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Density-Convoluted Support Vector Machines for
High-Dimensional Classification

Boxiang Wang, Le Zhou , Yuwen Gu , and Hui Zou

Abstract— The support vector machine (SVM) is a popular
classification method which enjoys good performance in many
real applications. The SVM can be viewed as a penalized
minimization problem in which the objective function is the
expectation of hinge loss function with respect to the standard
non-smooth empirical measure corresponding to the true under-
lying measure. We further extend this viewpoint and propose a
smoothed SVM by substituting a kernel density estimator for
the measure in the expectation calculation. The resulting method
is called density convoluted support vector machine (DCSVM).
We argue that the DCSVM is particularly more interesting
than the standard SVM in the context of high-dimensional
classification. We systematically study the rate of convergence
of the elastic-net penalized DCSVM under general random
design setting. We further develop novel efficient algorithm for
computing elastic-net penalized DCSVM. Simulation studies and
ten benchmark datasets are used to demonstrate the superior
classification performance of elastic-net DCSVM over other
competitors, and it is demonstrated in these numerical studies
that the computation of DCSVM can be more than 100 times
faster than that of the SVM.

Index Terms— Classification, ultra-high dimension, DCSVM,
support vector machines, kernel density smoother.

I. INTRODUCTION

DUE to the advanced technology for data collection over
the past decades, there has been a surge of data com-

plexity in many research fields such as genomics, genetics,
and finance, among others. Consequently, it is very common
for the number of predictors in the dataset to be far larger than
the number of observations [6]. For example, in genomics
it is crucial to build a classifier for the purpose of disease
diagnosis, with thousands of candidate genes at hand but only
tens of instances available for study. Such high dimensionality
in data makes traditional classification methods infeasible and
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poses new challenges from both theoretical and computational
perspectives.

One method for performing high dimensional classification
is the penalized large margin classifier. The standard support
vector machine (SVM), initially proposed and investigated
in [4] and [29], has an objective equal to hinge loss plus
an �2 penalty. It is also referred to as �2-norm SVM. When
the dimension greatly exceeds the sample size and there are
many noisy features in the predictor set, it has been shown
that it is more beneficial to use a sparse penalty such as
the �1-norm penalty (a.k.a. the lasso) to replace the �2-norm
penalty in order to perform classification and variable selection
simultaneously in high dimensional setting [33], [37]. Suppose
the training data consists of n observations {(yi,xi)}ni=1,
where xi = (xi1, . . . , xip)T ∈ Rp are predictors and yi ∈
{−1, 1} is the class label for the ith subject. Consider the
�1 norm SVM for example. It can be written as

min
β0,β

1
n

n�
i=1

L
�
yi(xT

iβ + β0)
�

+ λ�β�1, (I.1)

where L(u) = (1 − u)+ is the hinge loss. Just like in lasso
regression, the �1 penalty induces sparsity in the solution
and is thus capable of removing irrelevant features. More
recently, [23] investigated the rate of convergence of the
�1-norm SVM and an error bound.

The sparse penalized SVM can be computationally intensive
especially when the number of predictors is huge in the
dataset, owing to the non-differentiable loss function part.
It is known that penalized problem in high dimensions with a
smooth loss function can be efficiently computed by cyclical
coordinate descent algorithm [9]. Nevertheless, the SVM is
based on the non-differentiable hinge loss, which means that
there is no convergence guarantee if one uses cyclical coordi-
nate descent to solve the SVM. In principle, coordinate descent
may not give the right solution due to the non-differentiability
of the objective function [20], [27]. A similar problem under
regression context is the quantile regression, in which the
check loss is not differentiable [7]. The typical method of solv-
ing quantile regression is the interior point algorithm. Since
�1-norm SVM can be transformed into linear programming,
one may also consider interior point algorithm for solving it.
However, interior point algorithm may not scale well with high
dimensional input and thus is not suitable for solving SVM in
high dimensions.
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Recently, [8] studied an interesting smoothing technique
for solving quantile regression with statistical guarantees.
Later, [25] further studied the smoothing quantile regression
under high dimensional settings and showed that the statistical
property of quantile regression is maintained after smoothing.
Motivated by their work, we develop a smooth version of SVM
from statistical perspective, as opposed to trying to solve it
exactly. Consider the first term in (I.1)

1
n

n�
i=1

L
�
yi(xT

iβ + β0)
�
, (I.2)

which is non-smooth. If we could replace it by some smooth
loss such that the resulting estimator has nice theoretical prop-
erties, then we should focus on solving the smooth problem
instead of the original problem. In fact, one may view (I.2)
as the expectation of the hinge loss function with respect to
the empirical measure assigning 1

n probability mass to each
yi(xT

iβ + β0), i = 1, . . . , n. The empirical measure is viewed
as an estimator for the true distribution of the random variable
y(xTβ + β0). Clearly, if we estimate the true distribution by
using a smoothed kernel density estimator, see [e.g., Chapter 6
of 12], then we can take the expectation of the hinge loss
function with respect to the distribution determined by such
smoothed kernel density estimator. This leads us to a new
objective function which we can use to replace the original
objective function in (I.2). The resulting estimator is named
as density convoluted support vector machine (DCSVM), since
the kernel density estimator has a convolution interpretation.
We further study the following general form of penalized
DCSVM in high dimensions using the elastic-net penalty [38].
The resulting estimator is called elastic-net DCSVM, which
involves both �1-DCSVM and �2-DCSVM as special cases.
By its convexity and smoothness, elastic-net DCSVM can be
efficiently solved by using the generalized coordinate descent
algorithm [35].

In this paper, we first study the theoretical properties of
the elastic-net DCSVM. We give the convergence rate of the
elastic-net DCSVM under the general random design setting.
Furthermore, we developed a novel efficient algorithm for
computing elastic-net DCSVM. We used simulation stud-
ies and ten benchmark datasets to demonstrate the superior
classification performance of elastic-net DCSVM over its
competitors, and the computation speed of DCSVM can be
two orders of magnitude faster than that of SVM.

II. DENSITY-CONVOLUTED SVM

A. Notation and Definitions

We first introduce some notation that is used throughout the
paper. For an arbitrary index set A ⊂ {1, . . . , p}, any vector
c = (c1, . . . , cp) and any n×p matrix U, let cA = (ci, i ∈ A),
and let UA be the submatrix with columns of U whose
indices are in A. The complement of an index set A is
denoted as Ac = {1, . . . , p} \ A. For any finite set B, let
|B| be the number of elements in B. For a vector c ∈ Rp

and q ∈ [1,∞), let �c�q = (
�p

j=1 |cj |q)
1
q be its �q norm,

let �c�∞ (or �c�max) = maxj |cj | be its �∞ norm, and let
�c�min = minj |cj | be its minimum absolute value. For a

matrix M, let λmin(M) and λmax(M) be its eigenvalue with
smallest absolute value and largest absolute value, respectively.
This is the common notation for eigenvalues of a matrix,
and λmin, λmax should not be confused with the penalization
parameter used in a penalty function. For any matrix G, let
�G� =

�
λmax(GTG) be its spectral norm. In particular, for

a vector c, �c� = �c�2. For a, b ∈ R, let a ∧ b = min{a, b}
and a ∨ b = max{a, b}. For a sequence {an} and another
nonnegative sequence {bn}, we write an = O(bn) if there
exists a constant c > 0 such that |an| ≤ cbn for all n ≥ 1.
Also, we use an = o(bn), or an 
 bn, to represent
limn→∞ an

bn
= 0. We write bn � an if an 
 bn. Let

(Ω,G,P) be a probability space on which all the random
variables that appear in this paper are defined. Let E[·] be
the expectation corresponding to the probability measure P.
Let ψ : [0,∞) → [0,∞] be a nondecreasing, convex function
with ψ(0) = 0, then we denote �Z�ψ = inf{t > 0 :
E[ψ( |Z|

t )] ≤ 1} as the ψ-Orlicz norm for any random variable
Z . In particular, if p ≥ 1, let ψp(x) := ex

p − 1 which is
a nondecreasing convex function with ψp(0) = 0, then we
denote its corresponding Orlicz norm as �Z�ψp = inf{t >
0 : E[e

|Z|p
tp ] ≤ 2} where Z is any random variable. For a

sequence of random variables {Zn}n≥1, we write Zn = Op(1)
if limM→∞ lim supn→∞ P(|Zn| > M) = 0, and we write
Zn = op(1) if limn→∞ P(|Zn| > �) = 0, ∀� > 0. For
two sequences of random variables Zn and Z �

n, we write
Zn = Op(Z �

n) if Zn

Z�
n

= Op(1), and we write Zn = op(Z �
n) if

Zn

Z�
n

= op(1).

B. Density-Convoluted SVM

We use X = (X1, . . . ,Xp) to denote the design matrix,
where Xj = (x1j , . . . , xnj)T contains observations for the jth
variable, and use y = (y1, . . . , yn)T to represent the response
vector. We focus on the general case where the observed
data {(yi,xi)}ni=1 are i.i.d. samples from the distribution of a
random vector (y,x). Let the jth component of the random
vector x be denoted as xj . Meanwhile, let x̃ = (1,xT)T and
x̃i = (1,xT

i)
T, i = 1, . . . , n. To perform the classification

task, the support vector machine [SVM, 29] seeks a separating
hyperplane {x : β0 + xTβ = 0} where

min
β0,β,ξi

1
2
�β�2

2

subject to yi
�
β0 + x�

i β
� ≥ 1 − ξi, ξi ≥ 0,

n�
i=1

ξi ≤ c.

(II.1)

It is well known that the above problem can be equiva-
lently formulated as a penalized empirical risk minimization
problem:

min
β0,β

1
n

n�
i=1

L
�
yi(xT

iβ + β0)
�

+ λ0�β�2
2, (II.2)

where L(u) = (1 − u)+ = max{1 − u, 0} is known as the
SVM hinge loss and λ0 > 0 is a tuning parameter that is
one-to-one correspondent to the constant c in problem (II.1);
a reference can be seen in Chapter 12 of [12] for example.
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Some recent developments of the SVM include [3], [13], and
[17] to name a few.

Let us consider the population version of risk appearing in
(II.2). If we define new random variable U = y(xTβ+β0) and
let F (u; β, β0) be its cumulative distribution function (cdf),
then the population risk is written as

E[L
�
y(xTβ + β0)

�
] =

� ∞

−∞
L(t)dF (t; β, β0).

The unpenalized objective function in (II.2) can be fur-
ther viewed as

�∞
−∞ L(t)dF̂ (t; β, β0), where F̂ (t; β, β0) =

1
n

�n
i=1 I{yi(xT

iβ+β0)≤t} is the empirical cdf based on i.i.d.
realizations of U , where I is the indicator function. The usage
of the discontinuous empirical cdf here makes the objective
in (II.2) to have the same degree of smoothness as the
hinge loss L(·), i,e. continuous but nondifferentiable. This has
motivated us to consider an alternative estimator for the cdf.
If we use an estimator F̃ (· ; β, β0) that is smooth enough, the�∞
−∞ L(t)dF̃ (t; β, β0) shall lead us towards a new objective

which is differentiable to certain degrees.
In particular, we consider the cdf from the kernel density

estimator

F̃ (t; β, β0) =
� t

−∞

1
nh

n�
i=1

K
	u− yi(xT

iβ + β0)
h



du,

where K : R → [0,∞) is a smooth kernel function sat-
isfying K(−u) = K(u), ∀u ∈ R,

�∞
−∞K(t)dt = 1 and�∞

−∞ |t|K(t)dt <∞, and h > 0 is the bandwidth parameter to
be tuned. Replacing F̂ by F̃ gives the new objective function,� ∞

−∞
L(t)dF̃ (t; β, β0)

=
1
n

n�
i=1

� ∞

−∞
L(t)

1
h
K
	 t− yi(xT

iβ + β0)
h



dt

� 1
n

n�
i=1

Lh
�
yi(xT

iβ + β0)
�

where Lh(t) =
�∞
−∞(1−u)+ 1

hK
�
u−t
h

�
du. Note that Lh(·) is

a convex function that is at least second order differentiable.
Also, it satisfies the relation Lh = L ∗ Kh where Kh(u) =
1
hK(uh ) and the operation “∗” stands for convolution.

As such, with the penalty term λ0�β�2
2, we obtain

min
β0,β

n�
i=1

Lh(yi(xT
iβ + β0)) + λ0�β�2

2,

We treat the classifier arisen from the above problem as a new
classifier and coin it the density-convoluted SVM (DCSVM).
The bandwidth h is used to index the new classifier.

As discussed above, DCSVM originates from a statistical
view of the SVM, while it shows merit from the compu-
tational perspective as it overcomes the non-differentiability
of the original SVM problem. Smoothing a non-differentiable
problem through convolution can be traced back to the idea of
mollification [10] and has also been studied in the optimization
community, for example, [1] and [24]. The method was
recently adopted to smooth the quantile regression by [14], [8],
and [25].

In this work, we focus on two most popular kernel functions,
Gaussian kernel and Epanechnikov kernel in DCSVM, and we
denote the corresponding convoluted loss function by LGh (v)
and LEh (v), respectively.

For the Gaussian kernel K(u) = 1√
2π

exp{−u2/2}, one can
show that

LGh (v) = (1 − v)Φ
�

1 − v

h

�
+

h√
2π

exp

− (1 − v)2

2h2

�
,

where Φ(·) is the cumulative distribution function of the
standard normal distribution.

For the Epanechnikov kernel, namely K(u) = 3
4 (1 −

u2)I{−1≤u≤1},

LEh (v) =⎧⎪⎪⎨
⎪⎪⎩

1 − v, v ≤ 1 − h,

(1 − v + h)3(3h− (1 − v))
16h3

, 1−h < v ≤ 1 + h,

0, v ≥ 1 + h.

The top row of Figure 1 depicts the DCSVM losses with
Gaussian kernel and Epanechnikov kernel.

Intuitively, h should be small such that the density con-
voluted support vector machine is very close to the support
vector machine. According to density estimator, the optimal
rate for h is O(n−1/5). So, we adopt h = Cn−1/5 in our
implementation, where C is some numerical constant within
the range (0.25, 3).

C. Sparse Density-Convoluted SVM

Let (β∗
0 ,β

∗) = argmin(β0,β)∈R×Rp E
�
Lh

�
y(xTβ + β0)

��
.

In high dimensions, we consider designing the estimator under
a sparsity assumption that β∗ has many zero components. Let
A = {j : β∗

j �= 0, 1 ≤ j ≤ p} be the support set of β∗,
i.e., the set of indices of the important covariates. Let s =
|A|. Throughout this paper, we allow p = pn and s = sn
to diverge with n, and we assume sn ≥ 1 and pn goes to
infinity as n goes to infinity. For convenience, we still use
p and s to represent these quantities since no confusion is
caused. In ultra-high dimensions, the dimension p is allowed to
increase exponentially with the sample size n. We also assume
that s is relatively of smaller order compared to n, which is
necessary for the existence of a consistent estimator.

To perform the classification for high-dimensional data,
we present sparse DCSVM with an elastic-net penalty,

(β̂0, β̂) := argmin
(β0,β)∈R×Rp

1
n

n�
i=1

Lh(yi(xT
iβ + β0))

+ λ0�β�2
2 + λ�β�1. (II.3)

The �1-penalty is used to induce sparsity in the estimator.
We also consider the following version of sparse DCSVM
with only an �1-penalty term:

(β̃0, β̃) := argmin
(β0,β)∈R×Rp

1
n

n�
i=1

Lh(yi(xT
iβ + β0)) + λ�β�1.

(II.4)
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Fig. 1. Top row: plots of LG
h (v) and LE

h (v), the density-convoluted SVM loss functions with Gaussian kernel (left) and Epanechnikov kernels (right).
Bottom row: plots of the first-order derivatives, LG′

h (v) and LE′
h (v).

Borrowing the commonly used terminologies for different
penalties in high dimensional literature, we refer to the estima-
tor in (II.3) as elastic-net DCSVM, and refer to the estimator
in (II.4) as lasso DCSVM. Note that the lasso DCSVM is a
special case of elastic-net DCSVM with λ0 = 0.

III. THEORETICAL STUDIES

We now state the assumptions needed to establish our
theoretical results. We first impose the following conditions
on the random design.

Assumption 1: The data {(yi,xi)}ni=1 and (y,x) are inde-
pendent and identically distributed on R × Rp, where x is a
zero-mean sub-exponential random vector, i.e. E[x] = 0, and
there exists a constant m0 > 0 such that

sup
a∈Rp:�a�2≤1

�aTx�ψ1 ≤ m0.

By definition of Orlicz norm and Markov’s inequality, this
further implies

sup
a∈Rp:�a�2≤1

P(|aTx| > t) ≤ 2e−
t

m0 , ∀t ≥ 0.

For any index set A ⊂ {1, . . . , p}, consider the cone
SA := {(δ,u) ∈ R × Rp : �uAc�1 ≤ 3�uA�1 + |δ|}.
Such type of cone has been widely considered in literature
on high dimensional statistics. Meanwhile, let I(β0,β) :=
E[L��

h

�
y(β0 + xTβ)

�
x̃x̃T] be the Hessian matrix of the pop-

ulation loss, or information matrix. We impose the following
condition on the information.

Assumption 2: There exists a constant ρ > 0 such that

min
(δ,u)∈SA:δ2+�u�2

2=O( s log p
n )

λmin

�
I(β∗

0 + δ,β∗ + u)
� ≥ ρ

for large enough n.

Assumption 1 is a general setting in the random design,
which relaxes the classical condition that the components of
x are bounded random variables [23]. Assumption 2, which
is a restricted eigenvalue (RE) type of condition, is needed
to establish �2-type error bound for �1-penalized type of
estimator. Similar conditions have been widely adopted in
the literature [5], [7]. Besides restricted minimum eigenvalue,
restricted maximum eigenvalue is also imposed for the random
sample covariance matrix in [23] to establish theory for
�1-norm SVM. Such condition is avoided in our theory, which
is achieved by a more careful analysis and a different strategy
in our proof.

Theorem 1: Assume assumptions 1-2 hold, and s log p =
o(n). Choose the tuning parameters such that 8λ0�β∗�max <
λ. Then there exists a large enough constant c0 > 0 such

that with the choice λ = c0

�
log p
n , the elastic-net DCSVM

estimator (β̂0, β̂) satisfies

|β̂0 − β∗
0 |2 + �β̂ − β∗�2

2 = Op

	s log p
n



.

Theorem 1 shows that the sparse density convoluted SVM
estimator shares the same optimal rate of convergence as
the �1-SVM [23]. Meanwhile, the sparse DCSVM has better
computational efficiency than penalized SVM due to the
smoothness of its loss function.

IV. COMPUTATION

In this section, we develop an efficient algorithm for com-
puting the solution path of DCSVM.

At the outset, we present the first-order derivative of the
density-convoluted SVM loss and show they are Lipschitz
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continuous in Lemma 1:

LG�
h (v) = −Φ

�
1 − v

h

�
,

LE�
h (v) =⎧⎪⎪⎨

⎪⎪⎩
−1, v ≤ 1 − h,

− (1 − v + h)2(2h− (1 − v))
4h3

, 1−h < v ≤ 1 + h,

0, v ≥ 1 + h.

Lemma 1: Let LGh (v) and LEh (v) be the DCSVM loss using
Gaussian kernel and Epanechnikov kernel, respectively. For
v1 < v2,

|LG�
h (v1) − LG�

h (v2)| < cGh |v1 − v2|, (IV.1)

|LE�
h (v1) − LE�

h (v2)| < cEh |v1 − v2|, (IV.2)

where the Lipschitz constants are given as cGh = 1√
2πh

and
cEh = 3

4h .
The bottom row of Figure 1 depicts LG�

h (v) and LE�
h (v).

Lemma 1 gives rise to the following quadratic majorization
condition for the DCSVM:

Lh(v1) ≤ Lh(v2) + L�
h(v2)(v1 − v2) +

ch
2

(v1 − v2)2,

where Lh is exemplified by LGh and LEh and ch is the
corresponding Lipschitz constant.

Based on the Lipschitz condition, we develop a generalized
coordinate descent (GCD) algorithm [35] to solve those sparse
penalized DCSVMs. We first consider the adaptive lasso
penalty. The algorithm can be easily adjusted to handle lasso
and elastic net.

Without loss of generality, we assume each Xj has zero
mean and unit length. In a coordinate-wise manner, suppose
the coordinate β1, β2, . . . , βj−1 have been updated and we
now update βj . Denote by β̃0 and β̃ by the current solution
and let vi = yi(β̃0 + xT

iβ̃). To update βj , instead of solving
the coordinate-wise update function,

F (βj) =
1
n

n�
i=1

Lh

	
vi + yixij

	
βj − β̃j




+ λwj |βj |,

we solve its majorization function

Q (βj) =
1
n

n�
i=1

Lh (vi) +
1
n

n�
i=1

L�
h (vi) yixij

	
βj − β̃j




+
ch
2

	
βj − β̃j


2

+ λwj |βj |
that is obtained through the quadratic majorization condition.
The minimizer of Q (βj) is c1c2, where

c1 = β̃j − 1
chn

n�
i=1

L�
h(vi)yixij ,

c2 =

⎛
⎝1 − λwj���chβ̃j − 1

n

�n
i=1 L

�
h(vi)yixij

���
⎞
⎠

+

.

Likewise, β0 is updated to be β̃0 − 1
chn

�n
i=1 L

�
h(vi)yi.

In our implementation, we further apply the strong rule [26],
warm start, and active set strategy [9] to further accelerate the
algorithm.

V. NUMERICAL STUDIES

A. Simulation

In this section, we use several simulation examples to
demonstrate the performance of DCSVM.

The response variables of all the simulated data are binary
and the two classes are balanced, i.e., P (Y = 1) = P (Y =
−1) = 0.5. In each example, define the p-dimensional mean
vectors μ+ = (0.7, 0.7, 0.7, 0.7, 0.7, 0, 0, . . . , 0) and μ− =
−μ+, where p = 500 or 5000 in our experiments. Each
observation from the positive class is drawn from N(μ+,Σ)
and each observation from the negative class is drawn from
N(μ−,Σ). We consider three different choices of Σ. In exam-
ple 1, Σ = Ip×p so the variables are independent. In both
examples 2 and 3,

Σ =
�

Σ�
5×5 05×(p−5)

0(p−5)×5 I(p−5)×(p−5)

�

where Σ�
5×5 have all diagonal elements of 1 and off-diagonal

elements of ρ in example 2, and (Σ�
5×5)i,j = ρ|i−j| in

example 3. We use ρ = 0.2, 0.7, and 0.9.
We first compared elastic-net DCSVM with Gaussian kernel

and Epanechnikov kernel with elastic-net SVM [33] and
elastic-net logistic regression that is fitted using the R package
gcdnet [35]. For each example, the training size is 200 and
we use five-fold cross-validation to select the best tuple of
(h, λ0, λ) where h is chosen from 0.1, 0.25, 0.5, and 1, λ0 is
selected from 0.5 ∗ (10−4, 10−3, 10−2, 10−1, 1, 5), and λ is
searched along the solution path; for the SVM and logistic
regression, we select λ0 and λ in the same manner.

We record the prediction error and run time in Table I. The
run time include all the time spent on tuning and training the
models. We observe the DCSVM with Epanechnikov kernel
has slightly better performance than DCSVM with Gaussian
kernel, and both of them have better prediction accuracy than
the other two methods. DCSVM with Epanechnikov kernel is
the fastest while the elastic-net SVM is the slowest.

All the methods exhibited in Table I use elastic-net penalty.
We now study the performance when using other sparse
penalities. Due to the overall best performance, we stay
with DCSVM with Epanechnikov kernel and we compare the
prediction accuracy and variable selection when using lasso
and elastic-net penalties. We present the results in Table II.
In general, we find the elastic-net has the best performance
in both prediction error and variable selection.

To visualize the algorithmic convergence, we generate a
convergence plot when using GCD algorithm to computing
a DCSVM with certain tuning parameters in Example 1 with
n = 500. As displayed in Figure 2, we see the objective value
strictly decreases.

B. Benchmark Data Applications

In this section, we demonstrate the performance of DCSVM
using ten benchmark data, which are available from UCI
machine learning repository. We randomly split each data set
into a training set and a test set with a 1:1 ratio. On the training
set, we fit elastic-net DCSVM, elastic-net logistic regression,
and elastic-net SVM, and tune each method using five-fold
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TABLE I

COMPARISON OF PREDICTION ERROR (IN PERCENTAGE) AND RUN TIME (IN SECOND) OF ELASTIC-NET DENSITY-CONVOLUTED SVM WITH GAUSSIAN
AND EPANECHNIKOV KERNELS, ELASTIC-NET SVM, AND ELASTIC-NET LOGISTC REGRESSION. UNDER EACH SIMULATION SETTING, THE

METHOD WITH THE LOWEST PREDICTION ERROR IS MARKED BY A BLACK BOX. ALL THE QUANTITIES ARE AVERAGED OVER

50 INDEPENDENT RUNS AND THE STANDARD ERRORS OF THE PREDICTION ERROR ARE GIVEN IN PARENTHESES

TABLE II

COMPARISON OF PREDICTION ERROR (IN PERCENTAGE) AND VARIABLE SELECTION OF DENSITY-CONVOLUTED SVM WITH EPANECHNIKOV KERNELS
USING LASSO AND ELASTIC-NET (ENET) PENALTIES. DENOTE BY C AND IC THE NUMBER OF CORRECTLY AND INCORRECTLY SELECTED

VARIABLES, RESPECTIVELY. UNDER EACH SIMULATION SETTING, THE METHOD WITH THE LOWEST PREDICTION ERROR IS MARKED

BY A BLACK BOX. ALL THE QUANTITIES ARE AVERAGED OVER 50 INDEPENDENT RUNS AND THE STANDARD ERRORS OF THE
PREDICTION ERROR ARE GIVEN IN PARENTHESES

cross-validation. The prediction accuracy is computed based
on the test set.

We present the result in Table III. We observe the elastic-net
DCSVM has the best performance in general. We further
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TABLE III

COMPARISON OF PREDICTION ERROR (IN PERCENTAGE) AND RUN TIME (IN SECOND) OF ELASTIC-NET DENSITY-CONVOLUTED SVM WITH
EPANECHNIKOV KERNEL, ELASTIC-NET SVM, AND ELASTIC-NET LOGISTC REGRESSION. FOR EACH BENCHMARK DATA, THE METHOD WITH

THE LOWEST PREDICTION ERROR IS MARKED BY A BLACK BOX. ALL THE QUANTITIES ARE AVERAGED OVER 50 INDEPENDENT RUNS

AND THE STANDARD ERRORS OF THE PREDICTION ERROR ARE GIVEN IN PARENTHESES

TABLE IV

COMPARISON OF PREDICTION ERROR (IN PERCENTAGE) OF ELASTIC-NET DENSITY-CONVOLUTED SVM WITH �1 LDA, RANDOM FOREST, AND
NEURAL NETS. FOR EACH BENCHMARK DATA, THE METHOD WITH THE LOWEST PREDICTION ERROR IS MARKED BY A BLACK BOX. ALL

THE QUANTITIES ARE AVERAGED OVER 50 INDEPENDENT RUNS AND THE STANDARD ERRORS OF THE PREDICTION

ERROR ARE GIVEN IN PARENTHESES

Fig. 2. Convergence plot for solving a DCSVM with cross-validated tuning
parameters using GCD algorithm under the simulation setting in Example 1
with n = 500.

compare the elastic-net DCSVM with �1 LDA [34], random
forest (implemented in the R package randomForest [19]),
and neural nets (implemented in the R package nnet [30]).
As shown in Table IV, DCSVM in general outperforms the
other three methods.

VI. DISCUSSION

In this article we have proposed a new classification method
called DCSVM, which is motivated from smoothing the SVM
by the density convolution. We have imposed the elastic-net
penalty on the DCSVM to perform high-dimensional clas-
sification. We have rigorously shown elastic-net DCSVM
retains the nice statistical property of the sparse SVM and
share the same convergence rate Op(

�
s log p/n). It is also

worth noting that the theoretical conditions imposed in this
paper is more general than that imposed for the sparse SVM.
By showing elastic-net DCSVM satisfies the Lipschitz condi-
tion, we developed an efficient algorithm for solving elastic-
net DCSVM. We further rigorously justified that the algorithm
converges at least linearly. With extensive numerical studies,
we have demonstrated the superior performance of DCSVM
over the original SVM, as well as many popular classifiers
such as logistic regression, LDA, random forest, and neural
nets. The R package for DCSVM is available from URL:
https://z.umn.edu/dcsvm.
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In this work, we focus on binary classification. In the future
research, it will be interesting to generalize the proposal in
this paper to multi-class classification. A potential approach
is the so-called margin vector that has been developed in [39]
and [32] to extend the binary large-margin classifiers to the
multi-class situation.

APPENDIX

A. Proof of Theorem 1

We first give some general formula regarding the loss
function Lh and its derivatives. Recall Lh(u) =

�∞
−∞(1 −

u+ v)+ 1
hK( vh )dv, u ∈ R. A direct calculation gives

Lh(t) =
� 1

−∞

1 − u

h
K(

t− u

h
)du,

L�
h(t) = −

� 1−t
h

−∞
K(u)du,

L��
h(t) =

1
h
K(

1 − t

h
), ∀t ∈ R.

It is important to note that |L�
h(·)| ≤ 1, since K(t) ≥ 0, ∀t

and
�∞
−∞K(u)du = 1.

Proof of Theorem 1: By definition of the elastic-net-
penalized DCSVM in (II.3), we see

1
n

n�
i=1

Lh
�
yi(xT

iβ̂ + β̂0)
�

+ λ�β̂�1 + λ0�β̂�2
2

≤ 1
n

n�
i=1

Lh
�
yi(xT

iβ
∗ + β∗

0)
�

+ λ�β∗�1 + λ0�β∗�2
2.

By triangle inequality, we further see

1
n

n�
i=1

Lh
�
yi(xT

iβ̂ + β̂0)
�− 1

n

n�
i=1

Lh
�
yi(xT

iβ
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0 )
�

+ λ0(�β̂�2
2 − �β∗�2

2)

≤ λ(�β∗�1 − �β̂�1)

≤ λ(�β∗
A − β̂A�1 + �β̂A�1 − �β̂A�1 − �β̂Ac − β∗

Ac�1)
= λ�uA�1 − �uAc�1),

where we denote u := β̂−β∗. On the other hand, by convexity
of Lh(·), we have

1
n

n�
i=1

Lh
�
yi(xT

iβ̂ + β̂0)
�− 1

n

n�
i=1

Lh
�
yi(xT

iβ
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2 − �β∗�2
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≥ 1
n
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h

�
yi(xT
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0 )

+
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∗T +
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�
yixT
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��� 1
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L�
h

�
yi(xT
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�
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��� · |δ|
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���2λ0β
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1
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n�
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L�
h

�
yi(xT

iβ
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0 )
�
yixi

���
∞

(�uA�1 + �uAc�1),

where δ := β̂0 − β∗
0 . Define events

E1 :=

������ 1n
n�
i=1

L�
h

�
yi(xT

iβ
∗ + β∗

0)
�
yi

����� ≤ λ

2

�
,

E2 :=������2λ0β
∗ +

1
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yixi

�����
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.

Note that E
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�
y(xTβ∗ + β∗

0)
�
y
�

= 0, and
��L�
h

�
y(xTβ∗ +

β∗
0)
�
y
�� ≤ 1. Hence by Hoeffding’s inequality,

P(Ec
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= P
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≤ 2 exp
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− nλ2

8

�
.

Meanwhile, we have E
�
L�
h

�
y(xTβ∗ + β∗

0 )
�
yx

�
= 0 by the

definition of β∗ and optimality condition. By the choice of
tuning parameters we have

P(Ec
2)

= P
	��2λ0β

∗ +
1
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Notice that by assumption 1 and |L�
h(·)| ≤ 1,

E

 
e|L

�
h(yi(x

T
iβ∗+β∗

0 ))yixij |/m0

!
≤ E

 
e

|xij |
m0

!
≤ 2.

This implies that

�L�
h(yi(x

T
iβ

∗ + β∗
0 ))yixij�ψ1 ≤ m0,

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}.
By Theorem 1.4 in [11], there exists an absolute constant

η0 > 0 such that

P
	�� 1
n

n�
i=1

L�
h

�
yi(xT

iβ
∗ + β∗

0)
�
yixij

�� > λ

4



(A.1.1)

≤ 2e
− 1

η0
( λ2

16m2
0
∧ λ

4m0
)n
.

So following (A.1.1) we have

P(Ec
2) ≤ 2pe

− 1
η0

( λ2

16m2
0
∧ λ

4m0
)n
.

Now, under E1 ∩ E2, combining (A.1.1) and (A.1.1) we
have

−λ
2
(|δ| + �uA�1 + �uAc�1) ≤ λ(�uA�1 − �uAc�1),

which implies �uAc�1 ≤ 3�uA�1 + |δ|, or (δ,u) ∈ SA.
Define F (β0,β) = 1

n

�n
i=1 Lh

�
yi(xT

iβ + β0)
�

for any
(β0,β) ∈ R × Rp. Also, define

C(r) =
�
(w,w) ∈ SA : |w|2 + �w�2

2 = r2
s log p
n

�
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for any r > 0. Let G(β0,β) = F (β0,β)−F (β∗
0 ,β

∗), and let

H(r) = sup
(β0,β)∈(β∗

0 ,β
∗)+C(r)

��G(β0,β) − E[G(β0,β)]
��.

We give an upper bound for E[H(r)]. Let θ1, . . . , θn be
i.i.d. Rademacher random variables (i.e. P(θi = 1) = P(θi =
−1) = 1

2 ), which is independent from all the other random
elements. By the symmetrization inequality (see for instance,
Lemma 2.3.1 in [28]) and contraction inequality (see for
instance, Theorem 4.12 in [18]), |L�

h(·)| ≤ 1 and Cauchy-
Schwarz inequality, we have
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.

By assumption 1 and definition of Orlicz norm, we know
�θiyixij�ψ1 = �xij�ψ1 ≤ m0, ∀i ∈ {1, . . . , n}, ∀j ∈
{1, . . . , p}. Also, it is straightforward to see �θiyi�ψ1 = 1

log 2 .
By Proposition 2.7.1 in [31], there exists a constant c1 >
0 such that E[etσiyixij ] ≤ ec

2
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2
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2
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2
for

all |t| < 1
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, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}. By Jensen’s
inequality, we have for any 0 < t < 1
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Consequently, for any 0 < t < 1
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By the condition of Theorem 1, we know
√

log p+ log 4
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so for large enough n,
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in (A.1.2) we obtain
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for large enough n. Thus, combining (A.1.2) and (A.1.3) we
get
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This implies that H(r) = Op( rs log p
n ). For any T > 0, define

event

GT := {H(r) ≤ Trs log p
n

},

then we have limT→∞ lim supn→∞ P (Gc
T ) = 0.

Next, for any (β0,β) ∈ (β∗
0 ,β

∗)+ C(r), we derive a lower
bound for E[G(β0,β)]. For large enough n, for any (β0,β) ∈
(β∗
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∗)+C(r), by Taylor’s theorem and assumption 2, there
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On the other hand, by our choice for tuning parameters, for
any (β0,β) ∈ (β∗

0 ,β
∗) + C(r) we have
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and we also have, by convexity of �2 norm,

λ0(�β�2
2 − �β∗�2
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≥ 2λ0β

∗T(β − β∗)
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.

Thus, combining (A.1.4), (A.1.4) and (A.1.4), under GT ,
we have for any (β0,β) ∈ (β∗
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∗) + C(r),
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Now, choose r = 4T+28c0
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Recall that under E1 ∩ E2,

(β̂0, β̂) ∈ (β0,β
∗) + SA.

We next claim that under E1 ∩ E2 ∩ GT ,
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Moreover, since (β̂0, β̂) − (β0,β
∗) ∈ SA under E1 ∩ E2 and

SA is a cone, we know
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By convexity of F (·) and norm functions and by (A.1.4),
we further have
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under E1 ∩ E2 ∩ GT . The above inequality implies
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which is a contradiction with the definition of (β̂0, β̂). So the
claim is proved. By union bound, previous results and choice
of tuning parameters, we have
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Since log p
n = o(1), as long as c0 is large enough (for instance

c0 > 4
√

2η0m0), we have

lim
T→∞

lim sup
n→∞

P
�
(E1 ∩ E2 ∩ GT )c

�
= 0.

Combining this result and the previous claim, the proof of
Theorem 1 is finished.

B. Proof of Lemma 1

It is seen that LGh (v) is twice differentiable with

LG��
h (v) =

1√
2πh

exp

− (1 − v)2

2h2

�
≤ 1√

2πh
. (A.2.1)

Thus inequality (IV.1) is obtained due to the mean value
theorem.

We then prove inequality (IV.2). The inequality is trivial
when v1 < v2 ≤ 1 − h or v2 > v1 ≥ 1 + h. When 1 − h <
v1 < v2 < 1 + h, since LEh is twice differentiable between
1 − h and 1 + h, we see

|LE�
h (v1) − LE�

h (v2)| < sup
v∈(1−h,1+h)

|LE��
h (v)||v1 − v2|,

and
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����3(h2 − (1 − u)2)
4h3
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<

3
4h
.
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When v1 ≤ 1 − h and v2 ≥ 1 + h,

|LE�
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h (v1) − LE�

h (v2)| =
����1 − (1 − v2 + h)2(2h− 1 + v2)

4h3

����
<

3
4h

|1−h− v2|

≤ 3
4h

|v1 − v2|,
where the second to the last inequality is due to

sup
v2∈(1−h,1+h)

����1 − (1 − v2 + h)2(2h− 1 + v2)
4h3

����
|1−h− v2|

≤ 9
16h

<
3
4h
.

When 1 − h < v1 < 1 + h and v2 ≥ 1 + h,

|LE�
h (v1) − LE�

h (v2)| =
���� (1 − v1 + h)2(2h− 1 + v1)

4h3

����
<

3
4h

|v1 − (1 + h)|

≤ 3
4h

|v1 − v2|,
where the second to the last inequality is due to

sup
v2∈(1−h,1+h)

����(1 − v1 + h)2(2h− 1 + v1)
4h3

����
|1 − v1 + h|

≤ 9
16h

<
3
4h
.

C. Iteration Complexity Analysis of the GCD Algorithm

a) Notation: For a vector v = (v1, . . . , vd)T ∈ Rd and a
univariate function u(·), we write u(v) = (u(v1), . . . , u(vd))T.
Also, denote the subvector of v with its kth compo-
nent removed by v−k = (v1, . . . , vk−1, vk+1, . . . , vd)T and
recover v from v−k by v = [vk,v−k]. We also let ∂h
be the sub-differential of a nonsmooth convex function h
[see e.g., 2].

b) Iteration complexity analysis: Without loss of gener-
ality, we focus solely on the GCD algorithm for solving the
weighted lasso penalized DCSVM

min
β∈Rp

n�
i=1

Lh(yixT
iβ) +

p�
k=1

wk|βk|, (A.3.1)

where wk ≥ 0 are the weights of the penalty. Indeed, this
formulation covers all the sparsity patterns in Section II-
C. Also, the intercept term β0 can be absorbed into the
formulation by setting xi1 = 1 for i = 1, . . . , n and w1 = 0.
For ease of exposition, let us rewrite (A.3.1) as the following
unconstrained optimization problem

min
β∈Rp

f(β) = g(β) +
p�
k=1

hk(βk), (A.3.2)

where g(β) =
�n

i=1 Lh(yix
T
iβ) is smooth convex in β ∈ Rp,

while hk(βk) = wk|βk| is nonsmooth convex in βk for each
k = 1, . . . , p. Let h(β) =

�p
k=1 hk(βk). Note that ∇g(β) =�n

i=1 yiL
�
h(yix

T
iβ)xi with ∇kg(β) =

�n
i=1 yiL

�
h(yix

T
iβ)xik

for k = 1, . . . , p. Let ρmax = λmax(XTX) = λmax(XXT)
and �(β) = (�1(β), . . . , �n(β))T with �i(β) = L�

h(yix
T
iβ) for

i = 1, . . . , n. Denote by ◦ the Hadamard product. It follows
that

�∇g(β) −∇g(β�)�
= �XT[y ◦ (�(β) − �(β�))]�
≤ ρ1/2

max��(β) − �(β�)�
≤ ρ1/2

maxch�X(β − β�)�
≤ chρmax�β − β��,

which implies that the gradient of g(·) is uniformly Lipschitz
continuous with Lipschitz constant L = chρmax. When
restricted to each coordinate, we have

|∇kg([βk,β−k]) −∇kg([β�
k,β−k])|

≤ ch�Xk�2|βk − β�
k|, k = 1, . . . , p,

which implies that the gradient of g(·) is coordinate-wise
uniformly Lipschitz continuous with Lipschitz constants Lk =
ch�Xk�2, k = 1, . . . , p.

In the GCD (cyclic coordinate descent) algorithm, let βr

be the update of β after the rth cycle, r ≥ 0. For ease of
notation, denote

br+1
k = (βr+1

1 , . . . , βr+1
k−1, β

r
k, β

r
k+1, . . . , β

r
p)

T,

br+1
−k = (βr+1

1 , . . . , βr+1
k−1, β

r
k+1, . . . , β

r
p)

T,

for k = 1, . . . , p. Clearly, we have br+1
1 = βr and br+1

p+1 =
βr+1. Note that in the proximal gradient update,

βr+1
k := proxL−1

k hk
(βrk − L−1

k ∇kg([βrk,b
r+1
−k ]))

is equivalent to

βr+1
k := argmin

βk

uk(βk; [βrk,b
r+1
−k ]) + hk(βk),

where the proximity operator prox does the soft-thresholding
[22] and

uk(βk; [βrk,b
r+1
−k ])

= g([βrk,b
r+1
−k ]) + ∇kg([βrk,b

r+1
−k ])(βk − βrk)

+
Lk
2

(βk − βrk)
2

is a quadratic majorization function of ĝ(βk;br+1
−k ) :=

g([βk,br+1
−k ]) at βrk. It is easy to see that uk(βk; [βrk,b

r+1
−k ]) is

strongly convex in βk. By the optimality of βr+1
k , there exists

ζr+1
k ∈ ∂hk(βr+1

k ) such that

(∇uk(βr+1
k ; [βrk,b

r+1
−k ]) + ζr+1

k )(βk − βr+1
k ) ≥ 0, ∀βk.

(A.3.3)

Our analysis will be divided into three parts: the sufficient
descent step, the cost-to-go estimate step, and the local error
bound step. Similar techniques can be found in [20], [21], [36],
and [15].

Authorized licensed use limited to: The University of Iowa. Downloaded on May 04,2023 at 19:15:15 UTC from IEEE Xplore.  Restrictions apply. 



2534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

c) Sufficient descent: Consider the proximal gradient
method applied to solving the following problem

min
βk∈R

f([βk,br+1
−k ]) = g([βk,br+1

−k ]) + hk(βk),

we have by (A.3.3)

f(br+1
k ) − f(br+1

k+1)

= f([βrk,b
r+1
−k ]) − f([βr+1

k ,br+1
−k ])

≥ uk(βrk; [β
r
k,b

r+1
−k ]) − uk(βr+1

k ; [βrk,b
r+1
−k ])

+ hk(βrk) − hk(βr+1
k )

= ∇kuk(βr+1
k ; [βrk,b

r+1
−k ])(βrk − βr+1

k )

+ hk(βrk) − hk(βr+1
k ) +

Lk
2

(βrk − βr+1
k )2

≥ (∇kuk(βr+1
k ; [βrk,b

r+1
−k ]) + ζr+1

k )(βrk − βr+1
k )

+
Lk
2

(βrk − βr+1
k )2

≥ Lk
2

(βrk − βr+1
k )2. (A.3.4)

It follows that

f(βr) − f(βr+1)

=
p�
k=1

�
f(br+1

k ) − f(br+1
k+1)

�

≥ L

2
�βr − βr+1�2, (A.3.5)

where L = min1≤k≤p Lk = ch min1≤k≤p �xk�2.
d) Cost-to-go estimate: Let X ∗ := {β∗|f(β∗) =

minβ f(β)} be the optimal solution set of problem (A.3.2).
Let β̄

r ∈ X ∗ be the point in X ∗ such that dX ∗(βr) :=
minβ∈X ∗ �β − βr� = �β̄r − βr�. By optimality of

βr+1
k = argmin

βk∈R

uk(βk; [βrk,b
r+1
−k ]) + hk(βk),

one has

h(βr+1
k ) − h(β̄rk) + ∇kg([βrk,b

r+1
−k ])(βr+1

k − β̄rk)

≤ Lk
2

(β̄rk − βrk)
2.

By the mean value theorem, there exists λ ∈ [0, 1] and
ξr = λβr+1 + (1 − λ)β̄r such that

g(βr+1) − g(β̄r) = �∇g(ξr),βr+1 − β̄
r�.

It follows that

f(βr+1) − f(β̄r)

= g(βr+1) − g(β̄r) +
p�
k=1

�
hk(βr+1

k ) − hk(β̄rk)
�

=
p�
k=1

�∇kg(ξr)(βr+1
k − β̄rk) + hk(βr+1

k ) − hk(β̄rk)
�

=
p�
k=1

�∇kg([βrk,b
r+1
−k ])(βr+1

k − β̄rk) + hk(βr+1
k ) − hk(β̄rk)

+
�∇kg(ξr) −∇kg([βrk,b

r+1
−k ])

�
(βr+1
k − β̄rk)

�

≤
p�
k=1

�Lk
2

(β̄rk − βrk)
2

+
�∇kg(ξr) −∇kg([βrk,b

r+1
−k ])

�
(βr+1
k − β̄rk)

�
.

By the fact that ∇g(·) is Lipschitz continuous, it is implied
that� p�
k=1

�∇kg(ξr) −∇kg([βrk,b
r+1
−k ])

�
(βr+1
k − β̄rk)

�2

≤
� p�
k=1

�∇g(ξr) −∇g([βrk,br+1
−k ])�2

�� p�
k=1

(βr+1
k − β̄rk)

2

�

≤
� p�
k=1

L2�ξr − [βrk,b
r+1
−k ]�2

�
�βr+1 − β̄

r�2

=
� p�
k=1

L2�λ(βr+1 − βr) + (1 − λ)(β̄r − βr) + βr

− [βrk,b
r+1
−k ]�2

�
· 2(�βr+1 − βr�2 + �βr − β̄

r�2)

≤ 12(p+ 1)L2
��βr+1 − βr�2 + �βr − β̄

r�2
�2

≤ 25pL2
��βr+1 − βr�2 + d2

X ∗(βr)
�2
.

It follows that

f(βr+1) − f(β̄r)

≤ (5L
√
p+ L̄)

��βr+1 − βr�2 + d2
X ∗(βr)

�
, (A.3.6)

where L̄ = max1≤k≤p Lk = ch max1≤k≤p �xk�2.
e) Local error bound: Let dX ∗(β) ≡ minβ∗∈X ∗ �β∗−

β�. Here we handle the Gaussian and Epanechnikov kernels
separately. For the Gaussian kernel, that is, when Lh(·) =
LGh (·), according to (A.3.4) and (A.3.5), the GCD algorithm
is descending along its iterations. We can thus restrict the
domain of β to the sublevel set L0 = {β : f(β) ≤ f(0)}.
Let ηi = xT

iβ for i = 1, . . . , n. It follows that the set
C0 = {η = (ηi, 1 ≤ i ≤ n)T : β ∈ L0} is convex
compact. Therefore, for all β ∈ L0, ηi is bounded by ηmax,
where ηmax = max1≤i≤n supβ∈L0

|ηi| < ∞. Note that
the function p(z) =

�n
i=1 L

G
h (yizi) is strongly convex in

z ∈ C0 by (A.2.1). We can see that g(β) = p(Xβ). It
follows from [36] that for any ξ ≥ minβ f(β), there exist
κ, ε > 0 such that

dX ∗(β) ≤ κ�β − proxh(β −∇g(β))�, (A.3.7)

for all β such that �β−proxh(β−∇g(β))� ≤ ε and f(β) ≤
ξ.

For the Epanechnikov kernel, that is, when Lh(·) = LEh (·),
one needs to add an additional ridge penalty μ�β�2 for some
small μ > 0 in order to achieve strong optimality. Thus,
when the Epanechnikov kernel is used, we instead consider
the following problem

min
β∈Rp

n�
i=1

LEh (yixT
iβ) +

p�
k=1

wk|βk| + μ�β�2

and solve it using the GCD algorithm.
As a summary, we show in the following theorem that the

GCD algorithm converges at least linearly.
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Theorem 2: The GCD algorithm converges at least linearly
to a solution in X ∗.

Proof: We first show that there exists some θ > 0 such
that

�βr − proxh(β
r −∇g(βr))� ≤ θ�βr+1 − βr�, ∀r ≥ 1.

(A.3.8)

For any r ≥ 1 and any 1 ≤ k ≤ p, by the optimality of

βr+1
k = argmin

βk

uk(βk; [βrk,b
r+1
−k ]) + hk(βk),

we have

βr+1
k = proxL−1

k hk
(βr+1
k − L−1

k ∇uk(βr+1
k ; [βrk,b

r+1
−k ])).

Let L̂k = max(1, Lk) and L̃k = max(1, L−1
k ). It follows from

Lemma 4.3 of [16] that

|βrk − proxhk
(βrk −∇kg(βr))|

≤ L̂k|βrk − proxL−1
k hk

(βrk − L−1
k ∇kg(βr))|

≤ L̂k
�|βr+1

k − proxL−1
k hk

(βrk − L−1
k ∇kg(βr))|

+ |βr+1
k − βrk|

�
≤ L̂k

�|proxL−1
k hk

(βr+1
k − L−1

k ∇uk(βr+1
k ; [βrk,b

r+1
−k ]))

− proxL−1
k hk

(βrk − L−1
k ∇kg(βr))| + |βr+1

k − βrk|
�

≤ 2L̂k|βr+1
k − βrk|

+ L̂kL
−1
k |∇uk(βr+1

k ; [βrk,b
r+1
−k ]) −∇kg(βr)|

≤ 3L̂k|βr+1
k − βrk| + L̃k�∇g([βrk,br+1

−k ]) −∇g(βr)�
≤ (3L̂k + LL̃k)�βr+1

k − βrk�.
It follows that

�βr −proxh(β
r −∇g(βr))� ≤ (3L̂+LL̃)

√
p�βr+1

k −βrk�,
where L̂ = max(1, L̄) and L̃ = max(1, L−1). Therefore,
when we take θ = (3L̂ + LL̃)

√
p, we get the desired result

in (A.3.8). Note that the sufficient descent property (A.3.5)
implies that �βr+1 − βr� → 0 as r → ∞. It follows
from (A.3.8) that �βr − proxh(β

r − ∇g(βr))� → 0 as
r → ∞. Thus, by (A.3.7) we have dX ∗(βr) → 0 as r → ∞.
Consequently, from (A.3.6) it implies that f(βr) → f∗ :=
minβ f(β), which shows that the GCD algorithm converges
to the global minimum.

Now let c1 = L(2B)−1, c2 = 5L
√
p + L̄, and Δr =

f(βr) − f∗. By the local error bound (A.3.7) and the cost-
to-go estimate (A.3.6), we obtain

Δr+1 ≤ c2
�
d2

X ∗(βr) + �βr+1 − βr�2
�

≤ c2κ
2�βr − proxh(β

r −∇g(βr))�2 + c2�βr+1 − βr�2

≤ (c2κ2θ2 + c2)�βr+1 − βr�2

≤ (c2κ2θ2 + c2)c−1
1 [f(βr) − f(βr+1)]

= (c2κ2θ2 + c2)c−1
1 (Δr − Δr+1),

which implies that

Δr+1 ≤ c3
1 + c3

Δr, (A.3.9)

where c3 = (c2κ2θ2 + c2)c−1
1 . We can see from (A.3.9) that

f(βr) approaches f∗ with at least linear rate of convergence.
From (A.3.5) again, this further implies that the sequence
{βr} converges at least linearly.
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