inconsistent in some
simulation examples.

Although (3.4) is defined as a functional optimization prob-
lem in a possibly infinite dimensional functional space, the nice
reproducing property of RKHS makes the computation of f̂ in
problem (3.4) to be carried out in a finite-dimensional vector
space.

Theorem 2. (Multicategory representer theorem). If HK is gen-
erated by a positive definite kernel function K, then the solution
of (3.4), f̂ = (f̂1, . . . , f̂k), has a finite form,

f̂j(x) =
n∑

i=1
α̂ijK(x, xi), j = 1, . . . , k, (3.7)

and
k∑

j=1
α̂ij = 0, ∀i = 1, . . . , n.

Define K to be the kernel matrix whose (i, i′)th element is
K(xi, xi′) and let K i be the ith column vector. For each class j,
Theorem 2 implies that there exists α̂j such that f̂j(xi) = K�

i αj,
where α̂j = (α̂1j, . . . , α̂nj)�. Now we only need to compute α̂j
for j = 1, . . . , k.

By the reproducing property, it can be further obtained that

‖f̂j‖2
HK =

n∑
i=1

n∑
i′=1

α̂ijα̂i′jK(xi, xi′) = α̂
�
j Kα̂j. (3.8)

Note that fyi(xi) = K�
i αyi . Then, we can rephrase the optimiza-

tion problem (3.4) as follows

min
αj∈Rn

⎡
⎣ 1

n

n∑
i=1

φ
{

K�
i αyi

}
+ λ

k∑
j=1

α�
j Kαj

⎤
⎦ ,

subject to
k∑

j=1
αj = 0.

(3.9)

In Section 4, we shall derive an efficient algorithm to solve the
problem (3.9).

3.3. Related Methods

To connect our method with other simultaneous multiclass
large-margin classifiers in the literature, we formulate the loss
of our proposal (3.5) as

min
f

Exyφ{fy(x)}, subject to
k∑

j=1
fj(x) = 0.

Vapnik (1998), Bredensteiner and Bennett (1999), and Weston
and Watkins (1999) proposed multiclass SVMs, all of which, as
shown by Guermeur (2002), can be written equivalently as

min
f

Exy
∑
j �=y

[
1 − (fy(x) − fj(x))

]
+ , (3.10)

where [w] = max(w, 0). Crammer and Singer (2001) presented
another multiclass SVM as

min
f

Exy

[
1 − min

j �=y
(fy(x) − fj(x))

]
+

. (3.11)
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Lee et al. (2004) developed multiclass SVM as

min
f

Exy
∑
j �=y

[
1 + fj(x)

]
+ , subject to

k∑
j=1

fj(x) = 0, (3.12)

and they showed that their proposal is Fisher consistent but
the methods (3.10) and (3.11) are not. Liu and Shen (2006)
introduced multicategory ψ-learning

min
f

Exy

[
1 −

(
min
j �=y

(fy(x) − fj(x))

)
+

]
+

(3.13)

by replacing the convex SVM hinge loss with a nonconvex ψ-
loss. Liu and Yuan (2011) proposed reinforced multiclass SVM,
on the basis of the linear combination of the SVM hinge loss and
the loss function in Lee et al. (2004):

min
f

Exy
∑
j �=y

[
(1 − γ )(1 − fy(x))+ + γ (1 + fj(x))+

]
,

subject to
k∑

j=1
fj(x) = 0, (3.14)

which is shown to enjoy the Fisher consistency when γ ∈
[1/2, 1].

Among the aforementioned approaches, the sum-to-zero
constraint

∑k
j=1 fj(x) = 0 is enforced in the methods (3.12)

and (3.14) and can be also imposed in others to ensure the
uniqueness of the optimal solution. To avoid the explicit sum-
to-zero constraint of those methods, Zhang and Liu (2014)
proposed a novel angle-based approach, fitting a model based on
the angles between data and each vertex vector of a k-simplex.
We take as an example the reinforced angle-based multiclass
SVM (RAMSVM, Zhang et al. 2016), which is developed by
applying the angle-based approach to the reinforced multiclass
SVM (3.14). Specifically, the angle-based approach first finds a
k-simplex that consists of k unit-norm vertices {W j}k

j=1 ∈ R
k−1

such that the angles between the pairs (W j, W j′) are the same.
The model is then fitted by replacing each functional margin
fj(x) in (3.14) by 〈f , W j〉:

min
f

Exy
∑
j �=y

[
1
2
(1 − 〈f (x), Wy〉)+ + 1

2
(1 + 〈f (x), W j〉)+

]
.

The prediction is made according to ŷ = argmaxj〈f (x), W j〉.
Since

∑k
j=1〈f (x), W j〉 = 0 always holds, the sum-to-zero

constraint is dismissed. Other applications of the angle-based
approaches are seen in Sun, Craig, and Zhang (2017), Zhang
et al. (2017), Fu, Zhang, and Liu (2018), and Liu, Liu, and Zhu
(2018). Compared with the angle-based method, our method
has the explicit sum-to-zero constraint. As will be shown in
Section 4, our algorithm handles such constraint quite naturally
and efficiently.

4. Computation Algorithm

The multicategory kernel DWD problem (3.9) is more sophis-
ticated than the binary kernel DWD problem (3.2) due to the
sum-to-zero constraint. In this section, we derive an accelerated
projected gradient descent (PGD) algorithm to solve problem
(3.9).

4.1. Projected Gradient Descent Algorithm

We first derive the projected gradient descent algorithm and
then derive its accelerated version.

Notation. A ⊗ B denotes the Kronecker product of an m × n
matrix A and a p × q matrix B is the mp × nq matrix

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

⎞
⎟⎟⎟⎠ .

The vectorization of a m×n matrix A converts the matrix into a
mn-column vector by stacking the first, second, ..., nth columns
a1, a2, . . . , an of A one under the other:

vec(A) = (a�
1 , a�

2 , . . . , a�
n )�.

Consider a constrained minimization problem over a convex
set A:

min F(α), subject to α ∈ A,

where F is a continuously differentiable and strongly convex
function. For t = 0, 1, 2, . . ., the PGD algorithm updates

α(t+1) = projA
(
α(t) − dt∇F(α(t))

)
≡ argmin

α∈A

∥∥∥α −
(
α(t) − dt∇F(α(t))

)∥∥∥2
, (4.1)

where dt is a step size that we shall determine. If the algorithm
converges to α� such that

α� = projA
(
α� − dt∇F(α�)

)
,

then one can observe that α� ∈ A and ∇F(α�) = 0 by
differentiating Equation (4.1) in terms of α. Hence, α� is a global
minimizer of F on the set A.

We next apply the PGD algorithm to solve the optimization
problem (3.9). Suppose A is an n × k matrix whose jth column
is αj, then Aej = αj, where ej a k-vector whose elements are 0
except that the jth element is 1. We observe that the constraint∑

αj = 0 in problem (3.9) amounts to A1k = 0, where 1k is the
k-vector of 1’s. Let α = vec(A), we have

Aej = vec(Aej) = (e�
j ⊗ In)α,

A1k = vec(A1k) = (1�
k ⊗ In)α.

Accordingly, the optimization problem (3.9) can be written as

min
α∈Rnk

F(α) = min
α∈Rnk

[
1
n

n∑
i=1

φ
{

K�
i (e�

yi ⊗ In)α
}

+λ

k∑
j=1

α�(ej ⊗ In)K(e�
j ⊗ In)α

⎤
⎦ ,

subject to (1�
k ⊗ In)α = 0.

(4.2)

Let B = 1�
k ⊗ In. By the PGD algorithm introduced in

Equation (4.1), problem (4.2) can be solved as

α(t+1) = argmin
{α:Bα=0}

‖α − α̃‖2

= α̃ − B�(BB�)−1Bα̃ = α̃ − ((1k1�
k ) ⊗ In)α̃,
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Algorithm 1 Projected Gradient Descent Algorithm for Multi-
category Kernel DWD (4.2)

1: Initialize α(0), step size d = 1, η = 0.5, B = 1�
k ⊗ In, and

t = 0
2: repeat
3: Compute ∇F(α(t)) as in (4.3)
4: repeat
5: Set d = dη

6: Compute α̃ = α(t) − d∇F(α(t)) and α+ = α̃ −
B�(BB�)−1Bα̃

7: until the condition (4.4) is satisfied
8: Set α(t+1) = α+
9: Set t = t + 1

10: until a convergence condition is met

where α̃ = α(t) − dt∇F(α(t)), and

∇F(α(t)) = 1
n

n∑
i=1

φ′ {K�
i (e�

yi ⊗ In)α
(t)
}

(eyi ⊗ In)K i

+ 2λ(Ik ⊗ K)α(t). (4.3)

We use a linear search method to determine the step size dt .
Specifically, at each iteration t, with a predefined constant η < 1,
we find the smallest nonnegative integer b such that dt = ηbdt−1
and

F(α+) ≤ F(α(t)) + ∇F(α(t))(α+ − α(t)) + 1
2dt

||α+ − α(t)||22,

(4.4)

where α̃ = α(t) − dt∇F(α(t)) and α+ = α̃ − B�(BB�)−1Bα̃.
Then, we set F(α(t+1)) = F(α+).

Algorithm 1 summarizes the details of the PGD algorithm.
The rate of convergence is given in Proposition 1.

Proposition 1. Let α(t) be the sequence generated by Algorithm 1
and α� is the global minimizer of problem (4.2). Then for any
t ≥ 1,

F(α(t)) − F(α�) ≤ c1
t

‖α(0) − α�‖2,

in which c1 = 2ησ̃ /n + ηλσ , σ̃ = maxj σ̃j where each σ̃j
is the largest eigenvalue of

∑
{i:yi=j} K iK�

i , and σ is the largest
eigenvalue of K .

Proposition 1 implies that O(1/ε) iterations are needed to
reach F(α(t)) − F(α�) < ε.

4.2. PGD Algorithm With the Nesterov’s Acceleration

In this section, we further develop an accelerated PGD
algorithm by employing the Nesterov’s acceleration (Beck and
Teboulle 2009; Nesterov 2013). The improved algorithm has a
much faster rate of converge.

The accelerated PGD algorithm generates a number seq-
uence δt such that

δt+1 = 1 +√1 + 4δ2
t

2
,

Algorithm 2 Accelerated Projected Gradient Descent for Mul-
ticategory Kernel DWD (4.2)

1: Initialize α(0) = β(1), step size d = 1, η = 0.5, B = 1�
k ⊗In,

δ1 = 1, and t = 1
2: repeat
3: Compute ∇F(β(t)) as in (4.3)
4: repeat
5: Set d = dη

6: Compute α̃ = β(t) − d∇F(β(t)) and α+ = β̃ −
B�(BB�)−1Bβ̃

7: until the condition (4.4) is satisfied
8: Set α(t) = α+

9: Compute δt+1 = 1+
√

1+4δ2
t

2 .
10: Set β(t+1) = α(t) + δt−1

δt+1
(α(t) − α(t−1))

11: Set t = t + 1
12: until a convergence condition is met

and a sequence of β(t) along with α(t). With β(0) = α(0)

initialized and δ1 = 1, the algorithm updates

α(t+1) = argmin
{α:Bα=0}

∥∥∥α −
(
β(t) − dt∇F(β(t))

)∥∥∥2
,

β(t+1) = α(t+1) + δt − 1
δt+1

(α(t) − α(t−1)).

The accelerated PGD algorithm is summarized in Algo-
rithm 2. The rate of convergence is O(1/t2), as presented in
Proposition 2.

Proposition 2. Let α(t) be the sequence generated by Algorithm 2
and α� is the global minimizer of problem (4.2). Then for any
t ≥ 1,

F(α(t)) − F(α�) ≤ c2
t2 ‖α(0) − α�‖2,

in which c2 = 8ησ̃ /n + 4ηλσ , σ̃ = maxj σ̃j, where each σ̃j
is the largest eigenvalue of

∑
{i:yi=j} K iK�

i , and σ is the largest
eigenvalue of K .

Proposition 2 implies that, by the Nesterov’s acceleration,
O(1/

√
ε) iterations are needed to reach F(α(t)) − F(α�) < ε.

4.3. Implementation

We have implemented the accelerated PGD algorithm for solv-
ing multicategory kernel DWD in an R packagemdwd. Users can
choose the kernel function and use cross-validation to select the
regularization parameter λ.

5. Numerical Studies

In this section, we use simulations and benchmark data appli-
cations to compare our multicategory kernel DWD with the
multicategory DWD proposed by Huang et al. (2013) and imple-
mented in the R package DWD (Huang et al. 2012). We also
compare our method with off-the-shelf multicategory classifiers
in R: multiclass kernel SVM in the R package SMSVM (Lee et al.
2004), reinforced angle-based multiclass SVM in the R package
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RAMSVM (Zhang et al. 2016), random forest in the R package
randomForest (Liaw and Wiener 2002), gradient boosting
machines in the R package gbm (Ridgeway 2017), and k-nearest
neighbors in the R package class (Venables and Ripley 2002).
The Gaussian kernels are employed for mdwd, SMSVM, and
RAMSVM, and the tuning parameters are estimated by 5-fold
cross-validations. For the k-nearest neighbors, k is chosen from
{3, 4, . . . , 9}.

5.1. Simulations

We followed the simulation setting that was used in Section 1.
Example 1 is a three-category classification, that is, k = 3,
and the dimension p = 5. For each class j = 1, 2, 3, we
independently generated three centers μj,1, μj,2, and μj,3 fol-
lowing N(0, I3×3). We generated each data point (xi, yi) by
first assigning a class label to yi with equal conditional class
probabilities and then randomly having a center μyi,l, where
l = 1, 2, 3 to draw xi from N(μyi,l, τ

2Ip×p). In Example 1, we
set τ = 0.5 and the corresponding Bayes error rate is 6.39%.
We assembled the training data with the sample size varying
over 100, 200, 400, 600, and 800. We trained and tuned each
method on the training data, and we investigated the prediction
error on a test set consisting of 10,000 independently generated
observations.

Table 1 exhibits the mean misclassification rates and the
standard errors, averaged by 100 replicates. For Example 1,

we observe that multicategory kernel DWD delivers the least
prediction error among the seven multicategory classifiers. The
SVM and k-nearest neighbors have slightly worse performance
than our proposal. We discover that the prediction error of
our method decreases and also approaches the Bayes error as
the sample size increases, which indicates that multicategory
kernel DWD loss has a right target function and is thus, Fisher
consistent. Multicategory linear DWD does not work well and
is far from the Bayes rate.

Examples 2–4 adopt the same simulation settings as Example
1, except that Example 2 sets k = 3, p = 20, and τ = 1.5
yielding the Bayes error of 9.39%, Example 3 has k = 3, p = 2,
τ = 0.4, and the Bayes error of 25.27%, and Example 4 contains
four categories in the response, k = 4, and it has the Bayes
error of 8.78%. As seen in Table 1, multicategory kernel DWD
has the best prediction accuracy in all those three examples,
two variants of SVM have slightly worse but very competitive
behaviors, whereas multicategory linear DWD has the worst
accuracy in general.

In Example 5, we generated each class center μy from the
standard normal distribution, and we then drew each data
point from N(μyi , 22I20×20). The Bayes error is 11.45%, and
the true decision boundaries between the classes are actually
linear. From Table 1, we see that the classification error of
multicategory linear DWD is the lowest and approaches the
Bayes error. The performance of our proposal and the angle-
based method follows intimately as well.

Table 1. Prediction error (%) on mixture Gaussian simulation examples.

Prediction error (%) for the following methods:

DWD DWD Multiclass Angle-based Random Gradient k-nearest
n WZ HLD SVM MSVM forest boosting neighbors

Example 1: k = 3, p = 5, Bayes error: 6.39
100 10.06 (0.48) 25.60 (0.94) 11.68 (0.52) 12.00 (0.52) 14.08 (0.51) 18.86 (0.58) 11.34 (0.54)
200 8.92 (0.44) 24.79 (0.95) 9.62 (0.45) 9.93 (0.48) 11.35 (0.45) 16.58 (0.56) 9.38 (0.48)
400 7.88 (0.41) 24.32 (0.92) 8.46 (0.41) 8.99 (0.44) 9.75 (0.41) 15.37 (0.54) 8.51 (0.45)
600 7.59 (0.39) 24.27 (0.92) 8.05 (0.39) 8.87 (0.43) 9.08 (0.40) 15.01 (0.53) 8.24 (0.43)
800 7.38 (0.38) 24.21 (0.93) 7.78 (0.39) 8.76 (0.43) 8.69 (0.40) 14.80 (0.53) 7.94 (0.41)
Example 2: k = 3, p = 20, Bayes error: 9.39
100 22.40 (0.40) 27.30 (0.44) 23.07 (0.38) 24.51 (0.42) 27.58 (0.40) 30.31 (0.41) 26.26 (0.43)
200 18.08 (0.32) 24.78 (0.40) 18.48 (0.29) 20.41 (0.37) 23.18 (0.31) 27.03 (0.36) 21.44 (0.38)
400 14.91 (0.28) 23.33 (0.40) 15.42 (0.26) 17.61 (0.33) 19.95 (0.30) 24.95 (0.33) 18.16 (0.34)
600 13.82 (0.27) 22.77 (0.38) 14.30 (0.26) 16.41 (0.30) 18.61 (0.28) 24.30 (0.33) 16.92 (0.32)
800 13.09 (0.25) 22.50 (0.38) 13.66 (0.24) 16.04 (0.32) 17.84 (0.27) 23.97 (0.32) 16.01 (0.30)
Example 3: k = 3, p = 2, Bayes error: 25.27
100 29.82 (0.80) 42.24 (0.96) 30.18 (0.77) 30.93 (0.78) 31.96 (0.79) 33.80 (0.76) 30.87 (0.83)
200 27.97 (0.78) 41.75 (0.98) 28.32 (0.76) 29.23 (0.78) 30.52 (0.81) 31.53 (0.77) 29.29 (0.81)
400 26.97 (0.74) 41.46 (0.97) 27.12 (0.74) 27.90 (0.75) 29.58 (0.78) 30.63 (0.75) 28.36 (0.78)
600 26.76 (0.74) 41.49 (0.96) 26.81 (0.74) 27.80 (0.73) 29.45 (0.80) 30.29 (0.75) 28.28 (0.80)
800 26.55 (0.73) 41.41 (0.94) 26.61 (0.72) 27.67 (0.73) 29.32 (0.79) 29.99 (0.72) 28.21 (0.78)
Example 4: k = 4, p = 5, Bayes error: 8.78
100 15.04 (0.52) 34.83 (0.91) 17.38 (0.55) 17.31 (0.52) 19.98 (0.52) 27.27 (0.61) 16.84 (0.54)
200 12.16 (0.44) 33.62 (0.89) 13.65 (0.49) 14.41 (0.50) 15.62 (0.46) 23.78 (0.56) 13.21 (0.48)
400 10.86 (0.39) 33.33 (0.92) 11.86 (0.43) 12.99 (0.46) 13.47 (0.40) 22.26 (0.54) 11.67 (0.42)
600 10.50 (0.39) 33.32 (0.91) 11.21 (0.40) 12.69 (0.43) 12.55 (0.39) 21.77 (0.52) 11.33 (0.42)
800 10.16 (0.38) 33.29 (0.91) 10.72 (0.38) 12.44 (0.44) 11.95 (0.39) 21.50 (0.54) 10.80 (0.40)
Example 5: k = 3, p = 20, Bayes error: 11.45 (linear decision boundary)
100 16.39 (0.38) 15.30 (0.36) 17.33 (0.36) 16.82 (0.40) 19.34 (0.38) 20.11 (0.36) 22.71 (0.47)
200 14.18 (0.36) 13.39 (0.32) 14.95 (0.33) 14.07 (0.35) 17.13 (0.36) 17.50 (0.34) 19.85 (0.45)
400 13.18 (0.32) 12.54 (0.30) 13.74 (0.31) 12.91 (0.31) 15.60 (0.32) 16.04 (0.31) 17.92 (0.41)
600 12.77 (0.32) 12.20 (0.30) 13.39 (0.31) 12.59 (0.31) 15.11 (0.32) 15.71 (0.31) 17.19 (0.40)
800 12.54 (0.31) 12.07 (0.29) 12.98 (0.30) 12.34 (0.30) 14.90 (0.31) 15.60 (0.30) 16.81 (0.39)

NOTES: Our multicategory kernel DWD (denoted by WZ) are compared with DWD (denoted by HLD, Huang et al. 2013), multiclass kernel SVM (R package SMSVM),
reinforcement angle-based multiclass SVM (R package ramsvm), random forest (R package randomForest), gradient boosting machines (R package gbm), and
k-nearest neighbors (R packageclass). The results are averaged by 100 independent runs, and the standard error of the mean prediction error is given in parentheses.
For each case, the method incurring the lowest error is marked by italics.
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Table 2. Prediction error (%) on benchmark data applications.

Prediction error (%) for the following methods:

DWD DWD Multiclass Angle-based Random Gradient k-nearest
ntrain WZ HLD SVM MSVM forest boosting neighbors

abalone: k = 3, p = 9, N = 4177, ntest = 3377
100 40.05 (0.36) 39.55 (0.21) 39.69 (0.35) 40.20 (0.37) 40.78 (0.29) 39.74 (0.26) 42.84 (0.26)
200 37.88 (0.18) 38.20 (0.17) 37.80 (0.21) 38.15 (0.30) 39.00 (0.19) 38.34 (0.20) 41.93 (0.28)
300 37.02 (0.21) 37.65 (0.16) 37.20 (0.20) 37.52 (0.32) 38.16 (0.15) 37.84 (0.18) 40.93 (0.19)
400 36.35 (0.18) 37.35 (0.14) 36.63 (0.21) 36.61 (0.25) 37.52 (0.15) 37.53 (0.19) 40.14 (0.21)
600 35.96 (0.11) 37.38 (0.12) 35.64 (0.13) 36.09 (0.19) 36.98 (0.12) 37.24 (0.15) 40.00 (0.15)
800 35.33 (0.11) 36.91 (0.10) 35.21 (0.09) 35.73 (0.12) 36.58 (0.09) 36.76 (0.10) 39.21 (0.16)
covtype: k = 3, p = 10, N = 73, 631, ntest = 72, 831
100 25.25 (0.26) 28.09 (0.33) 23.21 (0.19) 23.69 (0.26) 21.91 (0.21) 22.83 (0.27) 27.90 (0.23)
200 22.87 (0.21) 27.09 (0.28) 22.62 (0.21) 22.00 (0.23) 20.41 (0.19) 21.62 (0.16) 25.23 (0.16)
300 21.33 (0.15) 27.00 (0.24) 21.44 (0.22) 20.88 (0.20) 18.90 (0.12) 21.00 (0.15) 23.87 (0.19)
400 20.61 (0.10) 26.55 (0.19) 20.44 (0.19) 20.31 (0.16) 18.32 (0.10) 20.56 (0.12) 22.80 (0.12)
600 19.44 (0.11) 26.48 (0.15) 19.52 (0.20) 19.94 (0.13) 16.92 (0.08) 20.12 (0.12) 21.58 (0.13)
800 18.50 (0.10) 26.13 (0.15) 18.79 (0.14) 19.73 (0.12) 16.22 (0.09) 19.92 (0.08) 20.67 (0.09)
pendigits: k = 10, p = 16, N = 10990, ntest = 10190
100 10.03 (0.21) 21.02 (0.35) 11.41 (0.28) 9.69 (0.26) 13.53 (0.23) 25.18 (0.41) 13.91 (0.30)
200 6.48 (0.15) 19.47 (0.29) 7.45 (0.23) 5.80 (0.18) 8.59 (0.16) 18.66 (0.20) 9.08 (0.16)
300 4.84 (0.11) * (*) 5.14 (0.15) 4.41 (0.11) 6.49 (0.12) 16.52 (0.21) 6.69 (0.13)
400 3.91 (0.07) * (*) 4.00 (0.15) 4.00 (0.09) 5.29 (0.10) 14.92 (0.16) 5.47 (0.09)
600 3.05 (0.07) * (*) * (*) 3.19 (0.08) 4.17 (0.08) 13.86 (0.13) 3.97 (0.06)
800 2.44 (0.05) * (*) * (*) 2.91 (0.07) 3.45 (0.07) 13.20 (0.12) 3.21 (0.06)
satimage: k = 6, p = 36, N = 6435, ntest = 5835
100 17.12 (0.17) 20.44 (0.24) 18.48 (0.10) 18.34 (0.23) 17.29 (0.11) 19.87 (0.21) 19.05 (0.24)
200 14.88 (0.12) 20.22 (0.17) 17.21 (0.11) 16.54 (0.18) 15.11 (0.15) 17.57 (0.18) 16.67 (0.11)
300 13.93 (0.10) 20.14 (0.14) 16.67 (0.11) 16.17 (0.17) 14.05 (0.11) 16.91 (0.12) 15.60 (0.12)
400 13.27 (0.09) 20.27 (0.13) 16.15 (0.08) 15.69 (0.15) 12.97 (0.10) 16.09 (0.10) 14.76 (0.11)
600 12.27 (0.10) * (*) 15.22 (0.11) 14.97 (0.11) 12.13 (0.08) 15.57 (0.10) 13.97 (0.11)
800 11.91 (0.08) * (*) 14.47 (0.12) 14.61 (0.11) 11.69 (0.07) 15.47 (0.08) 13.13 (0.09)

NOTES: Our multicategory kernel DWD (denoted by WZ) are compared with DWD (denoted by HLD, Huang et al. 2013), multiclass kernel SVM (R package SMSVM),
reinforcement angle-based multiclass SVM (R package ramsvm), random forest (R package randomForest), gradient boosting machines (R package gbm), and
k-nearest neighbors (R package class). The results are averaged by 40 independent runs, and the standard error of the mean prediction error is given in parentheses.
For each dataset, k and p are the number of classes and dimensions, and the total sample size is N. For each case, the method incurring the lowest error is marked by
italics. Cases are marked as “*" when the algorithm did not converge within 10 hours.

To sum up, the simulation examples have clearly conveyed
the following messages:

• the proposed multicategory kernel DWD works much better
than the multicategory linear DWD when the underlying
Bayes rule is nonlinear;

• the proposed multicategory kernel DWD delivers lower clas-
sification error that approaches the Bayes error when the
training size increases;

• the proposed multicategory kernel DWD has very compet-
itive performance against other popular off-the-shelf multi-
class classifiers, although none dominates the rest.

5.2. Benchmark Data Applications

We examined the performance of multicategory kernel DWD on
eight benchmark datasets that were downloaded at University
of California at Irvine Machine Learning Repository (Dua and
Karra Taniskidou 2017). We compared our method with the
same methods that were used in Section 5.1. In the tables of
this section, the total sample size of each dataset, the number of
categories in the response, and the dimension are denoted by N,
k, and p, respectively. For each dataset, we held out ntest = N −
800 observations as test data, and we randomly selected ntrain
observations as training data to train and tune each method,
where the sample size of the training data ntrain varied over
100, 200, 300, 400, 600, and 800. Averaged over 40 indepen-
dent random splits, the misclassification error and computation

time are summarized in Tables 2–4. The computation time in
Table 4 includes fitting the models and tuning the parameters.
We ranked the error and time of each method in Tables 5 and 6.

From the prediction error in Tables 2 and 3 and the ranks
in Table 5, we find that our proposal has the lowest prediction
error on two benchmark data, vowel and waveform, as
well as the second lowest error on three examples, abalone,
pendigits, and satimage. Multicategory linear DWD suf-
fers from the worst accuracy on five datasets so it appears
inadequate for these real applications. From Table 5, we see that
the overall performance of our proposal on these benchmark
data outperforms the SVM and the angle-based approach but
it is worse than random forest. In terms of computation time,
Tables 4 and 6 show that our implementation mdwd is the
fastest among the four large-margin classifiers. The algorithms
implemented in the packages SMSVM and DWD did not even
converge within ten hours in several cases. We discover that
random forest and gradient boosting are faster than these large-
margin classifiers. We further notice the computation time of
our proposal is relatively unaffected when there are many cat-
egories in the response, for example, the pendigits and vowel
data; nonetheless, the computing speed of other large-margin
classifiers is dramatically degraded as the number k increases.
Although the prediction accuracy of k-nearest neighbors is
among the worse, it runs the fastest in all examples.

According to the performance on the eight benchmark data,
it is clear that our multicategory kernel DWD is much better
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Table 3. Prediction error (%) on benchmark data applications.

Prediction error (%) for the following methods:

DWD DWD Multiclass Angle-based Random Gradient k-nearest
ntrain WZ HLD SVM MSVM forest boosting neighbors

segmentation: k = 7, p = 19, N = 2310, ntest = 1510
100 18.00 (0.30) 23.09 (0.31) 17.93 (0.31) 17.34 (0.38) 13.60 (0.32) 16.10 (0.41) 21.89 (0.34)
200 14.04 (0.26) 21.50 (0.25) 14.04 (0.21) 14.67 (0.28) 9.99 (0.23) 12.15 (0.21) 15.92 (0.25)
300 12.46 (0.26) 21.30 (0.25) 11.33 (0.28) 13.21 (0.22) 7.87 (0.16) 11.13 (0.18) 12.70 (0.28)
400 11.15 (0.18) 21.01 (0.22) 9.72 (0.19) 12.54 (0.17) 6.85 (0.16) 10.57 (0.16) 11.27 (0.17)
600 9.47 (0.14) * (*) 7.77 (0.16) 11.85 (0.16) 5.36 (0.11) 9.79 (0.12) 8.82 (0.12)
800 8.44 (0.11) * (*) * (*) 11.26 (0.16) 4.51 (0.09) 9.38 (0.11) 7.64 (0.12)
sensorless: k = 3, p = 48, N = 15957, ntest = 15157
100 0.99 (0.13) 0.16 (0.01) 0.51 (0.04) 0.60 (0.06) 0.03 (0.00) 0.21 (0.05) 12.73 (0.49)
200 0.31 (0.05) 0.08 (0.00) 0.31 (0.02) 0.33 (0.02) 0.02 (0.00) 0.09 (0.01) 6.26 (0.21)
300 0.17 (0.01) 0.06 (0.00) 0.27 (0.02) 0.33 (0.03) 0.02 (0.00) 0.08 (0.01) 3.88 (0.18)
400 0.14 (0.01) 0.06 (0.00) 0.25 (0.02) 0.28 (0.02) 0.01 (0.00) 0.08 (0.01) 2.87 (0.15)
600 0.12 (0.01) 0.06 (0.00) 0.22 (0.02) 0.20 (0.01) 0.01 (0.00) 0.08 (0.01) 1.84 (0.08)
800 0.10 (0.01) 0.05 (0.00) 0.19 (0.01) 0.19 (0.02) 0.01 (0.00) 0.07 (0.01) 1.29 (0.06)
vowel: k = 11, p = 11, N = 990, ntest = 190
100 40.83 (0.69) 60.34 (0.63) 49.72 (0.68) 45.82 (0.89) 36.46 (0.75) 48.63 (0.72) 57.70 (0.73)
200 23.63 (0.53) 55.57 (0.61) 40.86 (0.73) 33.54 (0.64) 21.82 (0.61) 40.28 (0.58) 41.89 (0.61)
300 14.93 (0.54) 57.89 (0.12) 29.87 (0.74) 30.45 (0.63) 15.71 (0.51) 37.11 (0.60) 30.43 (0.52)
400 9.05 (0.38) * (*) 21.70 (0.68) 26.84 (0.62) 11.29 (0.48) 36.43 (0.56) 20.80 (0.51)
600 4.03 (0.28) * (*) * (*) 23.51 (0.44) 5.75 (0.31) 34.80 (0.50) 9.79 (0.45)
800 2.03 (0.17) * (*) * (*) 22.32 (0.50) 3.96 (0.27) 34.33 (0.46) 5.28 (0.25)
waveform: k = 3, p = 40, N = 4999, ntest = 4199
100 16.86 (0.15) 18.74 (0.20) 22.55 (0.28) 22.44 (0.40) 18.74 (0.25) 18.83 (0.24) 28.37 (0.40)
200 15.40 (0.10) 16.46 (0.11) 19.33 (0.17) 18.75 (0.23) 16.91 (0.11) 17.06 (0.12) 25.39 (0.26)
300 14.95 (0.08) 15.66 (0.09) 17.60 (0.13) 17.91 (0.17) 16.29 (0.09) 16.26 (0.08) 24.28 (0.22)
400 14.54 (0.07) 15.12 (0.11) 16.60 (0.11) 17.35 (0.16) 15.84 (0.09) 15.97 (0.08) 23.82 (0.21)
600 14.21 (0.06) 14.77 (0.09) 15.62 (0.08) 16.54 (0.12) 15.42 (0.09) 15.54 (0.09) 22.69 (0.15)
800 14.23 (0.07) 14.72 (0.07) 15.21 (0.08) 16.24 (0.13) 15.26 (0.07) 15.56 (0.06) 22.35 (0.10)

NOTE: Our multicategory kernel DWD (denoted by WZ) are compared with DWD (denoted by HLD, Huang et al. 2013), multiclass kernel SVM (R package SMSVM),
reinforcement angle-based multiclass SVM (R package ramsvm), random forest (R package randomForest), gradient boosting machines (R package gbm), and
k-nearest neighbors (R package class). The results are averaged by 40 independent runs, and the standard error of the mean prediction error is given in parentheses.
For each dataset, k and p are the number of classes and dimensions, and the total sample size is N. For each case, the method incurring the lowest error is marked by
italics. Cases are marked as “*" when the algorithm did not converge within 10 hours.

Table 4. Mean computation time on benchmark data applications.

ntrain 100 200 300 400 600 800 100 200 300 400 600 800

abalone: k = 3, p = 9, N = 4177, ntest = 3377 covtype: k = 3, p = 10, N = 73, 631, ntest = 72, 831
DWD (WZ) 3.9 15.2 42.9 100.3 462.1 967.3 0.8 3.5 7.7 13.9 63.9 154.6
DWD (HLD) 6.6 12.4 315.5 719.9 2603.9 6226.6 7.7 21.1 529.5 1111.1 3613.4 8670.1
Multiclass SVM 3.2 26.2 99.1 256.8 946.0 2342.2 5.3 23.1 79.1 204.2 771.5 1966.8
Angle-based SVM 4.3 10.2 19.8 37.9 80.2 175.6 43.1 50.6 62.8 83.4 135.2 245.8
Random forest 0.2 0.4 0.5 0.7 1.0 1.2 4.4 4.5 4.7 4.7 4.7 5.0
Gradient boosting 0.2 0.3 0.4 0.4 0.6 0.7 3.4 3.4 3.4 3.5 3.6 3.8
k-nearest neighbors 0.1 0.1 0.1 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.4 1.7

pendigits: k = 10, p = 16, N = 10990, ntest = 10190 satimage: k = 6, p = 36, N = 6435, ntest = 5835
DWD (WZ) 0.9 2.6 5.6 10.2 58.1 221.5 2.5 5.2 11.9 23.4 99.5 271.3
DWD (HLD) 1080.9 11,139.8 * * * * 311.1 2512.5 8194.5 27,861.0 * *
Multiclass SVM 98.8 1083.9 4482.8 12268.9 * * 25.2 213.6 784.6 2009.3 7563.4 20,737.1
Angle-based SVM 75.9 270.4 595.7 1054.8 2358.3 4269.0 21.3 70.1 163.5 294.6 659.6 1236.0
Random forest 0.6 0.9 1.0 1.2 1.5 1.8 0.3 0.5 0.8 1.1 1.7 2.4
Gradient boosting 1.6 2.0 2.3 2.6 3.3 3.9 0.8 1.1 1.4 1.7 2.2 2.9
k-nearest neighbors 0.1 0.1 0.2 0.2 0.3 0.5 0.1 0.1 0.2 0.3 0.4 0.7

segmentation: k = 7, p = 19, N = 2310, ntest = 1510 sensorless: k = 3, p = 48, N = 15957, ntest = 15, 157
DWD (WZ) 1.1 2.9 6.4 11.4 76.0 288.5 2.5 10.5 26.6 50.3 299.0 1085.7
DWD (HLD) 285.4 3734.8 12,850.7 26,370.3 * * 6.9 17.6 632.7 1377.4 6591.7 14,212.0
Multiclass SVM 43.3 401.1 1606.8 4299.3 21,251.3 * 2.2 14.8 53.0 135.5 579.7 1489.1
Angle-based SVM 24.6 100.0 224.6 398.6 898.7 1672.2 9.7 15.6 24.4 38.7 79.5 164.3
Random forest 0.2 0.4 0.6 0.7 1.1 1.3 1.6 1.7 1.8 1.8 2.4 2.2
Gradient boosting 0.4 0.6 0.9 1.2 1.7 2.2 0.9 1.1 1.3 1.5 1.9 2.4
k-nearest neighbors 0.1 0.1 0.1 0.1 0.2 0.3 0.2 0.4 0.6 0.8 1.3 1.9

(continued)
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Table 4. (Continued)

ntrain 100 200 300 400 600 800 100 200 300 400 600 800

vowel: k = 11, p = 11, N = 990, ntest = 190 waveform: k = 3, p = 40, N = 4999, ntest = 4199
DWD (WZ) 1.6 4.9 10.7 19.0 61.9 143.0 2.7 12.3 32.0 60.6 335.3 959.1
DWD (HLD) 1458.4 13,342.3 26,280.3 * * * 7.8 19.3 626.7 1301.8 4039.3 9705.7
Multiclass SVM 102.7 1272.7 5416.9 17,436.9 * * 1.8 10.9 39.5 93.8 338.4 848.9
Angle-based SVM 81.6 322.1 717.6 1279.4 2879.1 5214.6 4.6 10.6 20.0 37.2 78.6 170.1
Random forest 0.2 0.4 0.5 0.7 1.0 1.4 0.3 0.6 0.9 1.2 2.1 3.0
Gradient boosting 0.4 0.6 1.0 1.3 1.9 2.5 0.4 0.6 0.7 0.9 1.3 1.7
k-nearest neighbors 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.4 0.7

NOTES: We compare our multicategory kernel DWD (denoted by WZ) with DWD (denoted by HLD (Huang et al. 2013)), multiclass kernel SVM (R package SMSVM),
reinforcement angle-based multiclass SVM (R package ramsvm), random forest (R package randomForest), gradient boosting machines (R package gbm), and
k-nearest neighbors (R package class). The results are averaged by 40 independent runs. The computation time of each method includes the parameter tunes.
Computations were conducted on a single-processor Intel(R) Xeon(R) central processor unit E5-2660 at 2.60 GHz. Cases when the algorithm did not converge within
10 hours are marked as “*."

Table 5. Rank of the prediction accuracy of each method on benchmark data applications.

DWD DWD Multiclass Angle-based Random Gradient k-nearest
k p WZ HLD SVM MSVM forest boosting neighbors

abalone 3 9 2 4 1 3 6 5 7
covtype 3 10 5 7 2 4 1 3 6
pendigits 10 16 2 7 3 1 4 6 5
satimage 6 36 2 7 5 4 1 6 3
segmentation 7 19 4 7 3 6 1 2 5
sensorless 3 48 5 2 4 6 1 3 7
vowel 11 11 1 7 5 4 2 6 3
waveform 3 40 1 2 5 6 3 4 7
overall 2 6 3 4 1 5 6

NOTES: For each dataset, the rank is given based on the average prediction accuracy of different methods on different training sizes: 100, 200, 300, 400, 600, 800. For each
dataset, k and p are the number of classes and dimensions. For each method, the ranks of the prediction accuracy on different datasets are averaged to yield the overall
rank.

Table 6. Rank of the computation time of each method on benchmark data applications.

DWD DWD Multiclass Angle-based Random Gradient k-nearest
k p WZ HLD SVM MSVM forest boosting neighbors

abalone 3 9 5 7 6 4 3 2 1
covtype 3 10 4 7 6 5 3 2 1
pendigits 10 16 4 6 7 5 2 3 1
satimage 6 36 4 7 6 5 2 3 1
segmentation 7 19 4 7 6 5 2 3 1
sensorless 3 48 5 7 6 4 3 2 1
vowel 11 11 4 7 6 5 2 3 1
waveform 3 40 6 7 5 4 3 2 1
overall 4 7 6 5 2 2 1

NOTES: For each dataset, the rank is given based on the average prediction accuracy of different methods on different training sizes: 100, 200, 300, 400, 600, 800. For each
dataset, k and p are the number of classes and dimensions. For each method, the ranks of the computation time on different datasets are averaged to yield the overall
rank.

than multicategory linear DWD by the DWD package and also
highly competitive with other popular classifiers. The random
forest has the overall best performance. We also implemented
the polynomial kernel and found its performance is worse than
that by the Gaussian kernel in these examples. For sake of space
we do not include the result of DWD with polynomial kernel
here.

6. Discussion

In this article, we have proposed a new multicategory kernel
DWD for multiclass classification. Our method is able to capture
potential highly nonlinear structure of the Bayes rule and hence,
is more desirable than the restrictive multicategory linear DWD.
We have derived an efficient accelerated PGD algorithm for fit-
ting the multicategory kernel DWD. Extensive simulations and

benchmark data examples have shown that the multicategory
kernel DWD is a worthy competitor against the popular off-the-
shelf multiclass classifiers, including the SVM, random forest,
gradient boosting, and k-nearest neighbors. Therefore, we view
the multicategory kernel DWD as a valuable addition to the
classification toolbox for real applications.

The classification problem in this article has equal weights
on different classes. In many applications, we may face the non-
standard classification problems such as imbalanced class size
or unequal cost. Nonstandard SVM and DWD have previously
studied in Lee et al. (2004) and Qiao et al. (2010). In the future
research, it will be interesting to generalize the proposal in this
paper to the nonstandard case.

We have implemented our method in an R package mdwd.
The URL link of the R package is
http://users.stat.umn.edu/˜zouxx019/ftpdir/code/mdwd/.
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Appendix A. Appendix

A.1. Proof of Theorem 1

For simplicity we write pj = pj(x). Using the Lagrangian multiplier method,
we define

L(f ) = p1φ(f1) + · · · + pkφ(fk) + μ(f1 + · · · + fk).

Then for each j = 1, . . . , k,

∂L(f )/∂fj = φ′(fj)pj + μ = 0,

where φ′(fj) = −1 if fj ≤ 1/2 or φ′(fj) = −1/(4f 2
j ) if fj > 1/2. We notice

that −1 ≤ φ′ < 0.
Without loss of generality, assume p1 > p2 ≥ p3 ≥ · · · ≥ pk−1 > pk.

We observe that μ ≤ pj, ∀j. If assume that μ < pk < pj, then for any
1 ≤ j ≤ k, φ′(fj) = −1/(4f 2

j ), which gives that

fj = 1
2

√
pj

μ
> 0, (A.1)

contradicting the fact that
∑k

j=1 fj = 0, so μ = pk and μ < pj for any
j < k. Hence, by considering the constraint

∑k
j=1 fj = 0 and using the

same argument as obtaining the solution (A.1), we have that

f �
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√ pj

pk
, j < k,

− 1
2

k−1∑
j=1

√
pj

pk
, j = k.

(A.2)

A.2. Proof of Theorem 2

Consider any feasible solution f . For each j = 1, . . . , k, we write

fj(x) =
n∑

i=1
αijK(xi, x) + ρj(x),

where ρj is orthogonal to the span of {K(xi, x)}. By the sum-to-zero con-
straint, we have

k∑
j=1

[ n∑
i=1

αijK(xi, x) + ρj(x)

]
= 0,

or equivalently⎡
⎣ n∑

i=1

⎛
⎝ k∑

j=1
αij

⎞
⎠K(xi, x)

⎤
⎦+

⎡
⎣ k∑

j=1
ρj(x)

⎤
⎦ = 0.

Since
∑k

j=1 ρj(x) is orthogonal to the span of {K(xi, x)} and K is a positive
definite kernel, the above identity holds if and only if

k∑
j=1

αij = 0

and
k∑

j=1
ρj(x) = 0.

Define gj(x) = ∑n
i=1 αijK(xi, x). So we can write fj = gj + ρj and∑k

j=1 gj(x) = 0, which means (g1, . . . , gk) is another feasible solution.
By the orthogonality of ρj and gj, we have ‖fj‖2

HK
= ‖gj‖2

HK
+

‖ρj‖2
HK

. On the other hand, we show gj(xi) = fj(xi) for all i. For
that, we use the reproducing property (Wahba 1990) and have ρj(xi) =
〈ρj(x), K(xi, x)〉HK = 0.

To sum up, for every feasible solution f , we can find a better (or at least
no worse) feasible solution g such that the two feasible solutions have the
same empirical loss value but the latter also has a smaller penalty term.
The two feasible solutions are identical if and only if ρj = 0 for all j. This
completes the proof.

A.3. Proof of Proposition 1

Let φ be the DWD loss (3.1). We observe that for any u1 �= u2,

|φ′(u1) − φ′(u2)| < 4|u1 − u2|.
Therefore, we see that

‖∇F(α) − ∇F(α′)‖

≤
∥∥∥∥∥ 1

n

n∑
i=1

(
φ′ {K�

i (e�
yi ⊗ In)α

}
− φ′ {K�

i (e�
yi ⊗ In)α′})

× (eyi ⊗ In)K i + 2λ(Ik ⊗ K)
(
α − α′)∥∥∥∥∥

≤
∥∥∥∥∥
(

4
n

n∑
i=1

(eyi ⊗ In)K iK�
i (e�

yi ⊗ In) + 2λ(Ik ⊗ K)

) (
α − α′)∥∥∥∥∥

≤L(F)
∥∥(α − α′)∥∥ ,

(A.3)

where L(F) is the largest eigenvalue of the matrix

T ≡ 4
n

n∑
i=1

(eyi ⊗ In)K iK�
i (e�

yi ⊗ In) + 2λ(Ik ⊗ K),

which is an nk×nk block diagonal matrix whose jth block is an n×n matrix

Tj = 4
n
∑

{i:yi=j}
K iK�

i + 2λK .

The largest eigenvalue of Tj is 4σ̃j/n+2λσ , then L(F), the largest eigenvalue
of T, is 4σ̃ /n + 2λσ . The proposition is then proved by applying Theo-
rem 3.1 of Beck and Teboulle (2009).

A.4. Proof of Proposition 2

The proposition follows inequality (A.3) and Theorem 4.4 of Beck and
Teboulle (2009).
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