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Summary. Distance-weighted discrimination (DWD) is a modern margin-based classifier with
an interesting geometric motivation. It was proposed as a competitor to the support vector ma-
chine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM,
mainly because of computational and theoretical reasons.We greatly advance the current DWD
methodology and its learning theory. We propose a novel thrifty algorithm for solving standard
DWD and generalized DWD, and our algorithm can be several hundred times faster than the
existing state of the art algorithm based on second-order cone programming. In addition, we
exploit the new algorithm to design an efficient scheme to tune generalized DWD. Furthermore,
we formulate a natural kernel DWD approach in a reproducing kernel Hilbert space and then
establish the Bayes risk consistency of the kernel DWD by using a universal kernel such as the
Gaussian kernel. This result solves an open theoretical problem in the DWD literature. A com-
parison study on 16 benchmark data sets shows that data-driven generalized DWD consistently
delivers higher classification accuracy with less computation time than the SVM.

Keywords: Bayes risk consistency; Classification; Distance-weighted discrimination; Kernel
learning; Majorization–minimization principle; Second-order cone programming

1. Introduction

Binary classification problems appear from diverse practical applications, such as financial fraud
detection, spam e-mail classification, medical diagnosis with genomics data and drug response
modelling, among many others. In these classification problems, the goal is to predict class labels
on the basis of a given set of variables. Suppose that we observe a training data set consisting of
n pairs, where {.xi, yi/}n

i=1, xi ∈Rp, and yi ∈{−1, 1}. A classifier fits a discriminant function f

and constructs a classification rule to classify data point xi to either class 1 or class −1 according
to the sign of f.xi/. The decision boundary is given by {x : f.x/=0}. Two canonical classifiers
are linear discriminant analysis and logistic regression. Modern classification algorithms can
produce flexible non-linear decision boundaries with high accuracy. The two most popular
approaches are ensemble learning and support vector machines (SVMs) or kernel machines.
Ensemble learning such as boosting (Freund and Schapire, 1997) and random forests (Breiman,
2001) combine many weak learners like decision trees into a powerful learner. The SVM (Vapnik,
1995, 1998) fits an optimal separating hyperplane in the extended kernel feature space which is
non-linear in the original covariate spaces. In a recent extensive numerical study by Fernández-
Delgado et al. (2014), the kernel SVM was shown to be one of the best among 179 commonly
used classifiers.

Marron et al. (2007) invented a new classification algorithm named distance-weighted dis-
crimination (DWD), which retains the elegant geometric interpretation of the SVM, resolves a
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‘data piling’ issue and reveals competitive performance. Since then much work has been devoted
to the development of DWD. Readers are referred to Marron (2015) for an up-to-date list of
work on DWD. However, DWD is still only known to a small group of researchers. We can
think of two reasons for that. First, DWD has algorithmic disadvantages compared with the
SVM. The current state of the art algorithm for DWD is based on second-order cone program-
ming (SOCP). As acknowledged in Marron et al. (2007), SOCP was then (and still is) much
less well known than quadratic programming. In addition, SOCP is generally more computa-
tionally demanding than quadratic programming. Second, the kernel extension of DWD and
the corresponding kernel learning theory are underdeveloped compared with the kernel SVM.
Although Marron et al. (2007) proposed a version of non-linear DWD by mimicking the kernel
trick that is used for deriving the kernel SVM, theoretical justification of such a kernel DWD
is still absent. In contrast, the kernel SVM as well as kernel logistic regression (Wahba et al.,
1994; Zhu and Hastie, 2005) have mature theoretical understandings built on the theory of
reproducing kernel Hilbert spaces (RKHSs) (Wahba, 1999; Hastie et al., 2009). How to estab-
lish the Bayes risk consistency of kernel DWD was proposed as a fundamental open problem
in the original DWD paper (Marron et al., 2007). A decade later, the problem still remains
open.

In this paper, we aim to resolve the aforementioned issues. We show that the kernel DWD
in an RKHS has the Bayes risk consistency property if a universal kernel is used. This result
solves the open problem in DWD literature. We also develop a novel fast algorithm to solve
the linear and kernel DWD by using the majorization–minimization (MM) principle. Our new
algorithm also easily handles generalized DWD. To summarize, our new algorithm has multiple
advantages over the SOCP algorithm: it is much faster to compute, easier to understand and
capable of solving generalized DWD and conducting efficient tuning. We have implemented
our algorithms in an R package kerndwd, which is publicly available on the Comprehen-
sive R Archive Network at http://cran.r-project.org/web/packages/kerndwd/
index.html.

The rest of the paper is organized as follows. To be self-contained, we first review the SVM
and DWD in Section 2. We then derive a novel algorithm for DWD and generalized DWD
in Section 3. We introduce kernel DWD in an RKHS and establish its Bayes risk consistency
in Section 4. Numeric examples are given in Section 5, and technical proofs are provided in
Appendix A.

2. Review of the support vector machine and distance-weighted discrimination

In this section we give a brief review of the SVM and DWD. Hastie et al. (2009) offered a
highly detailed discussion of the SVM and its kernel version. Marron (2015) provided a more
comprehensive review of the current DWD literature.

Both the SVM and DWD share a common geometric interpretation. Consider a case when
two classes are separable by a hyperplane {x : f.x/=ω0 + xTω= 0} where yi.ω0 + xT

i ω/ are all
non-negative. Without loss of generality, we assume that ω is a unit vector, i.e. ωTω= 1, and
we observe that each di ≡yi.ω0 +xT

i ω/ is equivalent to the Euclidean distance between the data
point xi and the hyperplane. The reason is that di = .xi − x0/Tω and ω0 + xT

0 ω = 0, where x0
is any data point on the hyperplane and ω is the unit normal vector. The SVM classifier is
defined as the optimal separating hyperplane that maximizes mini di, the smallest distance of
each data point to the separating hyperplane (Vapnik, 1995). In a more general case when the
two classes are not separable, non-negative slack variables ηi are introduced to ensure that all
yi.ω0 +xT

i ω/+ηi are non-negative. So, the SVM is defined as
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max
ω0,ω,di,ηi

min di, subject to di =yi.ω0 +xT
i ω/+ηi �0, ∀ i,

ηi �0, ∀ i,
n∑

i=1
ηi < constant, and ωTω=1: .2:1/

The data points that are closest to the hyperplane, i.e. di =min di, are dubbed the support vectors.
The SVM can be solved by rephrasing problem (2.1) as a quadratic programming problem. A
more general kernel SVM can be derived by applying the so-called kernel trick (Aizerman et al.,
1964) on the dual formulation of the linear SVM (Hastie et al., 2009).

Marron et al. (2007) proposed DWD that finds a separating hyperplane minimizing the total
inverse margins of all the data points:

min
ω0,ω,di,ηi

(
n∑

i=1

1
di

+ c
n∑

i=1
ηi

)
, subject to di =yi.ω0 +xT

i ω/+ηi �0, ηi �0, ∀ i, and ωTω=1:

.2:2/

The motivation of Marron et al. (2007) is to have a method that is directly formulated by an
SVM-like margin maximization picture and also exhausts all data points for classification. In
some sense, DWD is like a blend of the SVM and a more classical logistic regression.

Marron et al. (2007) solved DWD by reformulating problem (2.2) as an SOCP programme
(Alizadeh and Goldfarb, 2004; Boyd and Vandenberghe, 2004), which has a linear objective,
linear constraints and second-order cone constraints. Specifically, for each i, let ρi = .1=di +
di/=2, σi = .1=di −di/=2 and then ρi +σi =1=di, ρi −σi =di, and ρ2

i −σ2
i =1. Hence the original

optimization problem (2.2) becomes

min
ω0,ω,ρi,σi,ηi

{
n∑

i=1
.ρi +σi/+ c

n∑
i=1

ηi

}
, subject to ρi −σi =yixT

i ω+ω0yi +ηi, ∀ i,

ηi �0, .ρi;σi, 1/∈S3, ∀ i, .1;ω/∈Sp+1, .2:3/

in which Sm+1 ={.ψ, φ/∈Rm+1 :ψ2 �φTφ} is the form of the second-order cones.
There has been much work on variants of standard DWD. We can give only an incomplete

list here. Qiao et al. (2010) introduced weighted DWD to tackle unequal cost or sample sizes
by imposing different weights on two classes. Huang et al. (2013) extended the DWD to the
multiclass case. Wang and Zou (2016) proposed sparse DWD for high dimensional classification.
In addition, the work connecting DWD with other classifiers, e.g. the SVM, includes but is not
limited to large margin unified machines (Liu et al., 2011), the distance-weighted SVM (Qiao
and Zhang, 2015a) and the flexible assortment machine (Qiao and Zhang, 2015b).

Marron et al. (2007) also attempted to replace the reciprocal in the standard DWD optimiza-
tion problem (2.2) with the qth power (q>0) of the inverse distances. Hall et al. (2005) also used
it as the original definition of DWD. We name DWD with this new formulation generalized
DWD:

min
ω0,ω

(
n∑

i=1

1

d
q
i

+ c
n∑

i=1
ηi

)
, subject to di =yi.ω0 +xT

i ω/+ηi �0, ηi �0, ∀ i, and ωTω=1,

.2:4/

which degenerates to the standard DWD (2.2) when q = 1. Generalized DWD has not been
implemented yet because the SOCP transformation works only for the standard DWD (q=1)
(2.2), but its extension to handle the general cases is unclear if not impossible. That is why the
current DWD literature focuses on DWD with q=1 only. In fact, generalized DWD with q �=1
was proposed as an open research problem in Marron et al. (2007). The new algorithm that
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is proposed in this paper can easily solve the generalized DWD problem for any q > 0; see
Section 3.

Another open research problem that was proposed in Marron et al. (2007) is regarding the
Bayes risk consistency of kernel DWD. Marron et al. (2007) followed the similar kernel trick
in the kernel SVM to design kernel DWD. In short, Marron et al. (2007) used the Cholesky
decomposition of the kernel matrix, i.e. K=ΦΦT and then replaced the design matrix X with Φ.
To our best knowledge, still unclear is the theoretical justification for kernel DWD in Marron
et al. (2007). The reason is likely to be that the non-linear extension is purely algorithmic.
Kernel DWD considered in this paper can be rigorously justified to have a universal Bayes risk
consistency property; see the details in Section 4.2.

3. A novel algorithm for distance-weighted discrimination and generalized
distance-weighted discrimination

In this section we introduce a new algorithm that offers a unified efficient solution to standard
DWD and generalized DWD.

3.1. Generalized distance-weighted discrimination loss
Our algorithm begins with a loss-plus-penalty formulation of DWD. Lemma 1 deploys the result.
Note that the loss function also lays the foundation of the kernel DWD learning theory that
will be discussed in Section 4.

Lemma 1. The generalized DWD classifier (2.4) can be written as sgn.β̂0 + xT
i β̂/, where

.β̂0, β̂/ is computed for some λ from

min
β0,β

C.β0, β/≡min
β0, β

[
1
n

n∑
i=1

Vq{yi.β0 +xT
i β/}+λβTβ

]
; .3:1/

Vq.u/=

⎧⎪⎨
⎪⎩

1−u, if u� q

q+1
,

1
uq

qq

.q+1/q+1 , if u>
q

q+1
.

.3:2/

By lemma 1, we call Vq.·/ the generalized DWD loss. When q=1, the generalized DWD loss
becomes

V1.u/=
{

1−u, if u� 1
2 ,

1=.4u/, if u> 1
2 :

We note that V1.·/ has appeared in the literature (Qiao et al., 2010; Liu et al., 2011).

3.2. Derivation of the algorithm
We now show how to develop the new algorithm by using the MM principle (De Leeuw and
Heiser, 1977; Lange et al., 2000; Hunter and Lange, 2004). Some recent successful applications
of the MM principle can be seen in Hunter and Li (2005), Wu and Lange (2010), Zou and
Li (2008), Zhou and Lange (2010), Yang and Zou (2013) and Lange and Zhou (2014), among
others. The main idea of the MM principle is easy to understand. Suppose that θ= .β0, βT/T and
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we aim to minimize C.θ/, defined in expression (3.1). The MM principle finds a majorization
function D.θ|θk/ satisfying C.θ/ < D.θ|θk/ for any θ �=θk and C.θk/= D.θk|θk/, and then we
generate a sequence {C.θk/}∞

k=1 via θk+1 =arg minθ D.θ|θk/.
We first expose some properties of the generalized DWD loss function, which gives rise to a

quadratic majorization function of C.θ/. The generalized DWD loss is differentiable everywhere;
its first-order derivative is given by

V ′
q.u/=

⎧⎪⎪⎨
⎪⎪⎩

−1, if u� q

q+1
,

− 1
uq+1

(
q

q+1

)q+1

, if u>
q

q+1
:

Lemma 2. The generalized DWD loss function Vq.·/ has a Lipschitz continuous gradient,

|V ′
q.t/−V ′

q.t̃/|< .q+1/2

q
|t − t̃|, .3:3/

which further implies a quadratic majorization function of Vq.·/ such that, for any t �= t̃,

Vq.t/<Vq.t̃/+V ′
q.t̃/.t − t̃/+ .q+1/2

2q
.t − t̃/2: .3:4/

For a given pair of .q,λ/, denote the current solution by θ̃ = .β̃0, β̃
T

/T and the updated
solution by θ = .β0, βT/T. We set C.θ/ = C.β0, β/ and D.θ|θ̃/ = D.β0, β/ without abusing the
notation. Let X be an n×p data matrix with ith row xT

i , z̃ be an n×1 vector with ith element
yiV

′
q{yi.β̃0 +xT

i β̃/}=n and 1∈Rn be a vector of 1s. We see that

C.β0, β/≡ 1
n

n∑
i=1

Vq{yi.β0 +xT
i β/}+λβTβ

� 1
n

n∑
i=1

Vq{yi.β̃0 +xT
i β̃/}+λβ̃

T
β̃

+ γ̃T
(
β0 − β̃0
β− β̃

)
+ .q+1/2

2nq

(
β0 − β̃0
β− β̃

)T

Pq,λ

(
β0 − β̃0
β− β̃

)
≡D.β0, β/,

where

γ̃ ≡
(

1Tz̃
XTz̃ +2λβ̃

)
,

Pq,λ≡
(

n 1TX

XT1 XTX + 2nqλ

.q+1/2 Ip×p

)
,

and the inequality comes from lemma 2 with the equality held only when .β0, β/= .β̃0, β̃/. To
minimize D.β0, β/, we set [@D.β0, β/=@β0, @D.β0, β/=@β] to be 0s and then we have(

β0
β

)
=
(
β̃0
β̃

)
− nq

.q+1/2 P−1
q,λγ̃: .3:5/



6 B. Wang and H. Zou

3.3. Efficient tuning
When using DWD in practice, we often need to compute its solution for a grid of λ-values and
then use the data to find a good λ for the final DWD classifier. If we directly apply the MM
algorithm that was discussed above, the matrix Pq,λ is repeatedly inverted as q and λ are varied.
Inverting a large matrix can be costly. Here we exploit the special structure of Pq,λ such that we
need to invert the matrix only one time for all candidate pairs of .q,λ/.

For the sake of discussion we consider the usual n > p case. The inversion of a p×p matrix
costs O.p3/ operations. For linear DWD with n<p, we can treat it as special kernel DWD with
a linear kernel and then we need to invert only an n×n matrix. Our treatment also works for
kernel DWD, which will be discussed in Section 4.

We first define a matrix P0 and compute its eigendecomposition:

P0 ≡
(

n 1TX
XT1 XTX

)
=UΠUT, .3:6/

where Π is a diagonal matrix such that .Π/ii = di, the ith eigenvalue of P0. For each q and λ,
we craft a matrix Qq,λ,

Qq,λ≡

⎛
⎜⎝n+ 2nqλ

.q+1/2 1TX

XT1 XTX + 2nqλ

.q+1/2 Ip×p

⎞
⎟⎠=UΠq,λUT,

where Πq,λ is a diagonal matrix whose ith diagonal element is di + 2nqλ=.q+1/2. We then
disintegrate P−1

q, λ by using the Sherman–Morrison formula:

P−1
q,λ=

{
Qq,λ+

(
− 2nqλ

.q+1/2 0T

0 0p×p

)}−1

=Q−1
q,λ+gvvT =UΠ−1

q,λUT +gvvT, .3:7/

where v is the first column of Q−1
q,λ and g=2nqλ={.q+1/2 −2nqλ1Tv}.

Finally, we directly compute P−1
q,λγ̃ in equation (3.5) rather than P−1

q,λ. By equation (3.7), we
see that

P−1
q,λγ = .Q−1

q,λ+gvvT/γ̃ =UΠ−1
q,λUTγ̃ +gvvTγ̃: .3:8/

Note that v can be obtained via UΠ−1
q,λu1 where u1 is the first row of U; hence we find that all

the operations in equation (3.8) are O.p2/. Therefore, we manage to do the actual matrix
inversion once in equation (3.6), when solving generalized DWD with different q- and λ-values.

4. Kernel distance-weighted discrimination in reproducing kernel Hilbert space
and Bayes risk consistency

4.1. Kernel distance-weighted discrimination in reproducing kernel Hilbert space
The kernel SVM can be derived by using the kernel trick or by using the view of non-parametric
function estimation in an RKHS. Much of the theoretical work on the kernel SVM is based on
the RKHS formulation of SVMs. The derivation of the kernel SVM in an RKHS is given in
Hastie et al. (2009). We take a similar approach to derive kernel DWD, as our goal is to establish
kernel learning theory for DWD.

Consider HK, an RKHS generated by the kernel function K. Mercer’s theorem ensures that
K has an eigenexpansion K.x, x′/=Σ∞

t=1γtφt.x/φT
t .x′/, with γt � 0 and Σ∞

t=1γ
2
t <∞. Then the
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Hilbert space HK is defined as the collection of functions h.x/ =Σ∞
t=1θtφt.x/, for any θt such

that Σ∞
t=1θ

2
t =γt <∞, and the inner product is 〈Σ∞

t=1θtφt.x/, Σ∞
t′=1δt′φt′.x/〉HK

=Σ∞
t=1θtδt=γt .

Given HK, let non-linear DWD be sgn{β̂0 + ĥ.x/} where .β̂0, ĥ/ is the solution of

min
h∈HK
β0∈R

(
1
n

n∑
i=1

Vq[yi{β0 +h.xi/}]+λ||h||2HK

)
, .4:1/

and Vq.·/ is the generalized DWD loss (3.2). The representer theorem concludes that the solution
of problem (4.1) has a finite expansion based on K.x, xi/ (Wahba, 1990), ĥ.x/=Σn

i=1α̂iK.x, xi/,
and thus ||ĥ||2HK

= Σn
i=1Σ

n
j=1α̂iα̂jK.xi, xj/. Consequently, problem (4.1) can be paraphrased

with matrix notation:

min
β0,α

CK.β0, α/≡min
β0,α

[
1
n

n∑
i=1

Vq{yi.β0 +KT
i α/}+λαTKα

]
,

where K is the kernel matrix with .K/i,j =K.xi, xj/ and Ki is the ith column of K.
The procedure for deriving the linear DWD algorithm can be directly adopted for solving

kernel DWD. Define z̃ = .z1, : : : , zn/T with each zi =yiV
′
q{yi.β̃0 +Kiα̃/}=n, and

Pq,λ≡
(

n 1TK

K1 KK + 2nqλ

.q+1/2 K

)
:

We define the majorization function DK.β0, α/�CK.β0, α/, where the equality holds only when
.β0, α/= .β̃0, α̃/:

DK.β0, α/= 1
n

n∑
i=1

Vq{yi.β̃0 +KT
i α̃/}+λα̃TKα̃

+
(

1Tz̃
Kz̃ +2λKα̃

)T(
β0 − β̃0
α− α̃

)
+ .q+1/2

2nq

(
β0 − β̃0
α− α̃

)T

Pq,λ

(
β0 − β̃0
α− α̃

)
,

whose closed form minimizer is obtained as(
β0
α

)
=
(
β̃0
α̃

)
− nq

.q+1/2 P−1
q,λ

(
1Tz

Kz +2λKα̃

)
:

The direct use of this formula requires computing the inverse of n×n matrix Pq,λ repeatedly
for different values of q and λ. We find a way to do the matrix inversion that costs O.n3/

operations only once. We first compute the eigendecomposition K = UΛUT, which is free of
tuning parameters, and we then compute Πq,λ=ΛΛ+{2nqλ=.q+1/2}Λ for each q andλ. With
v =UΛΠ−1

q, λUT1 being computed through O.n2/ operations and g=1=.n−1TUΛΠ−1
q,λΛUT1/,

we glean the decomposition

P−1
q,λ=

(
n 1TUΛUT

UΛUT1 UΠq,λUT

)−1

=g

(
1

−v

)
. 1 −vT /+

(
0 0T

0 UΠ−1
λ UT

)
:

Rather than compute P−1
q,λ, we directly compute

P−1
q,λ

(
1Tz

Kz +2λKα̃q

)
=g
{

1Tz − vTK.z +2λα̃q/
}( 1

−v

)
+
(

0
UΠ−1

q, λΛUT.z +2λα̃q/

)
,

where only O.n2/ operations abound. The computation time is appreciably reduced.
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4.2. Kernel learning theory
Lin (2002) formulated the kernel SVM as a non-parametric function estimation problem in an
RKHS and showed that the population minimizer of the SVM loss function is the Bayes rule, in-
dicating that the SVM directly approximates the optimal Bayes classifier. Vapnik–Chervonenkis
analysis (Vapnik, 1998; Anthony and Bartlett, 1999) and margin analysis (Bartlett and Shawe-
Taylor, 1999; Shawe-Taylor and Cristianini, 2000) have been used to bound the expected clas-
sification error of the SVM. Zhang (2004) used so-called leave-one-out analysis (Jaakkola and
Haussler, 1999) to study a class of kernel machines. The existing theoretical work on the kernel
SVM provides us with a nice road map to study kernel DWD. In this section we first elucidate
the Fisher consistency (Lin, 2004) of generalized kernel DWD, and we then establish the Bayes
risk consistency of kernel DWD when a universal kernel is employed.

Let η.x/ denote the conditional probability P.Y = 1|X = x/. Under 0–1-loss, the theoretical
optimal Bayes rule is fÅ.x/ = sgn{η.x/ − 1

2}. Assume that η.x/ is a measurable function and
P{η.x/= 1

2}=0 throughout.

Lemma 3. The population minimizer of the expected DWD loss EXY [Vq{Yf.X/}] is

f̃ .x/= q

q+1

[{
η.x/

1−η.x/

}1=.q+1/

I{η.x/> 1
2}−

{
1−η.x/
η.x/

}1=.q+1/

I{η.x/< 1
2}
]
: .4:2/

The population minimizer f̃ .x/ has the same sign as η.x/− 1
2 .

Lin (2004) coined the name ‘Fisher consistency’ to explain why a margin-based loss function
is appropriate for fitting a classifier, besides its convexity property for computational consid-
erations. Following Lin (2004), we see from lemma 3 that the generalized DWD loss is Fisher
consistent. Lemma 3 is a generalization of a previously shown result (Qiao et al., 2010; Liu et al.,
2011) that proves that the standard DWD loss V1.u/ is Fisher consistent. It is worth emphasizing
that the condition and conclusion of lemma 3 are independent of the functional space: Fisher
consistency hinges on only the loss function. Lemma 3 is treated as an important intermediate
step in our theoretical analysis.

In reality all classifiers are estimated from a finite sample. Thus, a more refined analysis of
the actual DWD classifier is needed, and that is what we achieve in what follows. Such results
are missing in the current DWD literature.

Following the convention in the literature, we absorb the intercept into h and present kernel
DWD as

f̂ n =arg min
f∈HK

[
1
n

n∑
i=1

Vq{yif.xi/}+λn‖f‖2
HK

]
: .4:3/

The ultimate goal is to show that the misclassification error of the kernel DWD approaches the
Bayes error rate such that we can say that the kernel DWD classifier works as well as the Bayes
rule (asymptotically speaking). For this, we present lemma 4, which is closely related to theorem
2.1 of Zhang (2004) and theorem 3 of Bartlett et al. (2006).

Lemma 4. For a discrimination function f , we define R.f/=EXY [Y �= sgn{f.X/}]. Assume
that fÅ =arg minf R.f/ is the Bayes rule and f̂ n is the solution of equation (4.3); then

R.f̂ n/−R.fÅ/� q+1
q

."A + "E/, .4:4/
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where "A and "E are defined as follows and Vq is the generalized DWD loss:

"A = inf
f∈HK

EXY [Vq{Yf.X/}]−EXY [Vq{Yf̃ .X/}],

"E = "E.f̂ n/=EXY [Vq{Yf̂ n.X/}]− inf
f∈HK

EXY [Vq{Yf.X/}]:

In lemma 4 R.fÅ/ is the Bayes error rate and R.f̂ n/ is the misclassification rate of kernel
DWD applied to new data points. If R.f̂ n/ → R.fÅ/, we say that the classifier is Bayes risk
consistent. On the basis of lemma 4, it suffices to show that both "A and "E approach 0 to
demonstrate the Bayes risk consistency of kernel DWD. Note that "A is deterministic and is
called the approximation error. If the RKHS is sufficiently rich then the approximation error
can be made arbitrarily small. In the literature, the notation of a universal kernel (Steinwart,
2001; Micchelli et al., 2006) has been proposed and studied. Suppose that X ∈Rp is the compact
input space of X and C.X / is the space of all continuous functions g : X → R. The kernel K is
said to be universal if the function space HK that is generated by K is dense in C.X /, i.e., for any
positive ε and any function g∈C.X /, there is an f ∈HK such that ‖f −g‖∞ < ε.

Theorem 1. Suppose that f̂ n is the solution of equation (4.3), HK is induced by a universal
kernel K and the sample space X is compact. Then we have

(a) "A =0;
(b) let B= supx K.x, x/<∞. When λn →0 and nλn →∞, for any ε> 0,

lim
n→∞ P{"E.f̂ n/> ε}=0:

By results (a) and (b) and inequality (4.4) we have R.f̂ n/→R.fÅ/ in probability.

The Gaussian kernel is universal and B�1. Thus theorem 1 says that kernel DWD using the
Gaussian kernel is Bayes risk consistent. A proof of theorem 1 is given in Appendix A.

5. Numeric examples

5.1. Timing comparison with second-order cone programming implementations
We first use a few simulation models to demonstrate the superior computation performance of
kerndwd over the R package DWD (Huang et al., 2012) and the MATLAB software (Marron,
2013). Since the R package DWD and the MATLAB implementation solve only linear DWD with
q=1, we report only the timing of computing linear DWD with q=1 in this set of simulations.
The simulation models were designed by Marron et al. (2007). We adopted these models but
changed the model dimension size to n=500 and p=50. In Table 1, we use WZpath to represent
the time of using kerndwd to compute a solution path at 100 λ-values. We also denote by WZ,
HUANG and MARRON the time of computing DWD at the best λ by using the R packages
kerndwd and DWD, and the MATLAB implementation respectively.

From Table 1 we observe that both WZpath and WZ are much faster than HUANG and
MARRON. In all four examples, the computation time of WZ was above 1000 times faster than
HUANG, and also more than 100 times faster than MARRON. (We also checked the quality
of the computed solutions by these different algorithms. In theory they should be identical. In
practice, because of machine errors and implementations, they could be different. We found that
in all examples our new algorithm gave better solutions in the sense that the objective function
in problem (2.3) has the smallest value. HUANG and MARRON gave similar but slightly larger
objective function values.)
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Table 1. Computation time comparisons between the R package kerndwd, the R package DWD (denoted
as HUANG) and the MATLAB implementation MARRON†

Example Average time (s) Ratio

WZpath WZ HUANG MARRON t.HUANG/=t.WZ/ t.MARRON/=t.WZ/

1 0.206 0.008 12.646 1.065 1580.7 133.2
2 0.188 0.011 12.477 1.135 1171.5 106.6
3 0.199 0.009 11.963 1.009 1391.0 117.3
4 0.123 0.008 12.257 1.051 1602.2 137.4

†We use WZpath to represent the computation time of using kerndwd to compute a solution path of DWD on
100 λ-values, and WZ to represent the time of fitting DWD on the best λ. Both HUANG and MARRON solve
only the DWD problem on the best λ. In the four examples, the sample size n=500 and the dimension p=50. All
the time is averaged over 100 independent replicates. Computations were conducted on a single processor Intel(R)
Xeon(R) central processor unit E5-2660 at 2.60 GHz.

5.2. Timing comparison with the symmetric Gauss–Seidel alternating direction method
of multipliers
A referee pointed out that a new method for solving DWD has been proposed in Lam et al.
(2017) in which they devised a three-block inexact symmetric Gauss–Seidel-based semiproximal
alternating direction method of multipliers, which is modified from very advanced mathematical
programming work (Li et al., 2016; Chen et al., 2017), for computing DWD on large-scale data
sets. Their new algorithm is implemented in a MATLAB toolbox called DWDLarge. Table 2
summarizes the timing comparisons between DWDLarge and kerndwd on 10 benchmark data
sets that were obtained from the University of California at Irvine Machine Learning Repository
(Lichman, 2013). Among the 10 data sets, heart and ionosphere have moderate n and p, colon
and leuk have n � p, gisette has both large n and p, and the other five data sets have n  p.
Notably, covtype has a sample size of over a half million. DWDLarge implements only linear
DWD with q=1, 2, 3, 4.

In Table 2, we use WZpath to represent the run time of kerndwd when yielding the solution
paths at 100 λ-values, and we use WZ and LMST to denote the time of solving DWD at the
best λ, using kerndwd and DWDLarge respectively. From Table 2 we observe that the timings
of WZpath are only several times those of WZ, which indicates that our algorithm is efficient
in computing the entire solution path. We also discover that the computation times of WZpath
and WZ are quite consistent over various q-values, whereas LMST becomes much slower when
q is large. When the data have moderate n and p, or n�p, both WZpath and WZ are faster than
LMST. In the case when np, we discover that our methods are roughly of the same order of
magnitude as LMST but LMST is time consuming when q = 4. When both n and p are large,
we find that LMST is more efficient than our algorithm.

5.3. Comparing the support vector machine and generalized distance-weighted
discrimination
We now compare DWD and SVM in terms of classification accuracy and computation speed.
We generated data from a mixture Gaussian model with dimension p= 300 and sample size n

ranging from 100 to 1300. Define μ+ = .1, : : : , 1, 0, : : : , 0/ and μ− = .0, : : : , 0, 1, : : : , 1/, both of
which consist of 150 1s and 150 0s. In each example, the positive class arose from a mixture
Gaussian distribution Σ10

k=10:1N.μk+, 102I/ with each μk+ drawn from N.μ+, I/, and likewise
the negative class was assembled by Σ10

k=10:1N.μk−, 102I/ with each μk− from N.μ−, I/. For this
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Table 2. Computation time of kerndwd and DWDLarge on 10 University of California at Irvine benchmark
data sets†

Data n p q WZpath (s) WZ (s) LMST (s) q WZpath (s) WZ (s) LMST (s)

heart 270 13 1 0.009 0.002 0.172 3 0.008 0.002 0.032
2 0.008 0.002 0.036 4 0.009 0.002 0.053

ionosphere 351 33 1 0.071 0.017 0.179 3 0.049 0.013 0.050
2 0.060 0.012 0.062 4 0.046 0.013 0.124

colon 62 2000 1 0.013 0.011 1.483 3 0.012 0.009 1.629
2 0.012 0.010 1.204 4 0.011 0.010 2.989

leuk 72 7128 1 0.061 0.027 0.873 3 0.027 0.023 0.505
2 0.027 0.023 1.012 4 0.026 0.023 0.825

a8a 22696 123 1 5.977 2.376 1.152 3 4.471 1.822 4.048
2 4.936 1.956 1.839 4 4.175 1.756 23.592

a9a 32561 123 1 10.258 4.373 1.602 3 7.655 3.467 6.704
2 8.541 3.718 2.995 4 5.425 2.395 23.768

ijcnn1 35000 22 1 4.045 1.602 2.730 3 2.567 1.026 5.638
2 3.089 1.219 2.696 4 2.238 0.897 42.069

skin 245057 3 1 4.841 1.801 5.058 3 3.948 1.053 56.987
2 4.150 1.072 19.529 4 3.875 1.179 286.073

covtype 581012 54 1 78.585 15.929 73.941 3 66.068 13.265 838.485
2 63.566 11.338 76.538 4 68.391 13.679 751.353

gisette 6000 5000 1 2615.847 500.180 89.286 3 1284.623 420.025 86.394
2 1608.612 428.477 132.788 4 1153.301 421.652 318.190

†WZpath represents the run time of using kerndwd to compute the solution path of DWD at 100 λ-values.
WZ and LMST represent the run time of computing DWD at the best λ by using kerndwd and DWDLarge
respectively. All the computation time is averaged over 100 independent replicates. Computations were conducted
on a single processor Intel(R) Xeon(R) central processor unit E5-2660 at 2.60 GHz.

model the Bayes rule is non-linear and the Bayes error is 18:85%. Using both linear and Gaussian
kernels, we trained and tuned the SVM, DWD with fixed q from a wide range {0:01, 1, 10, 105}
and DWD with a data-driven q embracing two-dimensional cross-validation of the pair .q,λ/.
We computed all the DWD methods by using our R package kerndwd and solved the SVM
by using the R package kernlab (Karatzoglou et al., 2004). Similar results for the SVM were
obtained by the R package e1071 (Meyer et al., 2015).

Table 3 summarizes the average time for training the classifier and the misclassification rates
assessed on an independent test set with a sample size of 10000. We can make several observa-
tions from Table 3. First, none of the kernel DWD methods with a fixed q dominates the others
in prediction accuracy. Second, DWD with a data-driven q closely follows the best classifier, and
it consistently outperforms the SVM. Third, as the sample size increases, the misclassification
rates of the SVM and all variants of DWD are approaching the Bayes error rate. Fourth, in
terms of computation time, all variants of DWD are much faster than the SVM. For example,
when n=900, even DWD with a data-driven q was about 65 times faster than the SVM in the
linear case, and it was about 10 times faster in the kernel case.

We remark that the main algorithm for solving the SVM in kernlab is through sequential
minimal optimization (Platt, 1999), which is entirely different from the MM algorithm that was
used for DWD. Hence the difference that is revealed in Table 3 is mainly due to the different
methods rather than the different implementations.

Many kernel methods including the SVM and DWD have difficulty in dealing with huge
data sets. From Table 3 it is clear that the kernel SVM took a very long time to fit when n is
1300. DWD equipped wth our algorithm can handle the large sample size better than the SVM.
We also tried n= 2000 and n= 3000; the time of the kernel DWD was 393.60 s and 1131.50 s
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Table 3. Misclassification rates and computation time, averaged by 20 runs, under mixture Gaussian dis-
tributed data†

Method Results for Results for Results for Results for
n=100, p=300 n=500, p=300 n=900, p=300 n=1300, p=300

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

Linear kernel
SVM 38.43 (0.00) 12.07 27.43 (0.09) 92.99 25.74 (0.38) 346.24 23.18 (0.09) 15325.31
DWDq=0:01 38.35 (0.00) 0.11 25.03 (0.22) 1.50 22.72 (0.09) 2.21 21.27 (0.05) 2.53
DWDq=1 35.43 (0.39) 0.09 21.97 (0.04) 2.12 20.05 (0.06) 2.79 19.00 (0.02) 2.87
DWDq=10 35.79 (0.37) 0.12 22.17 (0.07) 1.66 20.40 (0.15) 2.15 19.55 (0.05) 2.49
DWDq=105 39.07 (0.00) 0.11 28.49 (0.00) 1.53 24.92 (0.00) 2.25 22.36 (0.00) 2.35
DWDdata-driven q 35.75 (0.66) 0.18 22.17 (0.35) 3.93 20.40 (0.13) 5.13 19.55 (0.15) 5.95

Gaussian kernel
SVM 35.97 (0.07) 13.48 23.00 (0.23) 138.52 20.50 (0.17) 587.38 19.42 (0.11) 1094.80
DWDq=0:01 35.19 (0.07) 0.55 21.83 (0.08) 6.20 20.18 (0.05) 22.27 18.88 (0.04) 45.53
DWDq=1 35.27 (0.07) 0.35 22.07 (0.05) 6.85 19.98 (0.09) 26.02 18.92 (0.05) 41.88
DWDq=10 35.37 (0.10) 0.64 22.09 (0.05) 7.57 20.00 (0.05) 28.80 19.01 (0.02) 53.17
DWDq=105 35.16 (0.26) 0.50 22.05 (0.29) 4.63 19.86 (0.31) 18.43 18.97 (0.33) 36.69
DWDdata-driven q 35.35 (0.12) 0.83 21.94 (0.12) 13.48 20.07 (0.11) 48.97 19.00 (0.05) 81.30

†In each example, we used fivefold cross-validation to tune the SVM, DWD with fixed q and DWD with a data-
driven q. We investigated the classification error on independently generated test sets and give the standard errors
in parentheses. We displayed all the time that includes fitting models and tuning the parameters with fivefold
cross-validations. In each example, the method incurring the lowest error is marked by italics. The Bayes error rate
is 18.85%.

respectively. We also found that the kernel SVM did not run for n=2000 and n=3000. When n is
very large (like millions), one can use a simple divide-and-conquer strategy: randomly partition
the data set into K parts and fit DWD on each of the K subsets; the final result is the average
of these K independently fitted DWD classifiers. This strategy has been examined and analysed
for the kernel SVM by Hsieh et al. (2014) and kernel ridge regression by Zhang et al. (2015).

5.4. Benchmark data examples
We examined the performance of kerndwd on 16 University of California at Irvine benchmark
data sets. These real data examples have various combinations of sample size and dimension.
We compared the SVM, standard DWD (q = 1) and DWD with a data-driven q, under both
linear and Gaussian kernels. We randomly split each data set into a training and a test set with
a ratio 2 : 1. We conducted fivefold cross-validation on the training set to tune each competing
method. In particular, we tuned the pair of .q,λ/ for DWD with a data-driven q, where q was
selected from {0:01, 1, 10, 105}. Table 4 summarizes the results. We observe that kernel DWD
with a data-driven q is the best on seven data sets and the kernel SVM is the best on four data
sets. On some data sets the linear SVM and linear DWD with a data-driven q can outperform
the Gaussian kernel counterparts. If we compare only the kernel SVM and kernel DWD with
a data-driven q, we see that the latter has a lower misclassification rate in 10 examples and is
significantly faster in 14 examples. Standard DWD with q = 1 is the fastest to compute, but
exploring a data-driven q in DWD can lead to a noticeable improvement in the prediction
accuracy with affordable extra computing time.

In Table 5, we compare kernel DWD with another four commonly used classifiers: gradient
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Table 4. Mean misclassification rates and computation time for the SVM, standard DWD .q D 1/ and DWD
with a data-driven q on 16 benchmark data sets†

Data n p Kernel Results Results for Results for
for SVM DWDq=1 DWDdata-driven q

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

arrhythmia 452 191 Linear 23.67 (0.48) 35.39 24.27 (0.44) 3.16 24.05 (0.44) 8.00
Gaussian 23.77 (0.43) 36.81 25.23 (0.52) 1.70 24.49 (0.53) 5.19

australian 690 14 Linear 13.75 (0.29) 357.71 13.95 (0.24) 0.10 14.10 (0.29) 0.27
Gaussian 13.96 (0.29) 12.53 14.30 (0.26) 3.80 13.45 (0.27) 15.50

banknote 1372 4 Linear 1.01 (0.05) 11.55 2.39 (0.09) 0.20 2.28 (0.09) 0.43
Gaussian 0.06 (0.02) 20.63 0.39 (0.06) 20.67 0.00 (0.00) 52.33

biodeg 1055 41 Linear 13.32 (0.23) 501.25 14.67 (0.24) 0.61 14.59 (0.21) 1.42
Gaussian 12.36 (0.22) 36.49 14.57 (0.26) 9.97 13.03 (0.22) 34.67

bupa 345 6 Linear 31.63 (0.50) 21.40 34.82 (0.75) 0.04 33.22 (0.62) 0.11
Gaussian 32.23 (0.48) 6.56 32.14 (0.63) 0.92 31.70 (0.54) 6.05

chess 3196 37 Linear 3.03 (0.15) 877.39 3.92 (0.08) 2.23 3.92 (0.08) 4.32
Gaussian 0.93 (0.04) 410.23 5.01 (0.10) 192.73 0.92 (0.04) 364.44

heart 270 13 Linear 16.53 (0.52) 34.91 16.44 (0.47) 0.05 15.60 (0.49) 0.13
Gaussian 16.69 (0.56) 5.08 16.51 (0.46) 0.63 16.31 (0.48) 2.01

hepatitis 112 18 Linear 15.89 (0.73) 5.27 15.03 (0.83) 0.07 15.62 (0.77) 0.14
Gaussian 15.14 (0.66) 4.07 15.35 (0.85) 0.14 14.22 (0.74) 0.37

hungarian 261 10 Linear 19.43 (0.47) 20.46 20.78 (0.59) 0.04 19.26 (0.47) 0.09
Gaussian 19.54 (0.54) 4.75 20.99 (0.54) 0.54 19.29 (0.64) 2.71

LSVT 126 309 Linear 17.43 (0.94) 15.05 16.33 (0.88) 0.14 17.00 (0.80) 0.30
Gaussian 15.52 (0.76) 16.77 17.33 (0.91) 0.19 16.62 (0.84) 0.51

musk 476 166 Linear 17.06 (0.43) 33.59 17.96 (0.53) 2.44 17.42 (0.49) 6.27
Gaussian 7.77 (0.33) 32.81 13.18 (0.46) 1.92 8.03 (0.40) 5.67

parkinsons 195 22 Linear 13.57 (0.55) 14.07 14.12 (0.56) 0.09 13.51 (0.57) 0.23
Gaussian 8.68 (0.55) 4.70 12.86 (0.72) 0.33 8.46 (0.69) 1.01

sonar 208 60 Linear 25.97 (0.66) 7.55 25.65 (0.75) 0.38 25.59 (0.75) 0.94
Gaussian 15.65 (0.56) 7.91 20.67 (0.76) 0.39 18.29 (0.60) 1.23

spectf 80 44 Linear 26.62 (1.02) 4.75 31.31 (1.91) 0.10 29.54 (1.41) 0.29
Gaussian 22.54 (1.03) 5.01 25.08 (1.32) 0.10 22.38 (0.88) 0.25

valley 606 100 Linear 4.30 (0.18) 16.45 4.36 (0.21) 1.07 4.13 (0.20) 2.24
Gaussian 1.40 (0.11) 29.11 3.41 (0.19) 3.26 0.85 (0.10) 8.33

vertebral 310 6 Linear 14.83 (0.42) 8.33 16.76 (0.53) 0.06 16.68 (0.51) 0.14
Gaussian 16.50 (0.46) 5.33 17.57 (0.49) 0.82 16.60 (0.50) 4.66

†Each data set was split into a training set, to train and to tune, and a test set, to evaluate accuracy. Averaged
over 50 runs, the method with the lowest classification error is marked by italics. The standard error of the mean
is given in parentheses. All the computation time includes tuning the parameters. Computations were conducted
on a single-processor Intel(R) Xeon(R) central processor unit E5-2660 at 2.60 GHz.

boosting machines (implemented in the R package gbm (Ridgeway, 2017)), random forests (R
package randomForest (Liaw and Wiener, 2002)), linear discriminant analysis (R package
MASS (Venables and Ripley, 2002)) and deep neural net (R package mxnet (Chen et al., 2015)).
Out of 16 benchmark data sets, kernel DWD has the least prediction error on 10 examples, both
random forests and deep neural net have the least on two cases, and both gradient boosting
machines and linear discriminant analysis have the least on one data set.

6. Discussion

In the present paper we have considered the standard classification problem under 0–1-loss. In
many applications we may face the so-called non-standard classification problem. For example,
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Table 5. Mean misclassification rates and computation time for DWD with a data-driven q and four commonly
used classifiers on 16 benchmark data sets†

Data n p Results for the following methods:

DWDdata-driven q Gradient Random Linear discriminant Deep
boosting forests analysis neural net

arrhythmia 452 191 24.49 (0.53) 44.41 (1.59) 22.13 (0.96) 36.71 (1.14) 27.47 (0.74)
australian 690 14 13.45 (0.27) 13.46 (0.58) 13.02 (0.50) 14.31 (0.57) 14.43 (0.49)
banknote 1372 4 0.00 (0.00) 3.60 (0.23) 1.00 (0.10) 2.41 (0.12) 0.24 (0.09)
biodeg 1055 41 13.03 (0.22) 15.55 (0.37) 14.84 (0.36) 14.96 (0.28) 14.05 (0.40)
bupa 345 6 31.70 (0.54) 40.21 (1.31) 31.30 (1.06) 32.84 (0.88) 29.35 (0.61)
chess 3196 37 0.92 (0.04) 48.29 (0.44) 2.27 (0.32) 5.93 (0.21) 1.44 (0.11)
heart 270 13 16.31 (0.48) 15.56 (0.79) 17.78 (0.77) 16.24 (0.65) 19.61 (0.97)
hepatitis 112 18 14.22 (0.74) 16.47 (1.26) 15.83 (1.03) 17.89 (0.98) 19.05 (1.15)
hungarian 261 10 19.29 (0.64) 21.62 (0.76) 22.71 (0.82) 19.27 (0.51) 19.60 (0.59)
LSVT 126 309 16.62 (0.84) 32.88 (1.48) 19.27 (1.47) 26.30 (1.80) 18.81 (1.26)
musk 476 166 8.03 (0.40) 18.35 (0.76) 12.66 (0.55) 22.06 (0.71) 11.55 (0.50)
parkinsons 195 22 8.46 (0.69) 24.91 (1.15) 11.21 (1.09) 12.53 (0.80) 12.85 (0.88)
sonar 208 60 18.29 (0.60) 24.02 (2.45) 20.15 (1.24) 27.47 (1.21) 22.90 (1.04)
spectf 80 44 22.38 (0.88) 30.04 (2.62) 23.99 (1.76) 40.48 (2.15) 27.88 (1.87)
valley 606 100 0.85 (0.10) 9.15 (2.62) 1.67 (0.35) 5.07 (0.33) 3.02 (0.40)
vertebral 310 6 16.60 (0.50) 15.30 (0.73) 16.32 (0.81) 17.48 (0.88) 14.51 (0.65)

†Each data set was split into a training set, to train and to tune, and a test set, to evaluate accuracy. Averaged
over 50 runs, the method with the lowest classification error is marked by italics. The standard error of the mean
is given in parentheses.

observed data may be collected via biased sampling and/or we need to consider unequal costs
for different types of misclassification. Qiao et al. (2010) introduced weighted DWD to handle
the non-standard classification problem, which follows the treatment of the non-standard SVM
in Lin et al. (2002). Qiao et al. (2010) defined the weighted DWD as

min
β0,β

{
n∑

i=1
w.yi/

(
1
ri

+ cξi

)}
, subject to ri =yi.β0 +xT

i β/+ ξi �0 and βTβ=1, .6:1/

which can be further generalized to weighted kernel DWD:

min
β0,α

Cw.β0, α/≡min
β0,α

[
1
n

n∑
i=1

w.yi/Vq{yi.β0 +KT
i α/}+λαTKα

]
:

Qiao et al. (2010) gave the expressions for w.yi/ for various non-standard classification problems.
Qiao et al. (2010) solved weighted DWD (6.1) with q=1 based on SOCP. The MM procedure that
is developed in this paper can easily accommodate the weight factors w.yi/ to solve weighted
DWD and weighted kernel DWD. We implemented the weighted DWD in the R package
kerndwd.

Acknowledgements

We thank the Joint Editor, an Associate Editor and three referees for their helpful comments
that greatly improved this work. We thank Professor Defeng Sun and Professor Kim-Chuan
Toh for sharing the MATLAB toolbox DWDLarge that implements the inexact symmetric
Gauss–Seidel alternating direction method of multipliers algorithm. Zou’s research was partially
supported by National Science Foundation grant DMS-1505111.



Distance-weighted Discrimination 15

Appendix A: Technical proofs

A.1. Proof of lemma 1
Write vi = yi.ω0 + xT

i ω/ and G.ηi/ = 1=.vi +ηi/
q + cηi. The objective function of expression (2.4) can be

written as Σn
i=1G.ηi/. We next minimize expression (2.4) over ηi for every fixed i by computing the first-order

and the second-order derivatives of G.ηi/:

G′.ηi/=− q

.vi +ηi/q+1
+ c=0⇒vi +ηi =

(q

c

)1=.q+1/

,

G′′.ηi/= q.q+1/

.vi +ηi/q+2
> 0:

If

vi >
(q

c

)1=.q+1/

,

then G′.ηi/> 0 for all ηi �0, and ηÅ
i =0 is the minimizer. If

vi �
(q

c

)1=.q+1/

,

then

ηÅ
i =

(q

c

)1=.q+1/

−vi

is the minimizer as G′.ηÅ/=0 and G′′.ηÅ/> 0.
By plugging in the minimizer ηÅ

i into Σn
i=1G.ηi/, we obtain

min
ω0,ω

n∑
i=1

Ṽ q{yi.ω0 +xT
i ω/}, subject to ωTω=1; .A:1/

Ṽ q.v/=

⎧⎪⎨
⎪⎩

(q

c

)−q=.q+1/

+ c
(q

c

)1=.q+1/

− cv, if v�
(q

c

)1=.q+1/

,

1
vq

, if v>
(q

c

)1=.q+1/

:

We now simplify problem (6.2). Suppose that

t =
(

q

q+1

)(
q

c

)−1=.q+1/

and

t1 =
(

1
q+1

)(
q

c

)q=.q+1/

:

We define Vq.u/= t1 Ṽ q.u=t/ for each q:

Vq.u/=

⎧⎪⎨
⎪⎩

1−u, if u� q

q+1
,

1
uq

qq

.q+1/q+1 , if u>
q

q+1
:

By setting β0 = tω0 and β= tω, we find that problem (A.1) becomes

min
β0,β

n∑
i=1

Vq{yi.β0 +xT
i β/}, subject to βTβ= t2,

which can be further transformed to problem (3.1) with λ and t one-to-one correspondent.
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A.2. Proof of lemma 2
We first prove expression (3.3). We observe that

0 <V ′′
q .u/= 1

uq+2

qq+1

.q+1/q
<

.q+1/2

q
,

for any u>q=.q+1/. Also V ′
q.u/ is continuous on [q=.q+1/, ∞/ and differentiable on .q=.q+1/, ∞/.

If both u1 and u2 >q=.q+1/, then the mean value theorem implies that there exists uÅÅ >q=.q+1/:

|V ′
q.u1/−V ′

q.u2/|
|u1 −u2| = |V ′′

q .uÅÅ/|< .q+1/2

q
: .A:2/

If u1 >q=.q+1/ and u2 �q=.q+1/, then

V ′
q.u2/=V ′

q

(
q

q+1

)
=−1:

The mean value theorem implies that there exists uÅÅ >q=.q+1/ satisfying

|V ′
q.u1/−V ′

q.u2/|
|u1 −u2| �

∣∣∣∣V ′
q.u1/−V ′

q

(
q

q+1

)∣∣∣∣∣∣∣∣u1 − q

q+1

∣∣∣∣
=|V ′′

q .uÅÅ/|< .q+1/2

q
: .A:3/

If both u1 and u2 �q=.q+1/, V ′
q.u1/=V ′

q.u2/=−1. It is trivial that

|V ′
q.u1/−V ′

q.u2/|
|u1 −u2| =0 <

.q+1/2

q
: .A:4/

By expressions (A.2)–(A.4), we prove expression (3.3).
We now prove expression (3.4). Let

ν.a/≡ .q+1/2

2q
a2 −Vq.a/:

From expression (3.3), it is not difficult to show that

ν ′.a/= .q+1/2

q
a−V ′

q.a/

is strictly increasing. Therefore ν.a/ is a strictly convex function, and its first-order condition ν.t/>ν.t̃ /+
ν ′.t̃ /.t − t̃ / verifies expression (3.4) directly.

A.3. Proof of lemma 3
Given that η.x/=P.Y =1|X =x/, we have that EXY [Vq{Yf.X/}]≡EXζ{f.X/}:

ζ{f.x/}≡η.x/Vq{f.x/}+{1−η.x/}Vq{−f.x/}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η.x/
1

f.x/q

qq

.q+1/q+1
+{1−η.x/}{1+f.x/}, if f.x/>

q

q+1
,

η.x/{1−f.x/}+{1−η.x/}{1+f.x/}, if − q

q+1
�f.x/� q

q+1
,

η.x/{1−f.x/}+{1−η.x/} 1
{−f.x/}q

qq

.q+1/q+1
, if f.x/<− q

q+1
:

For each given x, we take both f.x/ and η.x/ as scalars and hereby write them as f and η respectively. We
then take ζ.f/= ζ{f.x/} as a function of f and compute the derivative with respect to f :
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@ζ.f/

@f
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−η 1
f q+1

qq+1

.q+1/q+1
+1−η, if f>

q

q+1
,

1−2η, if − q

q+1
�f � q

q+1
,

−η+ .1−η/
1

.−f/q+1

qq+1

.q+1/q+1
, if f<− q

q+1
:

We see that

(a) when η> 0:5, @ζ.f/=@f =0 only when

f = f̃ ≡ q

q+1

(
η

1−η

)1=.q+1/

,

and
(b) when η< 0:5, @ζ.f/=@f =0 only when

f = f̃ ≡− q

q+1

(
1−η

η

)1=.q+1/

:

Hence the convexity of the function ζ implies that f̃ is the minimizer of ζ.f/.

A.4. Proof of lemma 4
As f̃ .x/ was defined in equation (4.2), we see that, for each x,

ζ{f̃ .x/}≡η.x/Vq{f̃ .x/}+{1−η.x/}Vq{−f̃ .x/}

=
{
η.x/+{1−η.x/}1=.q+1/η.x/q=.q+1/, if η.x/� 1

2 ,

1−η.x/+η.x/1=.q+1/{1−η.x/}q=.q+1/, if η.x/> 1
2 ,

= 1
2 {1−|2η.x/−1|}+ 1

2 {1+|2η.x/−1|}1=.q+1/{1−|2η.x/−1|}q=.q+1/:

For a∈ [0, 1], we define γ.a/ and compute its first-order derivative as follows:

γ.a/≡1− 1
2

.1−a/− 1
2

.1+a/1=.q+1/.1−a/q=.q+1/ − q

q+1
a,

γ ′.a/= 1
2

− 1
2.q+1/

(
1−a

1+a

)q=.q+1/

+ q

2.q+1/

(
1+a

1−a

)1=.q+1/

− q

q+1

= 1
2.q+1/

− 1
2.q+1/

(
1−a

1+a

)q=.q+1/

+ q

2.q+1/
+ q

2.q+1/

(
1+a

1−a

)1=.q+1/

− q

q+1
�0:

Hence, for each a∈ [0, 1], γ.a/�γ.0/=0. For each x, let a=|2η.x/−1| and we see that

1− ζ{f̃ .x/}� q

q+1
|2η.x/−1|:

By R.f/=EXY [Y �= sgn.f.X/]=E{X:f.X/�0}[1−η.X/]+E{X:f.X/�0}[η.X/], we obtain

R.f̂ n/−R.fÅ/=E{X:f̂ n.X/�0, fÅ.X/<0}[1−2η.X/]+E{X:f̂ n.X/�0, fÅ.X/>0}[2η.X/−1]
�E{X:f̂ n.X/fÅ.X/�0}|2η.X/−1|

� q+1
q

E{X:f̂ n.X/f Å.X/�0}[1− ζ{f̃ .X/}]: .A:5/

Since fÅ.X/ and f̃ .X/ share the same sign, f̂ n.X/fÅ.X/�0 implies that f̂ n.X/f̃ .X/�0. When f̂ n.X/f̃ .X/
�0, 0 is between f̂ n.X/ and f̃ .X/, and thus the convexity of ζ indicates that ζ{f̃ .X/}�ζ.0/=1�ζ{f̂ n.X/}.
From inequality (A.5) we conclude that
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R.f̂ n/−R.fÅ/� q+1
q

E{X:f̂ n.X/fÅ.X/�0}[ζ{f̂ n.X/}− ζ{f̃ .X/}]

� q+1
q

EX[ζ{f̂ n.X/}− ζ{f̃ .X/}]

= q+1
q

EXY [Vq{Yf̂ n.X/}−Vq{Yf̃ .X/}]

= q+1
q

."A + "E/:

A.5. Proof of theorem 1
A.5.1. Part (a)
We first show that, when HK is induced by a universal kernel, the approximation error "A =0. By definition,
we need to show that, for any ε> 0, there exists fε ∈HK such that

|EXY [Vq{Yfε.X/}]−EXY [Vq{Yf̃ .X/}]|< ε: .A:6/

We first use truncation to consider a truncated version of f̃ . For any δ∈ .0, 0:5/, we define

fδ.X/=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q

q+1

(
1− δ

δ

)1=.q+1/

, if η.X/> 1− δ,

f̃ .X/, if δ�η.X/�1− δ,

− q

q+1

(
δ

1− δ

)1=.q+1/

, if η.X/< δ:

We have that

0�EXY [Vq{Yfδ.X/}]−EXY [Vq{Yf̃ .X/}]=κ+ +κ−,

where

κ+ =EX:η.X/>1−δ[η.X/Vq{fδ.X/}+{1−η.X/}Vq{−fδ.X/}]
−EX:η.X/>1−δ[η.X/Vq{f̃ .X/}+{1−η.X/}Vq{−f̃ .X/}],

κ− =EX:η.X/<δ[η.X/Vq{fδ.X/}+{1−η.X/}Vq{−fδ.X/}]
−EX:η.X/<δ[η.X/Vq{f̃ .X/}+{1−η.X/}Vq{−f̃ .X/}]:

Since Vq{fδ.X/}<Vq{−fδ.X/} when η.X/> 1− δ,

κ+ <EX:η.X/>1−δ[.1− δ/Vq{fδ.X/}+ δVq{−fδ.X/}]
−EX:η.X/>1−δ[η.X/Vq{f̃ .X/}+{1−η.X/}Vq{−f̃ .X/}]

= δ+ .1− δ/1=.q+1/δq=.q+1/ −EX:η.X/>1−δ[1−η.X/+η.X/1=.q+1/{1−η.X/}q=.q+1/]:

We note that 1−a+a1=.q+1/.1−a/q=.q+1/ is a continuous function in terms of a∈ .0, 1/. Since η.X/> 1− δ
implies that |η.X/− .1 − δ/|< δ, we conclude that, for any given ε> 0, there is a sufficiently small δ such
that κ+ < ε=6. We can also obtain κ− < ε=6 in the same spirit. Therefore,

0�EXY [Vq{Yfδ.X/}]−EXY [Vq{Yf̃ .X/}]�κ+ +κ− < ε=3: .A:7/

By Lusin’s theorem, there is a continuous function �.X/ such that P{�.X/ �= fδ.X/} � ε.q + 1/=.6q/.
Note that supX |fδ.X/|�q=.q+1/. Define

τ .X/=

⎧⎪⎨
⎪⎩
�.X/, if |�.X/|� q

q+1
,

q

q+1
�.X/

|�.X/| , if |�.X/|> q

q+1
,

then P{τ .X/ �=fδ.X/}� ε.q+1/=.6q/ as well. Hence
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|EXY [Vq{Yfδ.X/}]−EXY [Vq{Yτ .X/}]|�EX|fδ.X/− τ .X/|
=E{X:τ .X/�=fδ .X/}|fδ.X/− τ .X/|
� 2q

q+1
ε.q+1/

6q
= ε

3
,

(A8)

where the first inequality comes from the fact that Vq.u/ is Lipschitz continuous, i.e.

|Vq.u1/−Vq.u2/|� |u1 −u2|, ∀u1, u2 ∈R:

Note that τ .X/ is also continuous. The definition of the universal kernel implies the existence of a function
fε ∈HK such that

|EXY [Vq{Yfε.X/}]−EXY [Vq{Yτ .X/}]|< sup
X

|fε.X/− τ .X/|< ε

3
: .A:9/

By combining expressions (A.7)–(A.9) we obtain inequality (A.6).

A.5.2. Part (b)
In part (b) we bound the estimation error "E.f̂ n/. The proof of the estimation error approaching 0 essentially
only requires the loss function to be Lipschitz continuous, which holds for the DWD case. Note that an
RKHS has the following reproducing property (Wahba, 1990; Hastie et al., 2009):

〈K.xi, x/, f.x/〉HK
=f.xi/,

〈K.xi, x/, K.xj , x/〉HK
=K.xi, xj/:

Fix any ε>0. By the Karush–Kuhn–Tucker condition of expression (4.3) and the representer theorem, we
have

1
n

n∑
i=1

V ′
q{yif̂ n.xi/}yiK.xi, x/+2λnf̂ n.x/=0: .A:10/

We define f̂
[k]

as the solution of expression (4.3) when the kth datum is excluded from training data:

f̂
[k] =arg min

f∈HK

(
1
n

n∑
i=1, i�=k

Vq[yi{f.xi/}]+λn‖f‖2
HK

)
:

By the definition of f̂
[k]

and the convexity of Vq, we have

0� 1
n

n∑
i=1, i�=k

Vq{yif̂ n.xi/}+λn‖f̂ n‖2
HK

− 1
n

n∑
i=1, i�=k

Vq{yif̂
[k]

.xi/}−λn‖f̂
[k]‖2

HK

�− 1
n

n∑
i=1, i�=k

V ′
q{yif̂ n.xi/}yi{f̂

[k]
.xi/− f̂ n.xi/}+λn‖f̂ n‖2

HK
−λn‖f̂

[k]‖2
HK

:

By the reproducing property, we further have

0�− 1
n

n∑
i=1, i�=k

V ′
q{yif̂ n.xi/}yi〈K.xi, x/, f̂

[k]
.x/− f̂ n.x/〉HK

+λn‖f̂ n‖2
HK

−λn‖f̂
[k]‖2

HK

=− 1
n

n∑
i=1, i�=k

V ′
q{yif̂ n.xi/}yi〈K.xi, x/, f̂

[k]
.x/− f̂ n.x/〉HK

−2λn〈f̂ n.x/, f̂
[k]

.x/− f̂ n.x/〉HK
−λn‖f̂

[k] − f̂ n‖2
HK

= 1
n

V ′
q{ykf̂ n.xk/}yk〈K.xk, x/, f̂

[k]
.x/− f̂ n.x/〉HK

−λn‖f̂
[k] − f̂ n‖2

HK
,

where the equality at the end holds by equation (A.10). Thus, by the Cauchy–Schwarz inequality,

nλn‖f̂
[k] − f̂ n‖2

HK
�V ′

q{ykf̂ n.xk/}yk〈K.xk, x/, f̂
[k]

.x/− f̂ n.x/〉HK

�|V ′
q{ykf̂ n.xk/}|‖K.xk, x/‖HK

‖f̂
[k] − f̂ n‖HK

�√
K.xk, xk/‖f̂

[k] − f̂ n‖HK
,
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which implies that

‖f̂
[k] − f̂ n‖HK

�
√

B

nλn

,

where B= supx K.x, x/. By the reproducing property, we have

|f̂ [k]
.xk/− f̂ n.xk/|2 ={〈K.x, xk/, f̂

[k]
.x/− f̂ n.x/〉HK

}2

�K.xk, xk/‖f̂
[k] − f̂ n‖2

HK
�B

(√
B

nλn

)2

:

By the Lipschitz continuity of the DWD loss, we obtain that, for each k =1, : : : , n,

Vq{ykf̂
[k]

.xk/}−Vq{ykf̂ n.xk/}� |f̂ [k]
.xk/− f̂ n.xk/|� B

nλn

,

and therefore

1
n

n∑
k=1

Vq{ykf̂
[k]

.xk/}� 1
n

n∑
k=1

Vq{ykf̂ n.xk/}+ B

nλn

: .A:11/

Let fÅ
ε ∈HK such that

EXY [Vq{YfÅ
ε .X/}]� inf

f∈HK

EXY [Vq{Yf.X/}]+ ε=3:

By definition of f̂ n, we have

1
n

n∑
k=1

Vq{ykf̂ n.xk/}+λn‖f̂ n‖2
HK

� 1
n

n∑
k=1

Vq{ykf
Å
ε .xk/}+λn‖fÅ

ε ‖2
HK

:

Since each data point in Tn ={.xk, yk/}n
k=1 is drawn from the same distribution, we have

ETn

[
1
n

n∑
k=1

Vq{ykf̂
[k]

.xk/}
]

= 1
n

n∑
k=1

ETn [Vq{ykf̂
[k]

.xk/}]=ETn−1 [EXY Vq{Yf̂ n−1.X/}]: .A:12/

By combining expressions (A.11) and (A.12) we have

ETn−1 [EXY [Vq{Yf̂ n−1.X/}]]� inf
f∈HK

EXY [Vq{Yf.X/}]+λn‖fÅ
ε ‖2

HK
+ B

nλn

+ ε

3
:

By the choice ofλn, we see that there exists Nε such that when n>Nε we haveλn <ε=.3‖fÅ
ε ‖2

HK
/, nλn >3B=ε

and hence

ETn−1 [EXY [Vq{Yf̂ n−1.X/}]]� inf
f∈HK

EXY [Vq{Yf.X/}]+ ε:

Because ε is arbitrary and ETn−1 [EXY [Vq{Yf̂ n−1.X/}]]� inff∈HK
EXY [Vq{Yf.X/}], we have

lim
n→∞

ETn−1 [EXY [Vq{Yf̂ n−1.X/}]]= inf
f∈HK

EXY [Vq{Yf.X/}],

which equivalently indicates that limn→∞ ETn ["E.f̂ n/]=0. Since "E.f̂ n/�0, then by Markov inequality we
prove part (b).

References

Aizerman, A., Braverman, E. and Rozoner, L. (1964) Theoretical foundations of the potential function method
in pattern recognition learning. Automn Remote Control, 25, 821–837.

Alizadeh, F. and Goldfarb, D. (2004) Second-order cone programming. Math. Programmng B, 95, 3–51.
Anthony, M. and Bartlett, P. (1999) Neural Network Learning: Theoretical Foundations. Cambridge: Cambridge

University Press.



Distance-weighted Discrimination 21

Bartlett, P., Jordan, M. and McAuliffe, J. (2006) Convexity, classification, and risk bounds. J. Am. Statist. Ass.,
101, 138–156.

Bartlett, P. and Shawe-Taylor, J. (1999) Generalization performance of support vector machines and other pattern
classifiers. In Advances in Kernel Methods–Support Vector Learning (eds B. Schölkopf, C. J. Burges and A. J.
Smola), vol. 4, pp. 43–54. Cambridge: MIT Press.

Boyd, S. and Vandenberghe, L. (2004) Convex Optimization. Cambridge: Cambridge University Press.
Breiman, L. (2001) Random forests. Mach. Learn., 45, 5–32.
Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C. and Zhang, Z. (2015) Mxnet: a

flexible and efficient machine learning library for heterogeneous distributed systems. Preprint. (Available from
https://arxiv.org/abs/1512.01274.)

Chen, C., Sun, D. F. and Toh, K. C. (2017) An efficient inexact symmetric Gauss-Seidel based majorized ADMM
for high-dimensional convex composite conic programming. Math. Programmng, 161, 237–270.

De Leeuw, J. and Heiser, W. (1977) Convergence of correction matrix algorithms for multidimensional scaling.
In Geometric Representations of Relational Data (ed. J. C. Lingoes), pp. 735–752. Ann Arbor: Mathesis.

Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014) Do we need hundreds of classifiers to
solve real world classification problems? J. Mach. Learn. Res., 15, 3133–3181.

Freund, Y. and Schapire, R. (1997) A decision-theoretic generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55, 119–139.

Hall, P., Marron, J. S. and Neeman, A. (2005) Geometric representation of high dimension, low sample size data.
J. R. Statist. Soc. B, 67, 427–444.

Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Prediction, Inference, and
Data Mining, 2nd edn. Berlin: Springer.

Hsieh, C., Si, S. and Dhillon, I. (2014) A divide-and-conquer solver for kernel support vector machines. In Proc.
Int. Conf. Machine Learning, pp. 566–574.

Huang, H., Liu, Y., Du. Y., Perou, C., Hayes, D., Todd, M. and Marron, J. S. (2013) Multiclass distance-weighted
discrimination. J. Computnl Graph. Statist., 22, 953–969.

Huang, H., Lu, X., Liu, Y., Haaland, P. and Marron, J. S. (2012) R/DWD: distance-weighted discrimination for
classification, visualization and batch adjustment. Bioinformatics, 28, 1182–1183.

Hunter, D. and Lange, K. (2004) A tutorial on MM algorithms. Am. Statistn, 58, 30–37.
Hunter, D. and Li, R. (2005) Variable selection using MM algorithms. Ann. Statist., 33, 1617–1642.
Jaakkola, T. and Haussler, D. (1999) Probabilistic kernel regression models. In Proc. 7th Int. Wrkshp Artificial

Intelligence and Statistics.
Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A. (2004) kernlab—an S4 package for kernel methods in R.

J. Statist. Softwr., 11, 1–20.
Lam, X., Marron, J. S., Sun, D. and Toh, K. C. (2017) Fast algorithms for large scale generalized distance weighted

discrimination. Preprint. (Available from https://arxiv.org/abs/1604.05473.)
Lange, K., Hunter, D. and Yang, I. (2000) Optimization transfer using surrogate objective functions. J. Computnl

Graph. Statist., 9, 1–20.
Lange, K. and Zhou, H. (2014) MM algorithms for geometric and signomial programming. Math. Programmng,

143, 339–356.
Li, X. D., Sun, D. F. and Toh, K. C. (2016) A Schur complement based semi-proximal ADMM for convex

quadratic conic programming and extensions. Math. Programmng, 155, 333–373.
Liaw, A. and Wiener, M. (2002) Classification and regression by randomForest. R News, 2, no. 3, 18–22.
Lichman, M. (2013) UCI Machine Learning Repository. School of Information and Computer Science, University

of California at Irvine, Irvine. (Available from http://archive.ics.uci.edu/ml.)
Lin, Y. (2002) Support vector machines and the Bayes rule in classification. Data Minng Knowl. Discov., 6, 259–275.
Lin, Y. (2004) A note on margin-based loss functions in classification. Statist. Probab. Lett., 68, 73–82.
Lin, Y., Lee, Y. and Wahba, G. (2002) Support vector machines for classification in nonstandard situations. Mach.

Learn., 46, 191–202.
Liu, Y., Zhang, H. and Wu, Y. (2011) Hard or soft classification?: Large-margin unified machines. J. Am. Statist.

Ass., 106, 166–177.
Marron, J. S. (2013) Smoothing, functional data analysis, and distance weighted discrimination software. (Avail-

able from http://www.unc.edu/∼marron/marron software.html.)
Marron, J. S. (2015) Distance-weighted discrimination. Wiley Interdisc. Rev. Computnl Statist., 7, 109–114.
Marron, J. S., Todd, M. and Ahn, J. (2007) Distance weighted discrimination. J. Am. Statist. Ass., 102, 1267–1271.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. and Leisch, F. (2015) R Package e1071. (Available from

https://cran.r-project.org/web/packages/e1071/index.html.)
Micchelli, C., Xu, Y. and Zhang, H. (2006). Universal kernels. J. Mach. Learn. Res., 7, 2651–2667.
Platt, J. (1999) Fast training of support vector machines using sequential minimal optimization. In Advances

in Kernel Methods—Support Vector Learning, vol. 12 (eds B. Schölkopf, C. J. Burges and A. J. Smola),
pp. 185–208. Cambridge: MIT Press.

Qiao, X. and Zhang, L. (2015a) Distance-weighted support vector machine. Statist. Interfc., 8, 331–345.
Qiao, X. and Zhang, L. (2015b) Flexible high-dimensional classification machines and their asymptotic properties.

J. Mach. Learn. Res., 16, 1547–1572.



22 B. Wang and H. Zou

Qiao, X., Zhang, H., Liu, Y., Todd, M. and Marron, J. S. (2010) Weighted distance weighted discrimination and
its asymptotic properties. J. Am. Statist. Ass., 105, 401–414.

Ridgeway, G. (2017) gbm: generalized boosted regression models. R Package 2.9.0. (Available from https://
cran.r-project.org/web/packages/gbm/gbm.pdf.)

Shawe-Taylor, J. and Cristianini, N. (2000) Margin distribution and soft margin. In Advances in Kernel Methods—
Support Vector Learning, vol. 19 (eds A. J. Smola, P. Bartlett, B. Schölkopf and D. Schuurmans), pp. 349–358.
Cambridge: MIT Press.

Steinwart, I. (2001) On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn.
Res., 2, 67–93.

Vapnik, V. (1995) The Nature of Statistical Learning Theory. Berlin: Springer.
Vapnik, V. (1998) Statistical Learning Theory. Chichester: Wiley.
Venables, W. and Ripley, B. (2002) Modern Applied Statistics with S, 4th edn. Berlin: Springer.
Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Math-

ematics.
Wahba, G. (1999) Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In

Advances in Kernel Methods–Support Vector Learning, vol. 6 (eds B. Schölkopf, C. J. Burges and A. J. Smola),
pp. 69–87. Cambridge: MIT press.

Wahba, G., Gu, C., Wang, Y. and Campbell, R. (1994) Soft classification, aka risk estimation, via penalized log
likelihood and smoothing spline analysis of variance. In Santa Fe Institute Studies in the Sciences of Complexity
Proc., vol. 20, pp. 313–331. Reading: Addison-Wesley.

Wang, B. and Zou, H. (2016) Sparse distance weighted discrimination. J. Computnl Graph. Statist., 25, 826–838.
Wu, T. and Lange, K. (2010) The MM alternative to EM. Statist. Sci., 25, 492–505.
Yang, Y. and Zou, H. (2013) An efficient algorithm for computing the HHSVM and its generalizations. J. Computnl

Graph. Statist., 22, 396–415.
Zhang, T. (2004) Statistical behavior and consistency of classification methods based on convex risk minimization.

Ann. Statist., 32, 56–134.
Zhang, Y., Duchi, J. and Wainwright, M. (2015) Divide and conquer kernel ridge regression: a distributed algorithm

with minimax optimal rates. J. Mach. Learn. Res., 16, 3299–3340.
Zhou, H. and Lange, K. (2010) MM algorithms for some discrete multivariate distributions. J. Computnl Graph.

Statist., 19, 645–665.
Zhu, J. and Hastie, T. (2005) Kernel logistic regression and the import vector machine. J. Computnl Graph. Statist.,

14, 185–205.
Zou, H. and Li, R. (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist., 36,

1509–1533.


