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Abstract

The p-hub center problem is to locate p hubs and to allocate non-hub nodes to hub nodes such that the maximum
travel time (or distance) between any origin–destination pair is minimized. We address the p-hub center allocation prob-
lem, a subproblem of the location problem, where hub locations are given. We present complexity results and IP for-
mulations for several versions of the problem. We establish that some special cases are polynomially solvable.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Hubs are commonly used in transportation, logistics, and telecommunication systems, such as air pas-
senger travel, postal services, express shipments and distributed computer networks. Hubs serve as consol-
idation, switching and sorting centers, and allow for the replacement of direct connections between all
nodes with fewer, indirect connections. In practice, the use of hubs can result in lower network costs,
but it can be challenging to determine where hubs should be located or how customers should be allocated
to them.

The formal study of hub location was introduced by O’Kelly [20,21] who provides a quadratic integer
programming formulation for the p-hub median problem. The p-hub median problem is to locate the p

hubs in a network and allocate non-hub nodes to hub nodes such that the sum of the costs of transporting
flow between all origin–destination (o–d) pairs in the network is minimized. Hub location has attracted the
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attention of researchers from a wide variety of fields, with much of the literature focusing on the p-hub
median problem. Many of the efforts focus on developing linearizations for O’Kelly’s model and creating
heuristics. Some of the literature focuses on uncapacitated variations, such as in [1,9,18,23], while others
consider capacity restrictions on hubs, such as in [2,6,10]. See [4] or [5] for a nice overview of research
on hub location problems.

A related problem is the p-hub center problem. The p-hub center problem is to locate p hubs in a net-
work and to allocate non-hub nodes to hub nodes such that the maximum travel time (or distance) between
any o–d pair is minimized (for example, see [3,7,8,14–16,22]). The p-hub center problem is important for
time-sensitive or guaranteed time distribution systems, such as express mail services and emergency services.
In these systems, such as at Federal Express, this maximum travel time represents the best time guarantee
that can be offered to all customers. To be competitive, it is important that this value is as low as possible.
There are many different variants of the p-hub center problem and the p-hub median problem which reflect
operational constraints. For example, a non-hub node may be either allocated to a single hub or to multiple
hubs, and the hubs (or hub links) may have a capacity restriction or be uncapacitated.

In this paper, we address the p-hub center allocation problem, which is a subproblem of the p-hub center
problem. To avoid confusion, we will refer to the full p-hub center problem as the p-hub center location

problem in the rest of this paper. The p-hub center allocation problem assumes the locations of the p hubs
are known, but not the allocation of non-hub nodes to the hub nodes. Analysis of the allocation phase is
extremely useful. In many real world situations, especially airline and cargo delivery systems, hub location
is a long term strategic decision, and it takes considerable time and money to make changes to a preexisting
hub system. However, reallocating non-hub nodes to hub nodes because of demographic changes is less
expensive and more practical. Since the p-hub center location problem is NP-complete [15], many algo-
rithms for the p-hub center location problem iteratively select hubs, then solve the resulting allocation prob-
lem. Thus, good methods for solving the allocation problem can be useful as part of solving the p-hub
center location problem. Also, the study of the allocation problem can help us understand where the p-
hub center location problem becomes hard.

In this paper, we present several complexity results for the p-hub center allocation problem. Specifically,
Section 2 looks at the p-hub center single allocation problem where non-hub nodes are assigned to exactly
one hub. We provide IP formulations for both uncapacitated and capacitated cases. We establish that some
special uncapacitated cases are polynomially solvable, in particular, when a = 0 for a hub-complete graph
(where a is a discount factor that reflects economies of scale between hubs), when p = 2 for a hub-complete
graph, and when the graph is a tree or path. Section 3 focuses on the p-hub center multiple allocation prob-
lem, where non-hub nodes can be assigned to one or more hubs. We provide IP formulations for the unca-
pacitated case and two variants of the capacitated case. We prove that one variant of the capacitated case is
NP-complete, where the other is polynomially solvable. We also prove that the uncapacitated case is poly-
nomially solvable. To the best of our knowledge, the capacitated p-hub center allocation problem (as well
as the capacitated p-hub center location problem) has not been studied in the literature.
2. Single allocation

2.1. Notation and problem definition

Unless otherwise indicated, we will consider each problem on a hub-complete graph G = (N,E) with
node set N = {1, . . . ,n}, hub set H = {1, . . . ,p}, H � N, and undirected arc set E. A graph G is hub-com-
plete (H-C) if there are arcs between each non-hub node and all hub nodes, and there is an arc between each
pair of hubs. The travel time from node i to node j on arc (i, j) is tij, where these values obey the triangular
inequality. We assume the values are symmetric, i.e., tij = tji. Also, we assume tii = 0 and tij > 0 if i 5 j.
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Flow between every pair of hubs uses a rapid mode of transit as a result of economies of scale. The rapid
transit mode is modeled by a discount factor a (between 0 and 1) which is a multiplier that reduces the tra-
vel time between hubs. The flow from node i to node j will be represented by wij. To simplify the formu-
lations in this paper, unless otherwise stated, we assume wij > 0, "i, j 2 N. Note that each hub is also a
node that will be an origin and destination for flow. Unless otherwise indicated, we will assume that this
flow will always be allocated to the associated hub. When we consider various types of hub capacity, we
will denote the capacity of hub k by Ck.

There are three separate components for each flow: collection (origin node to hub node), transfer (hub
node to hub node), and distribution (hub node to destination node). We denote the resulting travel time on a
path between i and j after the allocation by Tij. If i is assigned to hub k and j is assigned to hub h, then
Tij = tik + atkh + tjh on the path i ! k ! h ! j. The objective is to minimize the maximum Tij value.

The p-hub center single allocation problem is to allocate each of the non-hub nodes to exactly one hub
such that the maximum travel time between any o–d pair is minimized. Note that for the single allocation
problem, there is exactly one path between each o–d pair after the allocation.

2.2. IP formulations for the uncapacitated case

We define Xik to be a binary variable that equals 1 if node i is allocated to hub k and 0 otherwise. If there
is a hub at node k, then Xkk = 1.

The original integer programming formulation for the uncapacitated p-hub center location problem was
given by Campbell [3]. If the set of hubs H is given, we can modify Campbell’s quadratic programming for-
mulation for the allocation problem as follows:
min max
i;j2N ;k;m2H

X ikX jmðtik þ atkm þ tjmÞ; ð1Þ

s.t.: X
k2H

X ik ¼ 1; 8i 2 N ; ð2Þ

X kk ¼ 1; 8k 2 H ; ð3Þ
X ik 2 f0; 1g; 8i 2 N ; k 2 H . ð4Þ
The objective of the formulation is quadratic. Only if Xik = 1 and Xjm = 1 (i.e., i is assigned to hub k and j is
assigned to hub m), the travel time on the path i ! k ! m ! j equals tik + atkm + tjm and equals 0 other-
wise. The objective minimizes the maximum travel time between any o–d pair. Constraints (2) and (4) en-
sure that every node is assigned to exactly one hub.

We provide a second formulation for the uncapacitated p-hub center single allocation problem that is
linear
USAP: min Z; ð5Þ
s.t.:

Z P X iktik þ atkm þ X jmtjm; 8i; j 2 N ; k;m 2 H ; ð6ÞX
k2H

X ik ¼ 1; 8i 2 N ; ð7Þ

X kk ¼ 1; 8k 2 H ; ð8Þ
X ik 2 f0; 1g; 8i 2 N ; k 2 H . ð9Þ
Since every node that is also a hub is allocated to that hub, there will always be flow between every pair of
hubs. This makes constraint (6) valid.
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Remark. Ernst et al. [7,8] provide two different formulations that are linear for the uncapacitated p-hub
center single allocation problem, and one of the two formulations is similar to ours.
2.3. Complexity results for the uncapacitated case

Kara and Tansel [15] prove that the uncapacitated single allocation p-hub center location problem is NP-
complete by a reduction from the dominating set problem. Ernst et al. [7] show that the uncapacitated p-hub
center single allocation problem is NP-complete by reduction from the independent transversal problem [13].

In the following subsections, we identify several polynomially solvable variations of the uncapacitated p-
hub center single allocation problem.

2.3.1. a = 0 on an H-C graph

If the discount factor a = 0 on an H-C graph, the uncapacitated p-hub center single allocation problem
is polynomially solvable. The optimal solution is to assign each node to its nearest hub.

Theorem 1. The uncapacitated p-hub center single allocation problem can be solved optimally in O(np) time

when a = 0.

Proof. If a = 0, the right-hand side of (6) becomes Xiktik + Xjmtjm. Assigning each node to its nearest hub
minimizes the right-hand side of (6) for every i, j 2 N, thereby minimizing Z. Since we can assign each non-
hub node to its nearest hub in O(p) time (since we have p hubs and we only need to evaluate the allocation
for the n � p non-hub nodes), the uncapacitated p-hub center single allocation problem can be solved opti-
mally in O((n � p)p) = O(np) time when a = 0. h
2.3.2. p = 2 on an H-C graph
In this section, we will demonstrate that the single allocation problem when p = 2 is polynomially solv-

able. We let h1 and h2 denote the two hubs. We use T to denote a potential final objective function value, or
best time guarantee. Thus, for any feasible time guarantee T, there must exist at least one assignment of the
non-hub nodes to the hub nodes such that Tij 6 T, "i, j 2 N. The problem of minimizing the maximum Tij

value is equivalent to the problem of minimizing T such that Tij 6 T, "i, j 2 N.
To establish the complexity of the case when p = 2, we first need to establish the result in Lemma 1. For

any point x on arc (i, j), we denote the travel time from node i (node j) to x by tix(tjx). If arc (i, j) is dis-
counted, then the travel time is atix(atjx).

Lemma 1. For a given value T, T is a feasible time guarantee if and only if there is an assignment A of non-

hub nodes to the two hubs such that there is a point C on the arc between the two hubs h1 and h2 (including h1
and h2) such that tihi þ athiC 6

T
2, "i 2 N where i is assigned to hi (hi is h1 or h2).

Proof. ()) If T is a feasible time guarantee, then there exists an assignment A of the non-hub nodes to the
two hubs such that T ij ¼ tihi þ athihj þ tjhj 6 T , where i is assigned to hi and j is assigned to hj, "i, j 2 N.
Based on this assignment A, suppose the longest path is between two nodes i* and j*, where i* and j*

are not necessarily distinct (i.e., the longest path may be from i* to its assigned hub and back to i*). Suppose
i* is assigned to hi� and j* is assigned to hj� , where hi� ; hj� ¼ h1 or h2. Then, T i�j� ¼ ti�hi� þ athi� hj� þ tj�hj� 6 T
and T ij 6 T i�j� , "i, j 2 N. We can see that ti�hi� 6

T
2
, otherwise T i�i� ¼ 2ti�hi� > T which contradicts the

assumption. By the same argument, tj�hj� 6
T
2
as well. If ti�hi� þ athi�hj� 6

T
2
, then locate point C at hj� (which

implies ti�hi� þ athi�C ¼ ti�hi� þ athi� hj� 6
T
2
and tj�hj� þ athj�C ¼ tj�hj� 6

T
2
). If ti�hi� þ athi�hj� >

T
2
, it must be the

case that hi� 6¼ hj� . Since ti�hi� 6
T
2
, tj�hj� 6

T
2
, and T i�j� ¼ ti�hi� þ athi� x þ atxhj� þ tj�hj� 6 T for any point x on
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the arc between hi� and hj� , there exists some point C on the arc between hi� and hj� such that
ti�hi� þ athi�C 6

T
2
and tj�hj� þ athj�C 6

T
2
.

For any i 2 N, if i is assigned to hi� , then tihi� 6 ti�hi� . Otherwise T ij� > T i�j� which contradicts the
assumption. Thus, tihi� þ athi�C 6 ti�hi� þ athi�C 6

T
2. If i is assigned to hj� , interchange i* and j* above, and the

proof will be similar.
(() If there is an assignment A of non-hub nodes to the two hubs and there is a point C on the arc

between the two hubs h1 and h2 (including the two hubs) such that tihi þ athiC 6
T
2 for any i 2 N and i is

assigned to hi, then T ij ¼ tihi þ athihj þ tjhj 6 tihi þ athiC þ atChj þ tjhj 6
T
2 þ T

2 ¼ T , "i, j 2 N. Thus, T is a
feasible time guarantee. h

We will use the ideas from Lemma 1 to establish an algorithm which finds the optimal solution to the 2-
hub center single allocation problem.

We know that for every pair of nodes i and j, there are at most four possible values for the travel time
between i and j since we have only 2 hubs. If we explicitly compute the possible travel time values between
every pair of nodes, then we will have O(n2) potential T values since we have O(n2) pairs. Among these
O(n2) values, there must exist at least one value which is a feasible time guarantee (for example, the largest
value of these O(n2) values). Since a binary search is faster than a linear search, we perform a binary search
on these O(n2) values to find the minimum time guarantee.

For each value T 0, we retain the two nodes, i* and j*, and the hub allocation that created it such that
T 0 ¼ T i�j� ¼ ti�hi� þ athi�hj� þ tj�hj� where i* is assigned to hi� and j* is assigned to hj� . With this information,
we can find the location of the point C corresponding to this value T 0. If ti�hi� þ athi� hj� <

T 0

2
, then locate point

C at hj� . Otherwise, locate C at a point on the arc between hi� and hj� such that ti�hi� þ athi�C ¼ T 0

2
. Further-

more, Lemma 1 implies that if we can find an allocation such that tihi þ athiC 6
T 0

2
, "i 2 N, then T 0 is a fea-

sible time guarantee, and the associated assignment is optimal for this time guarantee. Otherwise, T 0 is not a
feasible time guarantee.

Based on these ideas, we propose Algorithm 1 which finds the optimal solution for the 2-hub single allo-
cation problem.

Algorithm 1. 2-Hub Center Single Allocation Problem

1: Compute all potential T values by explicitly computing the possible travel time values between every
pair of nodes.

2: Sort the values found in Step 1 in ascending order.
3: Starting from the largest value, use binary search to select the next candidate value T 0 until the binary

search is exhausted.
4: For a given T 0, find the location of C;
5: if every non-hub node i can be assigned to some hub hi such that tihi þ athiC 6

T 0

2
then

6: Go to Step 3 for a smaller value;
7: else
8: Go to Step 3 for a larger value;
9: end if

We established that Step 1 takes O(n2) time and Step 2 takes O(n2 log n) time using a sort algorithm such
as Merge Sort. Step 3 requires O(log(n2)) = O(logn) time for the binary search. For a given T, it takes O(1)
time to find the location of C in Step 4 and O(n) time to find the assignment of every non-hub node in Step
5. Thus, Steps 3–9 are O(n log n). Overall, the algorithm is dominated by the sort and is O(n2 logn). We have
the following theorem:
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Theorem 2. The 2-hub center single allocation problem can be solved optimally in O(n2 logn) time.

Due to Theorem 2, we can also solve the 2-hub center location problem in polynomial time.

Theorem 3. The single allocation 2-hub center location problem can be solved optimally in O(n4 log n) time.

Proof. There are O(n2) possible locations for the two hubs, and for every pair of hubs, the optimal alloca-
tion of the non-hub nodes can be determined in O(n2 logn) time by Theorem 2. Thus, all of the possible
solutions can be evaluated in O(n4 logn) time. h

Theorem 3 also shows the importance of studying the allocation problem as a means to build insight into
the p-hub center location problem.

2.3.3. Tree graph

A tree graph is a connected graph with n nodes and n � 1 arcs. Telecommunication and distribution net-
works are often sparse due to the high cost of establishing connections between nodes and often resemble
trees. For the uncapacitated problem on a tree, we are able to establish an exact solution approach with
polynomial worst case complexity. This is useful for applications with graph structures resembling a tree,
but is also useful in developing heuristics for the general problem. The study of location problems on a tree
graph is quite common (see, for example, [26]) because of the structure these graphs provide.

On a tree graph, each node is no longer directly connected to each hub and there is no longer an arc
between each pair of hubs. To allow for service between all nodes, though, we will assume flow can still
occur from all nodes to all hubs and between all hubs. On a tree graph, there is a unique path between each
pair of nodes. If nodes i, j are connected by a path of length l, we can simply set tij = l. Note that because of
the assumption of triangle inequality on the travel times, there is never a path between nodes that is shorter
than a direct connection if one exists.

If the arcs linking nodes form a tree, the results in Iyer and Ratliff [14] combined with Tamir’s result
[25] demonstrate that the uncapacitated single allocation p-hub center location problem can be solved
exactly in O(n4 log n) time. We will summarize their results and then show how their results can be mod-
ified for the allocation problem. In the centralized sorting system problem (CSS) defined by Iyer and Rat-
liff [14], every non-hub node is assigned to a hub node, and the location of a global center C is
determined. C is an accumulation point for the hubs, i.e., C must be visited when travelling between every
pair of hubs. For any i, j 2 N, if i is assigned to a hub hi and j is assigned to a hub hj and the travel time
between i and j is denoted by hij, then hij ¼ tihi þ aðthiC þ tChjÞ þ tjhj . Iyer and Ratliff [14] show that there
exists a corresponding global center C for the uncapacitated single allocation p-hub center location prob-
lem on a tree graph such that the allocation problem can be solved by solving the corresponding CSS
problem. They also demonstrate that this global center C must be on the path between some pair of hubs.
Iyer and Ratliff [14] provide a pseudo-polynomial algorithm for solving the corresponding CSS problem
on a tree graph, where the run time of their algorithm is dependent on the travel time on the longest path
of the tree graph. Later Tamir [25] suggested that if we explicitly pre-compute the possible travel times
between every pair of nodes (as we did in Section 2.3.2), then we can solve both problems exactly in
O(n4 log n) time.

We modify their methods to solve the allocation problem as follows. Assume G is a tree graph, and the
locations of the p hubs are given. Since the desired global center C must be on the path between some pair
of hubs, we can find the location of C and the corresponding time guarantee T using the method described
for the p = 2 case in the previous section if the locations of these two hubs are known. The allocation of the
non-hub nodes to the hub nodes can be modified as follows. For any i 2 N, assign i to a hub hi if
tihi þ athiC 6

T
2
. This requires O(pn) time. Thus, if the two hubs are known, we can solve the resulting allo-

cation problem in O(n2 logn) time. Since the location of the two hubs that define C are not known, we can
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explicitly compute all possible O(p2) pairs of hubs and then find the optimal solution among these O(p2)
candidate solutions. Thus, we can solve the allocation problem in O(p2n2 logn) time.

Theorem 4. The uncapacitated p-hub center single allocation problem can be solved optimally in O(p2n2 logn)
time on a tree graph.
2.3.4. Path graph

A path graph is a connected graph with n nodes and n � 1 arcs, and the degree of each node is either 1 or
2. In this section, we consider the problem where there are p hubs, and the arcs linking nodes form a path.
Distribution networks may resemble a path, such as in shipping products along the Eastern seaboard of the
US, across Canada using the transcontinental railroad, or up and down the Mississippi river on ships. Path
graphs are well studied since they are helpful in providing insights into solving the general problem and
their structure allows for low order polynomial algorithms. (For another example, see [19].)

Since a path graph is also a tree graph, we can apply the algorithm for the tree graph (see Section 2.3.3)
and solve this problem optimally. Path graphs have a special structure, though, that allows us to solve these
problems more efficiently. We will describe this structure in detail, show how it can be used to solve the
variant when p = 2 in O(n) time, and briefly describe how the algorithm can be extended when p > 2.

We will define some notation first. Imagine that the path graph is oriented horizontally. If there are non-
hub nodes on the left side of the leftmost hub, we call them left outer nodes, and if there are non-hub nodes
on the right side of the rightmost hub, we call them right outer nodes. Also, we call all the non-hub nodes
between the leftmost hub and the rightmost hub inner nodes. When we say two hubs HL and HR are h-adja-
cent, we assume there is no other hub node lying on the path between HL and HR.

It is not hard to see that among all of the optimal solutions, there is an optimal solution such that if a
non-hub node B is between two h-adjacent hubs L and R, then it is assigned to either L or R. If B is a left
outer node it is assigned to the leftmost hub, and if B is a right outer node it is assigned to the rightmost
hub. See Zhang [27] for the formal proof.

We will require two concepts with respect to the inner nodes between any two h-adjacent hubs: partition
and confliction. Suppose s is the set of inner nodes which are between two h-adjacent hubs L and R where L
is to the left of R. A partition of s means there is some dividing point such that all of the nodes of s on the
left side of the point are assigned to L and all of the nodes of s on the right side of the point are assigned to
R. If there is a partition of s on the path, then we say that there is no confliction in s. A confliction of s
means that there is a node B of s allocated to R and some other node(s) of s to the right of B is allocated
to L. We call node B a conflicting node in s.

Lemma 2. If there is a confliction in the assignment of the inner nodes between two h-adjacent hubs, we can

always reassign the conflicting node(s) such that the travel time on the longest path (i.e., the maximum travel

time between any o–d pair) will not increase after the reassignment.

Proof. Without loss of generality, let B be a conflicting node where all the nodes between L and B are
assigned to L and B is assigned to R (i.e., B is the first node strictly to the right of L that is assigned to
R). Let D be a node to the right of B which is assigned to L (a confliction). Let tLR = l so that TLR = al,
and assume tLB 6

l
2
. (Otherwise, if tLB > l

2
, then tDR 6

l
2
and a similar constructive proof can be developed.)

For a graphic example of this, see Fig. 1.
Let A be any node between L and B (if one exists). Also, let C be any node to the right of B (if one exists)

where C is assigned to R. Note that A is assigned to L by the assumption above. Suppose tLA = u, tAB = v,
tBD = w, tDR = x, tBC = y, and tCR = z.

Let I be any node to the left of L and J be any node to the right of R. Suppose I is assigned to some hub
HI and J is assigned to some hubHJ. SinceHI will be either I’s nearest right or I’s nearest left hub,HI is also
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Fig. 1. Before we reassign node B.
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to the left of L (or equal to L) because I is to the left of L. Similarly, HJ is to the right of R (or equal to R).
Assume tIHI ¼ m, tJHJ ¼ n, tHIL ¼ l1, tRHJ ¼ l2.

We will show that by reassigning B to L, the travel time on the longest path will not increase after the
reassignment. We can see that we only need to consider the travel time between B and all other nodes,
because the travel time between any other pair not containing B will not change after we reassign B. If we
reassign B to L and the assignment of the other nodes are unchanged, it is straightforward to establish the
following inequalities: TBD P TBA, TBB P TBC, dT BD P dT BA , dT BD P dT BB , dTCD P dT BC , dTDI P dT BI ,dTDJ P dT BJ , T BB P dT BB , T BD P dT BD , and T BI P dT BI , where bT represents the distance after reassignment.
Letting max{list} be the largest of the recorded travel times prior to the reassignment of B and maxfclistg be
the largest after the reassignment of B, it follows that maxflistg P maxfclistg.

Thus, the travel time on the longest path will not increase after we reassign B, and our result holds. h

The following lemma can be directly derived from Lemma 2.

Lemma 3. There is an optimal solution to the p-hub center single allocation problem on a path graph where the

assignment is a partition of the inner nodes between every h-adjacent pair of hubs.

Lemma 3 implies that if p = 2 on a path graph, we can find the partition of the assignment to the inner
nodes by a linear search. For a given partition, let A (B) be the node adjacent and to the left (right) of the
partition point. Also, let I (J) be the leftmost (rightmost) outer node. The maximum travel time for the
given partition will be the largest value in {Tkl : k, l 2 {I,JA,B}}. Due to Lemma 3 and this observation,
we have the following lemma:

Lemma 4. The p-hub center single allocation problem on a path graph when p = 2 can be solved optimally in

O(n) time.

Proof. Since there are O(n) nodes between L and R and it takes O(1) time to find the maximum travel time
in each iteration, the p-hub center single allocation problem on a path graph when p = 2 can be solved opti-
mally in O(n) time. h

We have extended the idea of partitions to develop an algorithm for solving the p-hub center single allo-
cation problem on a path graph when p > 2. In the algorithm detailed in [27], we evaluate each pair of h-
adjacent hubs from left to right. For each hub pair, we can reduce the set of potential partition points using
the distances between the nodes located between the two hubs as well as information collected for the pre-
ceding hubs.

2.4. IP formulations for the capacitated case

Next, we will address the issue of capacity restrictions on hubs. Again, for the general problem, we will
assume G is an H-C graph. In the literature, there are two ways that capacity is considered in hub location
problem formulations. Ebery et al. [6] consider capacity restrictions only on the volume of traffic entering a
hub via collection. For example, in postal delivery, once mail has been sorted after collection, it does not
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need to be sorted again for distribution. Campbell [3] restricts the sum of the traffic entering any hub via
collection and transfer in and out of the hub to be less than or equal to a specific capacity. This view can
also be valid, as in airline applications where the capacity is determined by the number of runways and ter-
minal sizes. Campbell [5] points out that the differences between these two types of constraints have very
little influence on the solution techniques.

If we consider capacity restriction only on the volume of traffic entering a hub via collection, the basic
formulation is the same as USAP, but we must add Constraint (10). We denote

P
j2Nwij ¼ Oi, "i 2 N. In

constraint (10),
P

i2NOiX ik represents the total flow into hub k via collection
X
i2N

OiX ik 6 Ck; 8k 2 H . ð10Þ
If we restrict the sum of the traffic entering any hub via collection and transfer to be less than or equal to the
capacity of that hub, we replace constraint (10) with constraint (11). The left-hand side represents the total
flow entering hub k via collection and transfer. Note that Xik + Xjk � XikXjk ensures its value to be less
than or equal to one. That is, if Xik = 1 and Xjk = 1 (i.e., flow wij goes through path i ! k ! j),
Xik + Xjk � XikXjk ensures that wij (instead of 2wij) is added to the traffic entering hub k.
X

i2N

X
j2N

wijðX ik þ X jk � X ikX jkÞ 6 Ck; 8k 2 H . ð11Þ
Since constraint (11) is quadratic, we propose an alternative formulation that is linear. We introduce a bin-
ary variable Xijk which equals 1 if and only if Xik = 1 and Xjk = 1. The basic formulation is still the same as
USAP but instead of adding constraint (11), we add constraints (12)–(14) and replace constraint (9) with
constraint (15). Constraints (12) and (13) ensure that Xijk = 1 if and only if Xik = 1 and Xjk = 1. Constraint
(14) is the capacity constraint on the hub nodes where the left-hand side represents the total flow entering
hub k due to collection and transfer
X ik þ X jk � X ijk 6 1; 8i; j 2 N ; k 2 H ; ð12Þ
2X ijk 6 X ik þ X jk; 8i; j 2 N ; k 2 H ; ð13ÞX
i2N

X
j2N

wijðX ik þ X jk � X ijkÞ 6 Ck; 8k 2 H ; ð14Þ

X ik;X ijk 2 f0; 1g; 8i; j 2 N ; k 2 H . ð15Þ
2.5. Complexity results for the capacitated case

Since the uncapacitated p-hub center single allocation problem is NP-complete, it follows that the capac-
itated p-hub center single allocation problem must also be NP-complete. The capacity constraints make
even the problems on many simpler graph structures, including path graphs, NP-complete. For details,
see Zhang [27].
3. Multiple allocation

3.1. Problem definition

The p-hub center multiple allocation problem is to allocate each non-hub node to one or more hubs such
that the maximum travel time between any o–d pair is minimized.
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It is clear that the multiple allocation problem will have an objective function value no larger than that of
the single allocation problem since the unique allocation constraints are relaxed in the multiple allocation
problem. For example, in the airline application, if non-hub cities offer flights to several hubs rather than
just one, customers may be able to travel between certain locations faster. Also, it is easier to find an opti-
mal solution for a multiple allocation problem than it is for a single allocation problem. For example, we
will demonstrate in Section 3.3 that the uncapacitated p-hub center multiple allocation problem is polyno-
mially solvable, while the uncapacitated p-hub center single allocation problem is NP-complete [7]. Thus,
the solution to a multiple allocation problem can be used as a lower bound for solving a single allocation
problem.

In [3], Campbell introduces several variants of the multiple allocation p-hub center location problem. In
Campbell’s formulations, the decision variable Xijkh is a binary variable. If Xijkh = 1, the full flow of wij goes
through path i ! k ! h ! j, 0 otherwise. Note that in the literature for multiple p-hub median location
problems, Xijkh is sometimes defined to be continuous between 0 and 1 (that is, Xijkh represents the fraction
of wij that travels the path i ! k ! h ! j). We can see that for the case where we restrict X variables to be
binary, a non-hub node can be assigned to several hubs, but the flow between every o–d pair travels through
exactly one path. For the case where we relax the integrality restriction on the X variables, the flow between
each o–d pair may be split among several paths.

Note that for both uncapacitated and capacitated versions of the single allocation problem, the flow
between o–d pairs will not be split. Since each non-hub node is assigned to exactly one hub in the single
allocation problem, the amount of flow into and out of each hub is precisely determined by the allocation,
and there is no advantage to splitting.

For the uncapacitated p-hub center multiple allocation problem, even if the integrality restriction on the
X variables is relaxed, X values will still be binary in the optimal solution. The flow between every o–d pair
will travel through the shortest path between them if there is no capacity restriction. For the capacitated p-
hub center multiple allocation problem, though, we will have a lower cost solution if the integrality restric-
tion on the X variables is relaxed. In applications such as airline networks and postal systems, it is more
practical and flexible if the flow between every o–d pair is allowed to split among several paths. Also, if
the integrality restriction on the X variables is relaxed, the problem becomes much easier to solve as we will
see in Section 3.6. However, allowing flow to be split into several paths implies that more arcs between non-
hub nodes and hub nodes may be used in a network. If it is expensive to establish or operate arcs between
non-hub nodes and hub nodes, keeping the flow between each pair of nodes together may be preferred to
simplify customer service and administrative functions. Thus, it is important for us to consider both types
of restrictions on flow when we study the capacitated p-hub center multiple allocation problem.

We will restrict X variables to be binary in Sections 3.2–3.5 and will consider the case where X variables
are continuous in Section 3.6.

3.2. IP formulations for the uncapacitated case

We can modify Campbell’s [3] formulation for the multiple allocation p-hub center location problem for
the allocation problem. The notation is the same as for the p-hub center single allocation problem.
UMAP: min Z; ð16Þ
s.t.:

Z P X ijkhðtik þ atkh þ tjhÞ; 8i; j 2 N ; k; h 2 H ; ð17ÞX
k2H

X
h2H

X ijkh ¼ 1; 8i; j 2 N ; ð18Þ

X ijkh 2 f0; 1g; 8i; j 2 N ; k; h 2 H . ð19Þ
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If Xijkh = 1, the travel time on the path i ! k ! h ! j equals tik + atkh + tjh and equals 0 otherwise. Con-
straints (18) and (19) ensure that the path from origin i to destination j must go through exactly one hub
pair.

3.3. Complexity result for the uncapacitated case

The uncapacitated p-hub center multiple allocation problem is polynomially solvable. Since each node
can be assigned to several hubs and there is no capacity restriction on the nodes or links, the flow between
every o–d pair travels through the shortest path between them.

Theorem 5. The uncapacitated p-hub center multiple allocation problem can be solved optimally in O(pn2)

time.

Proof. The following makes use of Floyd’s all-pairs shortest path algorithm [11]. Suppose we renumber the
nodes and make the first p nodes the hub nodes. We begin with an n by n matrix, where T 0

ij ¼ 1 if i, j 62 H,
T 0

ij ¼ tij if one of i or j 2 H, or T 0
ij ¼ atij if both i, j 2 H. The kth step of the algorithm computes T k

ij from the
matrix in the previous (k � 1)th step, where T k

ij ¼ minfT k�1
ik þ T k�1

kj ; T k�1
ij g. T k

ij is the travel time on the short-
est path between i and j at the kth step, where the path is allowed to use any subset of the first k hubs as
intermediate nodes. Thus, at the end of the pth step of the algorithm, the matrix contains the travel time
values on the shortest paths between o–d pairs using at least one hub from the p hubs as an intermediate
node. Due to the initial values, the shortest path between every o–d pair will never be a direct path between
two non-hub nodes, and by the triangular inequality, the shortest path between every o–d pair will never
use more than two hubs as intermediate nodes.

Creating the pn by nmatrices is O(pn2), and the time to search for the longest path in the resulting matrix
is O(n2), so the total run time is O(pn2). Thus, the uncapacitated p-hub center multiple allocation problem
can be solved optimally in O(pn2) time. h

Ernst et al. [7] claim a similar result for the uncapacitated p-hub center multiple allocation problem with
a higher run time (O(n3)), but no detailed algorithm is provided. Also, we note that Sohn and Park [24] used
Floyd’s algorithm on a median version of the p-hub location problem.

3.4. IP formulations for the capacitated case

To the best of our knowledge, the capacitated p-hub center multiple allocation problem (as well as its
corresponding location problem) has not been studied in the literature. In [6], Ebery et al. model and pres-
ent solution approaches for the capacitated multiple allocation p-hub median location problem. An impor-
tant detail is discussed that is important to consider in studying our problem. Similar to the uncapacitated
p-hub center multiple allocation problem, the flow between every o–d pair travels on the shortest path
between them in the uncapacitated p-hub median multiple allocation problem. In a solution, the flow from
a hub to another hub will travel directly on the arc between them. For the capacitated multiple allocation
case, this may not always be true. Because of the capacity restriction on the hub nodes, flow wkk (where k is
a hub) may be routed via another hub to k, and the flow from a hub to another hub may not travel directly
on the arc between them. For example, suppose we have four hubs h1, h2, h3 and h4, and Ch1 ¼ 5, Ch2 ¼ 2,
Ch3 ¼ 1, Ch4 ¼ 2. Also, suppose that wh1h1 ¼ 4 and wh1h3 ¼ 2, while the flow between the other o–d pairs
equals 0. If the capacity restriction is on collection and the flow wh1h1 is allocated to h1, then the flow
wh1h3 of 2 units must be routed to hub h2 or h4 and then transferred to h3. Carefully modeling how flow
originates from and terminates at hubs is important for the capacitated multiple allocation case. That is,
we must decide whether or not to include constraints which enforce that all flow originating from or ter-
minating at a hub must be allocated to the associated hub.
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We have elected not to add such constraints for two reasons. First, multiple allocation means that a node
can be assigned to several hubs, thus we should be consistent with hubs. Second, allowing flow originating
from or terminating at hubs to be routed via other hubs provides greater flexibility and increases the like-
lihood of finding a feasible solution. In a postal delivery application, the volume of mail during Christmas
at a hub (sorting center) is likely to exceed its capacity, where the capacity of a sorting center is represented
by the volume of mail that can be sorted. Some of the mail originating from that hub could be sent to other
hubs to be sorted. With this added flexibility, the longest path may now be one of the following four types:
(a) from a non-hub node to a non-hub node, (b) from a non-hub node to a hub node, (c) from a hub node
to a non-hub node, (d) from a hub node to a hub node.

If the capacity of each hub is based on the sum of collection and transfer, the IP formulation for the
capacitated p-hub center multiple allocation problem is the same as UMAP except constraint (17) is
replaced by constraints (20)–(23) (where N � H is the set of non-hub nodes) and constraint (24) is added.
Constraints (20)–(23) ensure that the maximum travel time (Z) between any o–d pair considers the four
cases (a) through (d) listed above. It is necessary to consider each of these cases separately due to the dis-
count factor a which applies only to arcs between hubs. Constraint (24) models the capacity constraints on
the hub nodes
Z P X ijkhðtik þ atkh þ tjhÞ; 8i; j 2 N � H ; k; h 2 H ; ð20Þ

Z P X ijkhðtik þ atkh þ atjhÞ; 8i 2 N � H ; k; h; j 2 H ; ð21Þ

Z P X ijkhðatik þ atkh þ tjhÞ; 8j 2 N � H ; i; k; h 2 H ; ð22Þ

Z P X ijkhðatik þ atkh þ atjhÞ; 8i; j; k; h 2 H ; ð23ÞX
i2N

X
j2N

wij

X
h2H

ðX ijkh þ X ijhkÞ � X ijkk

" #
6 Ck; 8k 2 H . ð24Þ
If we consider capacity restriction only on the volume of traffic entering a hub via collection, we can replace
constraint (24) with
X

i2N

X
j2N

X
h2H

wijX ijkh 6 Ck; 8k 2 H . ð25Þ
3.5. Complexity result for the capacitated case

We will demonstrate that the capacitated p-hub center multiple allocation problem (CMA) is NP-com-
plete. First we will prove that a restricted version of CMA, denoted by RCMA, is NP-complete and build
on this result. RCMA is the problem of allocating every pair of non-hub nodes to exactly one hub such that
the maximum travel time between any o–d pair is minimized and such that the capacity constraints on the
hub nodes are satisfied. Note that RCMA has no transfer flow. If there is no transfer flow, the two versions
of capacity are the same, so the result holds for both capacity restrictions given earlier.

We prove that RCMA is NP-complete by a reduction from the Bin Packing Problem (BPP) which is
known to be NP-complete [13]. BPP is defined as:

Instance: Finite set U of items, a size s(u) 2 Z+ for each u 2 U, a positive integer bin capacity B, and a
positive integer K.

Question: Is there a partition of U into disjoint sets U1,U2, . . . ,UK such that the sum of the sizes of the
items in each Ui is B or less?

Theorem 6. RCMA is NP-complete even if the travel time from any non-hub node to any hub node is the same.
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Proof. RCMA is in class NP because we can verify a solution and evaluate the objective value of the solu-
tion in polynomial time. The theorem is proved by a reduction from BPP.

For an instance of BPP, we reduce it to an instance of RCMA as follows:
Let p = K and n ¼ d

ffiffiffiffiffiffiffi
jU j

p
e þ K (i.e., d

ffiffiffiffiffiffiffi
jU j

p
e equals the number of non-hub nodes). Thus, we will have

d
ffiffiffiffiffiffiffi
jU j

p
e2 P U o–d pairs of non-hub nodes. We will associate each u 2 U with one o–d pair of non-hub

nodes. For each o–d pair of non-hub nodes i and j and its corresponding item u 2 U, let wij = s(u). If
d

ffiffiffiffiffiffiffi
jU j

p
e2 > U , then there will be some extra o–d pairs of non-hub nodes. For each ‘‘extra’’ o–d pair of non-

hub nodes i and j, let wij = 0. We will associate each bin Uk with a hub k and let Ck = B. Let the flow
originating from or terminating at each hub equal 0. For any non-hub node i and hub k, let tik = t where t is
an arbitrary positive number. This implies that if the constructed RCMA has a feasible solution, then for
every o–d pair of non-hub nodes i and j, Tij = 2t.

In general, every o–d pair that is assigned to a hub k corresponds to an item assigned to a bin Uk. We can
see that the instance of BPP will have a feasible solution if and only if the newly constructed RCMA
problem has a feasible solution. Since BPP is NP-complete, RCMA is NP-complete even if the travel time
from any non-hub node to any hub node is the same. h

Theorem 7. CMA is NP-complete even if the travel time from any non-hub node to any hub node is the same

and a = 0.

Proof. If tih = t, "i 2 N � H, h 2 H and a = 0, then CMA will have an objective value that equals 2t if it
has a feasible solution, and RCMA will have an objective value that equals 2t if it has a feasible solution.
To prove CMA is NP-complete, we only need to prove that if a solution is feasible to RCMA, then it is also
feasible to CMA, and if a solution is feasible to CMA, then we can construct a feasible solution to RCMA.

Because RCMA is a restricted version of CMA, any feasible solution to RCMA is also a feasible
solution to CMA.

Suppose we are given a feasible solution to CMA, we can construct a feasible solution to RCMA as
follows. For each flow wij routed via only one hub in CMA, this flow is assigned to that same hub in the
RCMA solution. For each flow wij routed via two different hubs (assume i is assigned to hub k and j is
assigned to hub m where k 5 m) in CMA, we can let wij be routed via only hub k in the RCMA solution. If
flow wij travels through hub k, wij units of hub k’s capacity are consumed. Thus, reassigning how this flow
travels to j will not increase the demand on hub k or increase the objective function.

Thus, CMA is NP-complete even if the travel time from any non-hub node to a hub node is the same and
a = 0. h

Note that if the capacity constraints are on the hub arcs, the capacitated p-hub center multiple allocation
problem is also NP-complete. The proof is very similar to the proof above. For a detailed proof, see Zhang
[27].
3.6. Capacitated case with flow splitting

3.6.1. Problem definition

In Sections 3.2–3.5, we discussed the p-hub center multiple allocation problem where we assumed that
the flow from node i to node j travels on exactly one path. However, if the flow between any o–d pair i
and j is allowed to be split among several paths, then the integrality restriction on the X variables is
removed from the IP formulation. Xijkh now represents the fraction of wij that is routed via hubs k and
h. For the capacitated case, if the integrality restriction on the X variables is relaxed, the resulting optimal
objective function value will be no larger. Also, it provides greater flexibility if the flow between every o–d
pair is allowed to split among several paths.
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3.6.2. IP formulation

The cost of Xijkh flow in the capacitated p-hub center multiple allocation problem is equal to
tik + atkh + tjh if Xijkh > 0 and 0 otherwise. We introduce a new variable Yijkh for this IP formulation, where
Yijkh = 1 if Xijkh > 0 and 0 otherwise.
min Z; ð26Þ
s.t.:

Z P Y ijkhðtik þ atkh þ tjhÞ; 8i; j 2 N � H ; k; h 2 H ; ð27Þ
Z P Y ijkhðtik þ atkh þ atjhÞ; 8i 2 N � H ; k; h; j 2 H ; ð28Þ
Z P Y ijkhðatik þ atkh þ tjhÞ; 8j 2 N � H ; i; k; h 2 H ; ð29Þ
Z P Y ijkhðatik þ atkh þ atjhÞ; 8i; j; k; h 2 H ; ð30ÞX
k2H

X
h2H

X ijkh ¼ 1; 8i; j 2 N ; ð31Þ

X
i2N

X
j2N

wij

X
h2H

ðX ijkh þ X ijhkÞ � X ijkk

" #
6 Ck; 8k 2 H ; ð32Þ

X ijkh 6 Y ijkh; 8i; j 2 N ; k; h 2 H ; ð33Þ
X ijkh P 0; 8i; j 2 N ; k; h 2 H ; ð34Þ
Y ijkh 2 f0; 1g; 8i; j 2 N ; k; h 2 H . ð35Þ
Constraints (27)–(30) find the maximum travel time between any o–d pair. Constraint (31) ensures that the
sum of the fractions of flow from i to j equals 1. Constraint (32) models the capacity restriction on the hub
nodes. Constraint (33) ensures that Yijkh = 1 if Xijkh > 0.

If we consider capacity restriction only on the volume of traffic entering a hub via collection, constraint
(32) can be replaced by
X

i2N

X
j2N

X
h2H

wijX ijkh 6 Ck; 8k 2 H . ð36Þ
3.6.3. Complexity result

In Section 2.3.2, we used T to denote a potential best time guarantee for an allocation problem. Since
solving the problem of minimizing the maximum Tij value is equivalent to finding the minimum feasible
time guarantee, we explicitly computed the possible travel time values between every pair of nodes and
searched for the minimum feasible time guarantee. In this section, we use the same idea to demonstrate that
the capacitated p-hub center multiple allocation problem with fractional flow is polynomially solvable.

Theorem 8. The capacitated p-hub center multiple allocation problem with fractional flow is polynomially

solvable.

Proof. We can explicitly compute the travel time on all possible o–d paths. There are at most O(p2n2) values
since we have p hubs and n nodes. We can sort these O(p2n2) values in ascending order and form a set S
consisting of these sorted values. If the problem has a feasible solution, the optimal objective value Z must
be a value in S. Thus, to find the minimum feasible time guarantee, we can perform a binary search on the
values in S (recall that a binary search is faster than a linear search). Note that if the largest value in S is not
a feasible time guarantee, then the problem has no feasible solution. This implies that the binary search
should start from the largest value in S. The minimum time guarantee of the problem can be found by solv-
ing the following formulation:
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min T ; ð37Þ
s.t.:

T 2 S; ð38Þ
ðtik þ atkh þ tjh � T ÞX ijkh 6 0; 8i; j 2 N � H ; k; h 2 H ; ð39Þ
ðtik þ atkh þ atjh � T ÞX ijkh 6 0; 8i 2 N � H ; k; h; j 2 H ; ð40Þ
ðatik þ atkh þ tjh � T ÞX ijkh 6 0; 8j 2 N � H ; i; k; h 2 H ; ð41Þ
ðatik þ atkh þ atjh � T ÞX ijkh 6 0; 8i; j; k; h 2 H ; ð42Þ
(18), (32), (34).
Objective function (37) combined with constraint (38) guarantee that we find the minimum feasible time
guarantee among the values in S. To find out whether or not a given value T is a feasible time guarantee,
constraints (39)–(42) ensure that no assignments are considered that would result in an o–d path having a
travel time greater than T. For example, if tik + atkh + tjh > T, "i, j 2 N � H; k,h 2 H, then constraint (39)
forces Xijkh = 0.

For a given T, verifying if there is a feasible solution that satisfies constraints (18), (32), (34), (39)–(42) is
equivalent to solving a linear program. Since the binary search on the values in S requires O(log n) time, and
we know that a linear programming problem is polynomially solvable [12,17], the capacitated p-hub center
multiple allocation problem with fractional flow is polynomially solvable. h

Note that if the capacity constraints are on the hub arcs, the capacitated p-hub center multiple allocation
problem is also polynomially solvable using a similar proof as for Theorem 8.

We note that solving a linear program may be computationally expensive for a large problem. As an
alternative, the feasibility check for a fixed value of T can be accomplished by solving a network flow prob-
lem. This results in an O(pn5 log n) algorithm that solves the problem exactly. See [27] for details.
4. Conclusions

In this paper, we have addressed the p-hub center allocation problem on a network. This problem is a
subproblem of the p-hub center location problem, but it is of considerable interest on its own for time-sen-
sitive delivery and transportation systems. We have presented complexity results and IP formulations for
1
exity results for the p-hub center allocation problem

Uncapacitated Capacitated

Capacity
restrictions
on nodes

Capacity
restrictions
on arcs

General graph Special case or graph General graph General graph

a = 0 Path graph
when p = 2

Tree graph General graph
when p = 2

NP-complete Polynomial
O(p(n � p))

Polynomial
O(n)

Polynomial
O(p2n2 log n)

Polynomial
O(n2 log n)

NP-complete NP-complete

le Polynomial
O(pn2)

NP-complete if
Xijkm 2 {0, 1}

NP-complete if
Xijkm 2 {0, 1}

Polynomial if
0 6 Xijkm 6 1

Polynomial
if 0 6 Xijkm 6 1
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uncapacitated and capacitated versions of the problem. We have shown that many of the more general ver-
sions of the problem are NP-hard. In cases where the underlying network has special structure or where
only two hubs are present, we have provided polynomial time algorithms. A summary of the complete com-
plexity results can be found in Table 1.

Since the general problem is intractable, heuristics may be one avenue for finding reasonable solutions
on general graphs. One possible approach for solving the uncapacitated single allocation problem begins
with finding a spanning tree that connects the nodes in the graph. Since the allocation problem is polyno-
mially solvable on a tree graph, we can solve the allocation problem on the resulting spanning tree. We pro-
pose to test and evaluate this and other heuristics in the near future.
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