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Many machine learning models have tuning parameters to be determined by the

training data, and cross-validation (CV) is perhaps the most commonly used method

for selecting tuning parameters. This work concerns the problem of estimating the

generalization error of a CV-tuned predictive model. We propose to use an honest

leave-one-out cross-validation framework to produce a nearly unbiased estimator of

the post-tuning generalization error. By using the kernel support vector machine and

the kernel logistic regression as examples, we demonstrate that the honest leave-

one-out cross-validation has very competitive performance even when competing

with the state-of-the-art .632+ estimator.
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1 | INTRODUCTION

Many modern machine learning models involve important tuning parameters to be determined by the data. For example, the number of boosting

iterations and the size of each tree are some of the tuning parameters in tree-based gradient boosting, and the penalization parameter is a tuning

parameter in the kernel support vector machine (Cortes & Vapnik, 1995; Vapnik, 1995), the lasso regression model and ridge regression. Selecting

the right tuning parameter is referred to as tuning in the literature, and many statistical methods and theory have been devoted to the topic of

tuning. Some popular approaches include information criterion-based methods such as Akaike information criterion (Akaike, 1973), Bayesian

information criterion (Stein, 1981a), Stein's unbiased risk estimation (SURE, Stein, 1981b) or some resampling methods like cross-validation (CV,

e.g., Allen, 1974; Arlot & Celisse, 2010; Lachenbruch & Mickey, 1968; Stone, 1974; Wahba & Wold, 1975) and bootstrap (Efron &

Tibshirani, 1994). Among those proposals, CV is perhaps the most popular technique for tuning in practice. In a standard implementation of CV,

one segments the training data into V roughly equal-sized subsets, trains the model on each (V � 1)-fold ensemble and computes the prediction

error of the trained model on the remaining fold. Typical choices of V are the sample size n, 10, 5, corresponding to leave-one-out cross-validation

(LOOCV), 10-fold and 5-fold CV, respectively. In practice, CV tuning selects the parameter that incurs the least CV error. The basic idea of CV is

to obtain a natural estimate of the generalization error of a given model via data splitting. Actually, the LOOCV error is nearly unbiased in terms

of estimation bias (Luntz & Brailovsky, 1969). In practice, 10-fold and 5-fold CV are much more popular due to reduced computational efforts,

although they tend to have larger bias in terms of estimating the generalization error. As pointed out by Yang (2006), estimating the generalization

error and tuning the model are two related but very different tasks. In some settings, estimating the generalization error is more demanding while

better estimation of the error does not necessarily lead to a better tuning parameter.

One objection of the LOOCV error comes from the high variance claim: there is a wide-spreading argument that LOOCV has a much larger

variance than 10-fold or 5-fold CV such that the LOOCV error is a statistically inferior estimator of the generalization error. The argument is more

or less heuristic. Actually, some papers (e.g., Bengio & Grandvalet, 2004; Burman, 1989; Kohavi, 1995; Molinaro et al. 2005) have theoretically

and numerically demonstrated that the variance of the LOOCV error tends to be similar to the variance of other V-fold CV errors in many applica-

tions; Zhang and Yang (2015) even claimed “LOOCV in fact has the smallest variability” for fixed models in the regression setting. Despite these

papers, the misconception still widely exists; for example, see discussions in chapter 7.10 in the famous book, Hastie et al. (2009). In fact, Wang
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and Zou (2021) have shown that LOOCV does not have higher variance than 10-fold CV and 5-fold CV in the context of binary classification.

Here, we show a graphical illustration. We fit the kernel support vector machine (SVM) on a data set drawn from a mixture Gaussian distribution

whose Bayes decision boundary is non-linear. The details of the data generating model are given in the caption of Figure 1, from which we

observe that (i) LOOCV has almost no bias in estimating the generalization error, while the bias largely increases as V decreases; (ii) the variance

of the CV error exhibits very little difference among V¼5,10,n, but the variance is much larger in two-fold CV.

A legitimate complaint of LOOCV arises from its expensive computation. The vanilla implementation of LOOCV requires n repeats of model

fitting, which seems to be too expensive. Thus, many people prefer to use 10-fold or 5-fold CV over LOOCV. This claim can be traced back to the

invention of V-fold CV at the outset as a computational remedy of LOOCV (Geisser, 1975). However, the CV error depends on the way one splits

the data and hence would vary even if the same CV procedure is deployed with a different data split. Rodríguez et al. (2010) studied repeated V-

fold CV to stabilize the CV procedure, but the total computational cost becomes much more expensive. In contrast, LOOCV enjoys the advantage

of having a deterministic data split scheme. Moreover, a smart implementation of LOOCV can make the total computation time much less than

that by the vanilla implementation. Let us take the ridge regression as an example. Golub et al. (1979) introduced a neat formula to allow for effi-

cient computation of the exact LOOCV error with basically the same cost as fitting a single ridge regression model. This nice result can be general-

ized to a class of linear smoothers that possess the self-stable property (Fan et al. 2020). As such, computational cost will not become a deciding

factor that prevents users from using LOOCV to estimate the generalization error in real applications. In Wang and Zou (2021), the neat formula

for ridge regression is extended to the large-margin classifiers and a new algorithm has been proposed for fast and exact LOOCV computation of

a kernel SVM or related kernel classifiers.

The above discussion focuses on a single given model and how to estimate its generalization error. In practice, we select a final model from a list

of candidate models. Now, suppose that the final model is already selected and one is willing to use this model for predicting future unseen data. Nat-

urally, we would like to know its true accuracy. Statistically speaking, we aim to find a good estimator of the generalization error of the selected

model. In particular, consider the final model chosen by CV (10-fold CV or LOOCV), how to estimate the generalization error of this CV-tuned model?

In a series of papers (e.g., Efron, 1983, 1986, 2004; Efron & Tibshirani, 1997), Efron studied the problem of estimating the generalization error

of any given model and applied his methods to tuning. Conceptually, his results can be applied to a tuned model to obtain a good estimate of the

generalization error of the tuned model. The caveat is to consider the tuning process as a part of the selected model. According to Efron, the

state-of-the-art method is the .632+ bootstrap estimator (Efron & Tibshirani, 1997). On the other hand, we have not seen the use of the .632+

estimator in the context of post-tuning estimation. In this paper, we consider the kernel SVM and the kernel logistic regression as examples. We

find that the .632+ estimator still performs very well for estimating the generalization error of a CV-tuned kernel SVM and kernel logistic regres-

sion. Moreover, we propose an honest LOOCV (HLOOCV) estimator for estimating the generalization error of a CV-tuned kernel SVM and kernel

logistic regression. We point out that a naive plug-in LOOCV estimator is biased and the honest LOOCV estimator is nearly unbiased. We further

compare the honest LOOCV estimator with the .632+ estimator on various numerical examples and show that the honest LOOCV has very com-

petitive performance even against the .632+ estimator.

F IGURE 1 The mean and variance of the classification error of the kernel SVM. The training data (the sample size: n¼100, the number of
input variables: p¼5) are generated from a mixture of Gaussian models. We draw 10 centres μk from N((2, 2, 0, 0, 0), I), where I is the p-
dimensional identity matrix, and we then randomly pick up one centre and generate one positive-class observation from Nðμk ,4IÞ. Observations
from the negative class are convened similarly, with N((0, 2, 2, 0, 0), I). The Bayes error is 24.3%. We assess the true error on 10,000 observations
that are generated independently. The mean and variance of the classification error are calculated on the basis of 100 independent runs
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2 | METHOD

2.1 | Honest leave-one-out cross-validation

We first formally define the generalization error of a tuned model. Suppose training data F n ¼fxi,yigni¼1 are a random sample drawn from an

unknown distribution PF . Denote by Aλ a family of generic algorithms that are indexed by a parameter λ. By implementing Aλ on the training data

F n, we obtain a model f̂λ which predicts the outcome of data x to be f̂λðxÞ. An example of the generic algorithm Aλ that we use to demonstrate

the idea is the kernel large-margin classifier:

f̂λ ¼ argmin
f �HK

1
n

Xn
i¼1

L yifðxiÞð Þþ λkfk2HK

" #
, ð2:1Þ

where L(u) is a margin-based loss function for classification and HK is the reproducing kernel Hilbert space (RKHS) induced by a kernel function K.

For example, the kernel SVM uses LðuÞ¼maxð1�u,0Þ (the hinge loss), and formulation (2.1) leads to the kernel logistic regression if LðuÞ¼
logð1þe�uÞ (Hastie et al. 2009). To evaluate the accuracy of the model f̂λ, a loss function ϕ(y, s) is used. For classification, ϕ(y, s) is the 0–1 loss by

default, but it can also be the binomial deviance or other loss functions. To select the tuning parameter λ from a candidate set Λ, a generic tuning

procedure Δ such as LOOCV, 10-fold CV or bootstrap is deployed. In this work, we consider LOOCV as the tuning method.

Denote by F½�i�
n the training data with the ith observation removed and denote by f̂

½�i�
λ the predictive model according to the algorithm Aλ

fitted on F½�i�
n . Then the LOOCV error is computed as

cErrϕðf̂λÞ�Xn
i¼1

ϕðyi, f̂
½�i�
λ ðxiÞÞ: ð2:2Þ

The tuning procedure thereby outputs Δ̂ðΛÞ¼ argminλ � Λ
cErrϕðf̂λÞ as an estimate of the “optimal” tuning parameter. After selecting the tuning

parameter λ for the algorithm Aλ, we have finalized a tuned model from the training data. We write the tuned model as cMA,Δ,n, where the sub-

script n is appended to highlight that the model is constructed with the sample size n. We say the tuned model predicts the response of unseen

test data x as cMA,Δ,nðxÞ. Consequently, the generalization error of the tuned model cMA,Δ,n under the ϕ-loss is defined as

ErrϕðcMA,Δ,nÞ¼EF nEðx,yÞ�PFϕðy,cMA,Δ,nðxÞÞ,

which is referred to as the post-tuning generalization error of cMA,Δ,n. Our goal is to construct a good estimate of ErrϕðcMA,Δ,nÞ.
Since the procedure for producing cMA,Δ,n includes the LOOCV tuning, the same tuning procedure should be echoed when evaluating the per-

formance of cMA,Δ,n using CV. Therefore, we suggest using the following CV within CV framework to yield an honest LOOCV estimator to estimate

the generalization error of cMA,Δ,n.

• For each i¼1,…n:

1. for each j¼1,…, i�1, iþ1,…,n and for each λ�Λ, perform the algorithm Aλ on F½�i,�j�
n to obtain the predictive model f̂

½�i,�j�
λ ,

2. select the tuning parameter according to the procedure Δ, that is, compute

Δ̂iðΛÞ¼ argmin
λ � Λ

cErrϕðf̂ ½�i�
λ Þ¼ argmin

λ � Λ

X
j≠ i

ϕðyj , f̂
½�i,�j�
λ ðxjÞÞ,

3. perform the algorithm AΔ̂iðΛÞ on F½�i�
n to obtain the predictive model f̂

½�i�
Δ̂iðΛÞ, and evaluate ϕðyi, f̂

½�i�
Δ̂iðΛÞðxiÞÞ.

• The honest LOOCV (HLOOCV) estimator is defined as

cErrHLOOCV

ϕ ¼1
n

Xn
i¼1

ϕ yi, f̂
½�i�
Δ̂iðΛÞðxiÞ

� �
:

By its construction, it is easy to see that

EF n
cErrHLOOCV

ϕ ¼EF n�1Eðy,xÞ�PF ϕðy,cMA,Δ,n�1ðxÞÞ¼ErrϕðcMA,Δ,n�1Þ:
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Therefore, the honest LOOCV estimator is an exact unbiased estimator of the post-tuning generalization error of the model based on a training

set with the sample size n � 1. Consequently, the honest LOOCV estimator is a nearly unbiased estimator of ErrϕðM̂A,Δ,nÞ, the post-tuning gener-

alization error of the model based on a training set with the sample size n. This nice property holds for each sample size n, and other popular

methods for estimating generalization error discussed in the next subsection do not necessarily have this property.

2.2 | Other proposals

In the literature, there are only few papers on the estimation of the generalization error of a post-tuning model. Tibshirani and Rosset (2019) stud-

ied the prediction error of SURE-tuned regression models. SURE is mostly used for regression models, and the covariance penalty method

(Efron, 1986,2004) can generalize SURE to classification models under the 0–1 loss. However, SURE or the covariance penalty method has to

work with the fixed-X case, which is not the typical setting for some classification methods like the SVM.

It appears to be straightforward to directly use the observed smallest LOOCV error to estimate the generalization error of the tuned model:

cErrPLOOCV

ϕ ¼1
n

Xn
i¼1

ϕ yi, f̂
½�i�
λ̂ ðxiÞ

� �
,

because λ̂ is the chosen regularization parameter for fitting the tuned classifier. We call it the plug-in LOOCV estimator because cErrϕ can be

obtained by replacing λ with λ̂ in Equation (2.2). When the sample size n is large enough so that the variability in selection is ignorable, then the

plug-in estimator is expected to perform well. Given a small sample size, the plug-in estimator is too optimistic. To correct the bias, Tibshirani and

Tibshirani (2009) proposed a bias-adjusted estimator:

cErrTT09ϕ ¼ dBiasþmin
λ � Λ

1
n

Xn
i¼1

ϕ yi , f̂λðxiÞ
� �" #

,

in which the bias term is estimated as

dBias¼min
λ � Λ

1
n

Xn
i¼1

ϕ yi, f̂λðxiÞ
� �" #

�1
n

Xn
i¼1

min
λ � Λ

ϕ yi, f̂λðxiÞ
� �h i

:

We also consider two bootstrap-based methods, namely, .632 estimator and .632+ estimator. Efron (1983) proposed a .632 estimator for

assessing the generalization error for a generic algorithm. It can be directly applied to a tuned classifier. For each b¼1,…,B, non-parametric boot-

strap samples F ? b
n ¼fx ? b

i ,y ? b
i gni¼1 are drawn with replacement from the training data F n. The kernel SVM f̂

½ ? b�
λ̂ is fitted and tuned on F ? b

n , and

the out of bootstrap prediction error is given as

cErrout ¼
Xn

i¼1

XB

b¼1
Ibi ϕðyi , f̂

½ ? b�
λ̂ ðxiÞÞXn

i¼1

XB

b¼1
Ibi

,

where Ibi ¼1 if ðxi ,yiÞ =2F ? b
n and Ibi ¼0 otherwise. The .632 estimator is then defined as follows:

cErr:632ϕ ¼ :368errþ :632cErrout,
where err is the training error.

A more sophisticated .632+ estimator was proposed in Efron and Tibshirani (1997) as an improvement over the .632 estimator:

cErr:632þϕ ¼ cErr:632ϕ þ cErrout�err
� � :368 � :632 � R̂

1� :368R̂
,

where

R̂¼
cErrout�err
γ̂�err

,

4 of 8 WANG AND ZOU

 20491573, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.413 by U

niversity O
f Iow

a, W
iley O

nline L
ibrary on [31/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and

γ̂¼ 1
n

Xn
i¼1

yi

 !
1�1

n

Xn
i¼1

f̂ λ̂ðxiÞ
 !

þ 1
n

Xn
i¼1

f̂ λ̂ðxiÞ
 !

1�1
n

Xn
i¼1

yi

 !
:

The .632+ estimator is regarded as the state-of-the-art method for estimating the generalization error of a generic algorithm. Our experiments

show that it also works very well for the LOOCV-tuned classifiers.

3 | NUMERICAL STUDIES

In this section, we use the kernel SVM and the kernel logistic regression as examples to demonstrate the performance of the honest LOOCV esti-

mator on both simulated and real data. We show that the honest LOOCV estimator is almost unbiased for the generalization error of the tuned

model, as predicted by theory, and its performance is highly competitive with the .632+ estimator.

3.1 | Simulations

In the simulation study, we generated data from a mixture Gaussian distribution following the simulation model used in chapter 12 of Hastie

et al. (2009). Let p be the number of input variables and I be the p-dimensional identity matrix. Let μþ ¼ ð2,…,2,0,…,0Þ and μ� ¼ ð0,…,0,2,…,2Þ,
both of which are p-dimensional vectors and have half of the coordinates to be zero. We generated 10 means μk , k¼1,2,…,10, from Nðμþ, IÞ for
the positive class and 10 means μk , k¼11,12,…,20, from Nðμ�, IÞ for the negative class. For each observation, we first picked an integer m from

{1, 2,… , 20} with equal probability, and we then generated a Nðμm,4IÞ. We varied the sample size n as {100, 200, 300} and fixed the dimension as

p¼20. In each example, we fitted the kernel SVM and the kernel logistic regression with the Gaussian kernel on 10 λ values and selected the opti-

mal λ value by LOOCV. In terms of the estimation of the generalization error of the LOOCV-tuned SVMs, we compared the honest LOOCV esti-

mator, the plug-in LOOCV estimator, the bias-adjusted estimator (Tibshirani & Tibshirani, 2009), the .632 estimator and the .632+ estimator. The

generalization error was computed by using 1 million independently generated test data. By repeating the experiments 500 times, we computed

the bias, standard deviation and the root mean squared error (RMSE) of each estimator.

From Table 1, we make several observations for both the kernel SVM and logistic regression. First, the plug-in LOOCV estimator underesti-

mates the prediction error and thus exhibits a negative bias. Second, the estimator proposed by Tibshirani and Tibshirani (2009) has a significantly

large upward bias and is excessively conservative in this simulation example; and its RMSE is significantly larger than the other methods. Third,

both the .632 and .632+ estimators yield large negative bias; the .632+ estimator is clearly an improvement over the .632 estimator in terms of

RMSE. Fourth, the RMSE of the honest LOOCV estimator is less than the .632+ estimator when n¼200,300 and the honest LOOCV estimator is

the least biased among all the methods. It is worth noting that the existing work on estimating the generalization error all heavily focused on the

bias reduction; for example, see Efron (1983), Efron and Tibshirani (1997) and Tibshirani and Tibshirani (2009). The honest LOOCV estimator is in

general auspicious as it is nearly unbiased and its RMSE is highly competitive with the .632+ estimator, the current state-of-the-art method for

estimating the generalization error. Fifth, in terms of estimation variance, the .632 estimator is the best and the plug-in LOOCV estimator is better

than HLOOCV. The smaller variance of the plug-in LOOCV estimator compensates its large bias, resulting in an even slightly better RMSE than

the honest LOOCV.

3.2 | Benchmark data

We further demonstrate the performance of the honest LOOCV using benchmark data. In order to accurately compute the true generalization

error, we used a large-scale benchmark data set, covtype, from the UCI machine learning repository (Dua & Graff, 2019). The total sample size is

495,141. We randomly selected {100, 200, 300} observations as the training data and treated the remaining data as the test data. The random

selection was repeated 500 times. In Table 2, we displayed the estimators and their bias, standard deviation and RMSE. We discover the honest

LOOCV estimator tends to unbiased. The plug-in LOOCV estimator is biased downward. The estimator by Tibshirani and Tibshirani (2009) over-

estimates the generalization error and yields very large RMSE. We find that the .632+ estimator enjoys the lowest RMSE and does perform better

than the .632 estimator. When n¼200 and 300, the plug-in LOOCV, the honest LOOCV and the .632+ estimators are the three best methods,

and the honest LOOCV has a very clear advantage in terms of bias. Again, we note that in terms of estimation variance, the .632 estimator is the

best and the plug-in LOOCV estimator is better than HLOOCV. The smaller variance of the plug-in LOOCV estimator compensates its large bias,

resulting in an even slightly better RMSE than the honest LOOCV.

WANG AND ZOU 5 of 8
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4 | DISCUSSION

In this work, we have proposed an honest LOOCV estimator for estimating the post-tuning generalization error. We have also compared it with

several proposals in the literature, including a naive plug-in LOOCV estimator, a bias-adjusted method proposed by Tibshirani and

Tibshirani (2009) and two improved bootstrap methods, the .632 and .632+ estimators. The .632+ estimator is so far the state-of-the-art estima-

tor for the generalization error. Although all these methods aim to reduce the bias, our studies reveal that these methods still have a large bias

when estimating the generalization error. By contrast, our honest LOOCV estimator is nearly unbiased, and the variance is roughly on the same

scale with these competitors.

One may concern about high computational cost of the honest LOOCV, especially when conducting the generic algorithm itself is computa-

tionally expensive. We note that the computation issue is not just for the honest LOOCV. The state-of-the-art .632+ method is also computation-

ally demanding. For example, the standard LOOCV implementation of the kernel SVM has computational complexity O(n 4). Thus, the standard

implementation of the honest LOOCV estimator has computational complexity O(n 5), while the .632+ method has computational complexity O

(Bn 4). Usually, B¼200 and hence the cost of the .632+ estimator is at least of the same order of that of the honest LOOCV when n is in the

range 100–500. To handle the computational issue, we have employed the algorithm developed in Wang and Zou (2021) to efficiently compute

the LOOCV-tuned SVM and obtain the honest LOOCV error. As shown in Wang and Zou (2021), the exact LOOCV computation for the kernel

margin classifiers is roughly O(n 3) complexity, which reduces the cost of honest LOOCV estimator and the .632+ estimator down to O(n 4) and O

(Bn 3), respectively. The reduction in computation is also true for the kernel logistic regression.

Finally, we point out that our numerical results suggest that it is a difficult task to estimate the generalization error of a tuned predictive

model when the sample size is not large. Although the honest LOOCV estimator has nearly zero bias, as predicted by theory, all the methods

TABLE 1 Comparisons on five estimators for the post-tuning generalization error of the kernel SVM and the kernel logistic regression

n Method Truth Criteria HLOOCV PLOOCV TT09 .632 .632+

100 SVM 27.06 est (%) 27.11 24.37 33.96 18.67 24.18

Bias (%) 0.06 �2.69 6.91 �8.38 �2.88ffiffiffiffiffiffiffi
var

p
(%) 6.13 5.30 8.63 3.11 5.16

RMSE (%) 6.13 5.95 11.05 8.94 5.91

Logistic 26.79 est (%) 26.64 24.79 31.04 19.06 24.27

Bias (%) �0.15 �1.99 4.25 �7.73 �2.51ffiffiffiffiffiffiffi
var

p
(%) 5.63 5.08 7.31 3.12 4.99

RMSE (%) 5.63 5.46 8.45 8.33 5.59

200 SVM 24.40 est (%) 24.39 22.69 31.63 17.00 20.75

Bias (%) �0.00 �1.71 7.24 �7.40 �3.64ffiffiffiffiffiffiffi
var

p
(%) 3.70 3.11 5.50 1.92 2.82

RMSE (%) 3.70 3.55 9.09 7.64 4.61

Logistic 24.10 est (%) 24.13 22.90 28.25 18.62 21.29

Bias (%) 0.03 �1.20 4.15 �5.48 �2.81ffiffiffiffiffiffiffi
var

p
(%) 3.47 3.08 4.78 2.12 2.77

RMSE (%) 3.47 3.31 6.33 5.88 3.95

300 SVM 23.47 est (%) 23.36 22.19 30.26 17.18 19.91

Bias (%) �0.11 �1.28 6.79 �6.29 �3.56ffiffiffiffiffiffiffi
var

p
(%) 2.99 2.63 4.70 1.71 2.29

RMSE (%) 3.00 2.92 8.26 6.52 4.24

Logistic 23.24 est (%) 23.16 22.33 27.09 19.12 20.74

Bias (%) �0.07 �0.91 3.85 �4.11 �2.49ffiffiffiffiffiffiffi
var

p
(%) 2.71 2.51 3.76 1.87 2.23

RMSE (%) 2.71 2.67 5.38 4.52 3.35

Note: The classifiers are trained on training data generated from the mixture Gaussian distributions. Five estimators are honest LOOCV (HLOOCV), plug-in

LOOCV (PLOOCV), the bias-adjusted method proposed in Tibshirani and Tibshirani (2009), .632 estimator and .632+ estimator. The term “Truth” stands
for the true generalization error computed via Monte Carlo. Reported numbers are the estimates (in the row labelled est) as well as the corresponding bias,

standard deviation
ffiffiffiffiffiffiffi
var

p� �
and root mean squared error (RMSE), based on 500 replicates.
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included in the study exhibit comparable but large variance. It would be very interesting to have an estimator that can further reduce the estima-

tion variance without sacrificing the bias property of honest LOOCV, and the new estimator should at least be computationally manageable in

order to be considered as a practical solution.
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