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Abstract

The probabilistic traveling salesman problem is a well known problem that is quite challenging to solve. It involves
finding the tour with the lowest expected cost given that customers will require a visit with a given probability. There are
several proposed algorithms for the homogeneous version of the problem, where all customers have identical probabil-
ity of being realized. From the literature, the most successful approaches involve local search procedures, with the most
famous being the 2-p-opt and 1-shift procedures proposed by Bertsimas [D.J. Bertsimas, L. Howell, Further results on
the probabilistic traveling salesman problem, European Journal of Operational Research 65 (1) (1993) 68–95]. Recently,
however, evidence has emerged that indicates the equations offered for these procedures are not correct, and even when
corrected, the translation to the heterogeneous version of the problem is not simple. In this paper we extend the analysis
and correction to the heterogeneous case. We derive new expressions for computing the cost of 2-p-opt and 1-shift local
search moves, and we show that the neighborhood of a solution may be explored in O(n2) time, the same as for the
homogeneous case, instead of O(n3) as first reported in the literature.
� 2005 Published by Elsevier B.V.
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R

O1. Introduction

For many delivery companies, only a subset of their customers require a pickup or delivery each day.
Information may be not available far enough in advance to create optimal schedules each day for those
U
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customers that do require a visit or the cost to acquire sufficient computational power to find such solutions
may be prohibitive. For these reasons, it is not unusual to design a distance minimizing tour containing all
customers, and each day follow the ordering of this a priori tour to visit only the customers requiring a visit
that day. The problem of finding an a priori tour of minimum expected cost, given a set of customers each
with a given probability of requiring a visit, defines the Probabilistic Traveling Salesman Problem (PTSP).

Jaillet [9] was the first to look at how to evaluate the expected cost of an a priori tour. In [9,10], Jaillet
points out that the optimal TSP tour through a set of customers is often not the optimal tour in an expected
value sense which means that the PTSP should be solved separately from the TSP.

Due to the probabilistic nature of the problem, the cost of evaluating a proposed solution for the PTSP is
expensive. This, combined with the fact that TSP problems are already hard to solve, makes it quite chal-
lenging to solve PTSP problems to optimality. An exact algorithm is described in [11], but it has been ap-
plied primarily to small instances of the problem. Most approaches in the PTSP literature focus on
heuristics that efficiently find good, but not necessarily optimal, solutions (see for instance [3,4,6,8] and
the references cited therein). One crucial ingredient in these heuristic approaches is the design of an effective
local search algorithm. In the PTSP, the use of an expected value-based cost to evaluate a local search
move, rather than a standard TSP local search procedure, grows increasingly important as the number
of customers increases [3]. Thus, it is critical that the expected value-based costs in the local search proce-
dures are quick to evaluate.

In the literature, there are two local search procedures created specifically for the PTSP that evaluate a
change in terms of expected value: the 2-p-opt and the 1-shift. The 2-p-opt is the probabilistic version of the
famous 2-opt procedure created for the TSP [12]. In 2-opt, the portion of the tour between two specified
customers is reversed. The 2-p-opt and the 2-opt are identical in terms of local search neighborhoods,
but greatly differ in the cost computation. The change in the TSP objective value (the tour length) can
be easily computed in constant time, while the same cannot be said for the PTSP objective value. The 1-
shift is the evaluation of the change in expected value associated with removing a customer from the tour
and inserting it at another point in the tour.

For PTSP instances where each customer is present with the same probability (the homogeneous PTSP),
Bertsimas proposed move evaluation expressions in [3] that explore the neighborhood of a solution (that is,
that verify whether an improving 2-p-opt or 1-shift move exists) in O(n2) time. The intent of Bertsimas�
equations is to provide a recursive means to quickly compute the exact change in expected value associated
with either a 2-p-opt or 1-shift procedure. Evaluating the cost of a local move by computing the cost of two
neighboring solutions and then evaluating their difference would require much more time (O(n4)) than a
recursive approach. Recently Bianchi et al. [5] re-analyzed and corrected Bertsimas� expressions, after evi-
dence emerged that they did not exactly evaluate the cost of a 2-p-opt and 1-shift move. The correction of
these equations confirms that it is possible to explore both the 2-p-opt and 1-shift neighborhood of a solu-
tion in O(n2) time, and does, as expected, create significant improvement in the already good results for the
homogeneous PTSP.

The heterogeneous version, where probabilities at the various customers are allowed to vary, is actually a
more important problem because it is clearly closer to real world applications. As delivery companies gath-
er and retain more information about their customers, heterogeneous probabilities are becoming increas-
ingly available in practice and represent large potential savings. Few of the results in the literature
apply, though, when probabilities are not homogeneous. One paper, [1], provides a lower bound for the
heterogeneous PTSP, and another paper, [2], reports computational results of 2-p-opt and 1-shift local
search algorithms applied to some small heterogeneous PTSP instances. The results in [2] are based on
the work of Chervi [7], who proposed recursive expressions for the cost of 2-p-opt and 1-shift moves for
the heterogeneous PTSP. Chervi�s expressions explore the 2-p-opt and 1-shift neighborhoods in O(n3)
time, suggesting that it is not possible to retain the O(n2) complexity of the homogeneous PTSP. Moreover,
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Chervi�s expressions reduce to the incorrect expressions for the homogeneous PTSP published in [3], when
all customer probabilities are equal, and therefore are also not correct.

In this paper, we extend and generalize the analysis performed in [5] for the homogeneous case to the
heterogeneous case and derive new expressions for computing the cost of 2-p-opt (Section 3) and 1-shift
(Section 4) local search moves. We demonstrate that the neighborhood of a solution for this important
problem may be explored in O(n2) time, thus retaining the same complexity as the homogeneous case. This
shows we can take advantage of important additional information without adding computational
complexity.
 F
R
O
O2. Notation and objective function

Throughout the paper we use the following notation. N = {i j i = 1, 2, . . . ,n} is a set of n customers. For
each pair of customers i, j 2 N, d(i, j) represents the distance between i and j. Here, we assume that the dis-
tances are symmetric, that is, d(i, j) = d(j, i). In the remainder of the paper, distances will also be referred to
as costs. An a priori tour s is a permutation over N, that is, a tour visiting all customers exactly once. With-
out loss of generality, we consider s = (1, 2, . . . ,n). Given the independent probability pi that customer i

requires a visit, qi = 1 � pi is the probability that i does not require a visit. In the remainder of the paper
we will use the following convention for any customer index i:
 P

i :¼
iðmodnÞ iff i 6¼ 0 and i 6¼ n;

n otherwise;

�
ð1Þ
Dwhere i(modn) is the remainder of the division of i by n. The expected length of a priori tour s = (1, 2, . . . ,n)
can be computed in O(n2) time with the following expression [9]
T
E

E½LðsÞ� ¼
Xn
i¼1

Xn�1

r¼1

dði; iþ rÞpipiþr

Yiþr�1

iþ1

q. ð2Þ
We use the following notation for any i, j 2 {1, 2, . . . ,n}
R
E
C

Yj
i

q :¼

Qj
t¼i

qt if 0 6 j� i < n� 1;

Qn
t¼i

qt
Qj
u¼1

qu if i� j > 1;

1 otherwise.

8>>>>><
>>>>>:

ð3Þ
O
RThe expression for the objective function (Eq. (2)) has the following intuitive explanation: each term in

the summation represents the distance between the ith customer and the (i + r)th customer weighted by the
probability that the two customers require a visit (pipi+r) while the r � 1 customers between them do not
require a visit ð

Qiþr�1
iþ1 qÞ.

It is convenient here to introduce also the following two dimensional matrices of partial sums A and B

that will be used as building blocks of the 2-p-opt and 1-shift evaluation expressions
U
N
C

Ai;k ¼
Xn�1

r¼k

dði; iþ rÞpipiþr

Yiþr�1

iþ1

q; ð4Þ

Bi;k ¼
Xn�1

r¼k

dði� r; iÞpi�rpi
Yi�1

i�rþ1

q; ð5Þ
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with i and k being positions in the original tour where 1 6 k 6 n � 1 and 1 6 i 6 n. The matrices A and B

are straightforward extensions of corresponding matrices defined for the homogeneous case to the hetero-
geneous PTSP (see [5]).
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3. 2-p-opt: Derivation of an efficient cost evaluation expression

For an a priori tour s, its 2-p-opt neighborhood is the set of tours obtained by reversing a section of s
(that is, a set of consecutive nodes) such as the example in Fig. 1. Denote by si,j a tour obtained by reversing
a section (i, i + 1, . . . , j) of s, where i 2 {1, 2, . . . ,n}, j 2 {1, 2, . . . ,n}, and i 5 j. Note that if j < i, the re-
versed section includes n. Let DEi,j denote the change in the expected tour length E[L(si,j)] � E[L(s)]. We
will derive a set of recursive formulas for DEi,j that can be used to efficiently evaluate a neighborhood of
2-p-opt moves. To describe this procedure, we first introduce a few definitions. Let S, T � N be subsets
of nodes, with k representing any a priori tour, and k(i) representing the customer in the ith position on
this tour such that k = (k(1), k(2), . . . ,k(n)). The product defined by Eq. (3) can be easily generalized by
replacing qt with qk(t) and qu with qk(u).

Definition 1. E½LðkÞ�jT!S ¼
P

kðiÞ2S;kðjÞ2T ;i 6¼jdðkðiÞ; kðjÞÞpkðiÞpkðjÞ
Qj�1

iþ1qk, that is, the contribution to the
expected cost of k due to the arcs from the nodes in S to the nodes in T.

Note that E[L(k)]jT!S = E[L(k)], when T = S = N.

Definition 2. E[L(k)]jTMS = E[L(k)]jT!S + E[L(k)]jS!T.

For the two a priori tours s and si,j we introduce

Definition 3. DEi,jjTMS = E[L(si,j)]jTMS � E[L(s)]jTMS, that is, the contribution to DEi,j due to the arcs from
the nodes in S to the nodes in T and from the nodes in T to the nodes in S.

Unlike the TSP, the expected cost of an a priori tour involves the arcs between all of the nodes. The
ordering of the nodes on the a priori tour simply affects the probability of an arc being used, and this prob-
ability determines the contribution this arc makes to the expected cost of the tour. The change in expected
tour length, DEi,j, resulting from a reversal of a section is thus based on the change in probability, or weight,
placed on certain arcs in the two tours s and si,j. While computing DEi,j it is thus necessary to evaluate the
weight change of each arc. The change in weight on an arc is influenced by how many of its endpoints are
included in the reversed section. Because of this, it is useful to consider the following partitions of the node
set.
U
N
C
O
R

n = 10 2

4

5

6

9

3 

1
2

4

5

6

8

9

3 = i

n = 10
1

8

7 = j7 

2–P–OPT

Fig. 1. Tour s = (1, 2, . . . , i, i + 1, . . . , j, j + 1, . . . , n) (left) and tour si,j = (1, 2, . . . , i � 1, j, j � 1, . . . , i, j + 1, . . . , n) (right)
obtained from s by reversing the section (i, i + 1, . . . , j), with n = 10, i = 3, j = 7.
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Definition 4. insidei,j = {i, . . . , j}, that is, the section of s that is reversed to obtain si,j.

Definition 5. outsidei,j = N n insidei,j.

Using the above definitions, DEi,j may be expressed as
DEi;j ¼ DEi;jjinsidei;j!insidei;j þ DEi;jjoutsidei;j!outsidei;j þ DEi;jjinsidei;j$outsidei;j . ð6Þ
F

It is not difficult to verify that, as in the homogeneous PTSP [5], the contributions to DEi,j due to
DEi;jjinsidei;j!insidei;j and to DEi;jjoutsidei;j!outsidei;j are zero. The contribution to DEi,j due to arcs between inside
and outside (which is now equal to DEi,j) may be split into three components:
DEi;jjinsidei;j$outsidei;j ¼ E½Lðsi;jÞ�jinsidei;j!outsidei;j
þ E½Lðsi;jÞ�joutsidei;j!insidei;j

� E½LðsÞ�jinsidei;j$outsidei;j
; ð7Þ
O
Owhere the three terms on the right hand side of the last equation are, respectively, the contribution to

E[L(si,j)] due to the arcs going from insidei,j to outsidei,j, the contribution to E[L(si,j)] due to the arcs going
from outsidei,j to insidei,j, and the contribution to E[L(s)] due to arcs joining the two customer sets in both
directions. For compactness, these three components will be referenced hereafter by the notation:
P
REð1Þ

i;j ¼ E½Lðsi;jÞ�jinsidei;j!outsidei;j
; ð8Þ

Eð2Þ
i;j ¼ E½Lðsi;jÞ�joutsidei;j!insidei;j

; ð9Þ

Eð3Þ
i;j ¼ E½LðsÞ�jinsidei;j$outsidei;j

. ð10Þ
We may rewrite the expected tour length change DEi,j as follows:
DDEi;j ¼ Eð1Þ
i;j þ Eð2Þ

i;j � Eð3Þ
i;j . ð11Þ
O
R
R
E
C
T
EUnlike the TSP, there is an expected cost associated with using an arc in a forward direction as well as a

reverse direction, and these costs are usually not the same. The expected costs are based on which customers
would have to be ‘‘skipped’’ in order for the arc to be needed in the particular direction. For example, the
weight on arc (1, 2) is based only on the probability of nodes 1 and 2 requiring a visit, whereas the weight on
arc (2, 1) is also based on the probability of nodes (3, 4, . . . ,n) not requiring a visit. (The tour will travel
directly from the 2 to 1 only if none of the rest of the customers on the tour are realized.) For the homo-
geneous PTSP, the equations are much simpler since the expected cost is based on the number of nodes that
are skipped, not which nodes are skipped. This difference dictates the new set of equations we present here.

We will now derive recursive expressions for Eð1Þ
i;j ;E

ð2Þ
i;j ;E

ð3Þ
i;j , respectively, in terms of Eð1Þ

iþ1;j�1;E
ð2Þ
iþ1;j�1 and

Eð3Þ
iþ1;j�1. These recursions are initialized with the expressions corresponding to entries (i, i) and (i, i + 1) for

all i. We will derive these expressions quite easily later. First, let us focus on the case where j = i + k and
2 6 k 6 n � 2. The case k = n � 1 may be neglected because it would lead to a tour that is reversed with
respect to s, and, due to the symmetry of distances, this reversed tour would have the same expected length
as s. Let us consider the tour si+1,j�1 = (1, 2, . . . , i � 1, i, j � 1, j � 2, . . . , i + 1, j, j + 1, . . . ,n) obtained by
reversing section (i + 1, . . . , j � 1) of s. We can make three important observations. The first one is that the
partitioning of customers with respect to si,j is related to the partitioning with respect to si+1,j�1 in the fol-
lowing way:
N
C

insidei;j ¼ insideiþ1;j�1 [ fi; jg; ð12Þ
outsidei;j ¼ outsideiþ1;j�1 n fi; jg. ð13Þ
UThe second observation is that for any arc (l, r), with l 2 insidei+1,j�1 and r 2 outsidei,j, the weight on the
arc in the expected total cost equation for si,j can be obtained by multiplying the weight that the arc has in
si+1,j�1 by qi and dividing it by qj. One way to see this is to compare the set of skipped customers in si,j with
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the set of skipped customers in si+1,j�1. In si,j, the fact that arc (l, r) is used implies that customers
(l � 1, l � 2, . . . , i + 1, i, j + 1, . . . , r � 1) are skipped, while in si+1,j�1 using arc (l, r) implies that custom-
ers (l � 1, l � 2, . . . , i + 1, j, j + 1, . . . , r � 1) are skipped. Therefore, the set of skipped customers in si+1,j�1

is equal to the set of skipped customers in si,j except for customer j in si+1,j�1, which is replaced by customer
i in si,j. In terms of probabilities, our second observation can be expressed as
E½Lðsi;jÞ�jinsideiþ1;j�1!outsidei;j
¼ qi

qj
E½Lðsiþ1;j�1Þ�jinsideiþ1;j�1!outsidei;j

. ð14Þ
O
FThe third important observation is similar to the previous one, but it refers to arcs going in the opposite

direction. More precisely, for any arc (r, l ), with r 2 outsidei,j and l 2 insidei+1,j�1, the weight of the arc
in si,j can be obtained by multiplying the weight that the arc has in si+1,j�1 by qj and by dividing it by
qi. It is not difficult to verify this using the same argument as in the previous observation. Similar to the
second observation, the third observation can be expressed as
OE½Lðsi;jÞ�joutsidei;j!insideiþ1;j�1
¼

qj
qi
E½Lðsiþ1;j�1Þ�joutsidei;j!insideiþ1;j�1

. ð15Þ
Now, by Eqs. (8), (9) and (12) we can write
P
R

Eð1Þ
i;j ¼ E½Lðsi;jÞ�jinsideiþ1;j�1!outsidei;j

þ E½Lðsi;jÞ�jfi;jg!outsidei;j
; ð16Þ

Eð2Þ
i;j ¼ E½Lðsi;jÞ�joutsidei;j!insideiþ1;j�1

þ E½Lðsi;jÞ�joutsidei;j!fi;jg. ð17Þ
By combining Eq. (14) with Eq. (16), we obtain
 DEð1Þ
i;j ¼ qi

qj
E½Lðsiþ1;j�1Þ�jinsideiþ1;j�1!outsidei;j

þ E½Lðsi;jÞ�jfi;jg!outsidei;j
; ð18Þ
Ewhich, by Eq. (13), becomes
TEð1Þ
i;j ¼ qi

qj
E½Lðsiþ1;j�1Þ�jinsideiþ1;j�1!outsideiþ1;j�1

� qi
qj
E½Lðsiþ1;j�1Þ�jinsideiþ1;j�1!fi;jg þ E½Lðsi;jÞ�jfi;jg!outsidei;j

. ð19Þ
We can rewrite this to obtain the following recursion:
C

Eð1Þ
i;j ¼ qi

qj
Eð1Þ
iþ1;j�1 �

qi
qj
E½Lðsiþ1;j�1Þ�jinsideiþ1;j�1!fi;jg þ E½Lðsi;jÞ�jfi;jg!outsidei;j

. ð20Þ
R
E

In an analogous way, we can create a recursive expression for Eð2Þ
i;j . By first combining Eq. (14) with Eq.

(17), and then applying (13), we obtain
Eð2Þ
i;j ¼

qj
qi
Eð2Þ
iþ1;j�1 �

qj
qi
E½Lðsiþ1;j�1Þ�jfi;jg!insideiþ1;j�1

þ E½Lðsi;jÞ�joutsidei;j!fi;jg. ð21Þ
O
R

Let us now focus on Eð3Þ
i;j . This term refers to the original tour s. Therefore, in order to get a recursive

expression in terms of Eð3Þ
iþ1;j�1, we must isolate the contribution to Eð3Þ

i;j due to arcs going from insidei+1,j�1

to outsidei+1,j�1 and vice versa. Thus, by combining Eq. (10) with both (12) and (13) we obtain
CEð3Þ
i;j ¼ Eð3Þ

iþ1;j�1 � E½LðsÞ�jfi;jg$insideiþ1;j�1
þ E½LðsÞ�jfi;jg$outsidei;j

. ð22Þ
NIn Appendix A, we complete the derivation by showing that it is possible to express the �residual� terms on
the right hand side of EðsÞ

i;j , s = 1, 2, 3 in Eqs. (20)–(22) in terms of the already defined matrices A, B , and Q,
Q, defined as follows
U



228
229
230
231

235
236

240
241
242

245
246
247
248
249
250
251
252
253
254
255
256
257
258

L. Bianchi, A.M. Campbell / European Journal of Operational Research xxx (2005) xxx–xxx 7

EOR 7031 No. of Pages 14, DTD=5.0.1

16 September 2005 Disk Used
ARTICLE IN PRESS
Qi;j ¼
Yj
i

q; Qi;j ¼
Yiþn�1

jþ1

q. ð23Þ
Expressing the EðsÞ
i;j expressions in terms of these defined matrices allows to minimize the number of calcu-

lations necessary in evaluating a neighborhood of local search moves. By substituting in Eqs. (20)–(22) the
appropriate terms from Eqs. (44), (46), (48), (50) and (52), (54) from Appendix A, we obtain the following
final recursive equations for the 2-p-opt local search for j = i + k and k P 2:
O
O
FDEi;j ¼ Eð1Þ

i;j þ Eð2Þ
i;j � Eð3Þ

i;j ; ð24Þ

Eð1Þ
i;j ¼ qi

qj
Eð1Þ
iþ1;j�1 þ qi

1

Qi;j

Ai;kþ1 � qiQi;jðAi;1 � Ai;kÞ �
1

qj

1

Qi;j

Aj;n�kþ1 þ
1

qj
Qi;jðAj;1 � Aj;n�kÞ; ð25Þ

Eð2Þ
i;j ¼

qj
qi
Eð2Þ
iþ1;j�1 �

1

qi

1

Qi;j

Bi;n�kþ1 þ
1

qi
Qi;jðBi;1 � Bi;n�kÞ þ qj

1

Qi;j

Bj;kþ1 � qjQi;jðBj;1 � Bj;kÞ; ð26Þ

Eð3Þ
i;j ¼ Eð3Þ

iþ1;j�1 � Ai;1 þ Ai;k þ Ai;kþ1 þ Aj;1 � Aj;n�k � Aj;n�kþ1

þ Bi;1 � Bi;n�k � Bi;n�kþ1 � Bj;1 þ Bj;k þ Bj;kþ1. ð27Þ
R
For k = 1, we can express the three components of DEi,i+1 (8)–(10) in terms of A and B and obtain the fol-
lowing equations
E
D
P

Eð1Þ
i;iþ1 ¼

1

qiþ1

Ai;2 þ qiðAiþ1;1 � Aiþ1;n�1Þ; ð28Þ

Eð2Þ
i;iþ1 ¼ qiþ1ðBi;1 � Bi;n�1Þ þ

1

qi
Biþ1;2; ð29Þ

Eð3Þ
i;iþ1 ¼ Ai;2 þ Aiþ1;1 � Aiþ1;n�1 þ Bi;1 � Bi;n�1 þ Biþ1;2. ð30Þ
TFor j = i, DEi,i = 0 since si,i = s. It is still necessary, though, to compute the three components EðsÞ
i;i ,

s = 1, 2, 3 separately, in order to initiate the recursion EðsÞ
i�1;iþ1, s = 1, 2, 3. By expressing (8)–(10) in terms

of A and B, we obtain
E
CEð1Þ

i;i ¼ Ai;1; ð31Þ
Eð2Þ
i;i ¼ Bi;1; ð32Þ

Eð3Þ
i;i ¼ Ai;1 þ Bi;1. ð33Þ
U
N
C
O
R
RNote that DEi;i ¼ Eð1Þ

i;i þ Eð2Þ
i;i � Eð3Þ

i;i ¼ 0, as expected. It is possible to verify that when pi = p and
qi = q = 1 � p, we obtain the same recursive DEi,j expressions as for the homogeneous PTSP in [5].

The 2-p-opt local search procedure for the heterogeneous PTSP is similar to the one for the homoge-
neous PTSP, with the main difference being that the three components of DEi,j ðEðsÞ

i;j ; s ¼ 1; 2; 3Þ must
now be computed separately. In both cases, the recursive calculations allow us to evaluate all possible 2-
p-opt moves from the current solution in O(n2) time. Such a procedure can be used to find the shift that
creates the largest possible improvement in the current solution or to make shifts as improving moves (neg-
ative values) are encountered. The local search proceeds in two phases. The first phase consists of comput-
ing DEi,i+1 for every value of i (by means of Eqs. (24) and (28)–(30)). Note that for this purpose it is only
necessary to compute two rows of the matrices A and B. Each time a negative DEi,i+1 value is encountered,
the two nodes should immediately be switched. The n calculations of phase one require O(n) time apiece, or
O(n2) time in all. At the end of this phase, an a priori tour is reached for which every DEi,i+1 value is po-
sitive. Additionally, at the end of the first phase, the matrices A and B are re-computed, and Q and Q are
computed (in O(n2) time), so they can be used in the second phase (in O(1) time). The second phase of the
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local search consists of computing DEi,j recursively by means of Eqs. (24)–(27). Since each DEi,j in phase
two is computed in O(1) time, this phase, and thus the entire 2-p-opt checking sequence, is performed in
O(n2). With a straightforward implementation that does not utilize recursion, evaluating the 2-p-opt neigh-
borhood would require O(n4) time instead of O(n2). Since a local search procedure involves many iterations,
these savings can lead to much better solutions.

The expression for DEi,j derived by Chervi in [7] is of the form DEi,j = DEi+1,j�1 + n. This greatly differs
from our set of recursive equations. First, the n term, as derived in [7], is not computable in O(1) time but is
O(n). Second, the expression derived in [7] is incorrect since it reduces to the incorrect 2-p-opt expression for
the homogeneous PTSP published in [3] when all customer probabilities are equal [5].
 F
E
D
P
R
O
O4. 1-shift: Derivation of an efficient cost evaluation expression

Given an a priori tour s, its 1-shift neighborhood is the set of tours obtained by moving a node which is
at position i to position j of the tour, with the intervening nodes being shifted backwards one space accord-
ingly, as in Fig. 2. Denote by si,j a tour obtained from s by moving node i to the position of node j and
shifting backwards the nodes (i + 1, . . . , j), where i 2 {1, 2, . . . ,n}, j 2 {1, 2, . . . ,n}, and i 5 j. Note that
the shifted section may include n. Let D 0Ei,j denote the change in the expected tour length
E[L(si,j)] � E[L(s)]. In the following, the correct recursive formula for D 0Ei,j is derived for the 1-shift neigh-
borhood. We will again focus on the features of the derivation of the 1-shift equations that are necessary to
incorporate heterogeneous probabilities. A detailed derivation for the homogeneous version can be found
in [5].

Let j = i + k. For k = 1, the tour si,i+1 obtained by 1-shift is the same as the one obtained by 2-p-opt,
and the expression for D 0Ei,i+1 may be derived by applying the equations derived for the 2-p-opt. By sum-
ming Eqs. (28), (29) and by subtracting Eqs. (30) we find
Fig. 2.
obtain
TD0Ei;iþ1 ¼
1

qiþ1

� 1

� �
Ai;2 þ ðqiþ1 � 1ÞðBi;1 � Bi;n�1Þ þ qi � 1ð ÞðAiþ1;1 � Aiþ1;n�1Þ þ

1

qi
� 1

� �
Biþ1;2. ð34Þ
E
CWe will now focus on the more general case where 2 6 k 6 n � 2. Again, the case where k = n � 1 can be

neglected because it does not produce any change to the tour s. We re-define the notions of inside, outside
and the contributions to the change in expected tour length adapting them for the 1-shift.

Definition 6. D 0Ei,jjSMT = E[L(si,j)]jTMS � E[L(s)]jTMS. This is similar to Definition 3, the only difference
being the meaning of the a priori tour si,j, that here is obtained from s by a 1-shift move.
U
N
C
O
R
R

n = 10 2
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3 

1

8

7 
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9

3 = i

n = 10

7 = j = i + k,
k=4

1–SHIFT

Tour s = (1, 2, . . . , i, i + 1, . . . , j, j + 1, . . . , n) (left) and tour si,j = (1, 2, . . . , i � 1, i + 1, i + 2, . . . , j, i, j + 1, . . . , n) (right)
ed from s by moving node i to position j and shifting backwards the nodes (i + 1, . . . , j), with n = 10, i = 3, j = 7.
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Definition 7. insidei,j = {i + 1, . . . , j}, that is, the section of s that is shifted to obtain si,j.

Definition 8. outsidei,j = N n (insidei,j [ {i}).

It is not difficult to verify that the weights on arcs between outside nodes and arcs between inside nodes
again do not change as a result of the shift. Therefore, the only contribution to D 0Ei,j is given by the change
in weight placed on arcs between insidei,j [ {i} nodes and outsidei,j nodes, and on arcs between node {i}
and insidei,j nodes, that is
D0Ei;j ¼ D0Ei;jjðinsidei;j[figÞ$outsidei;j þ D0Ei;jjfig$insidei;j . ð35Þ
F

In the following, we derive a recursive expression for each of the two components of D 0Ei,j. Let
OD0Ei;jjðinsidei;j[figÞ$outsidei;j ¼ D0Ei;j�1jðinsidei;j�1[figÞ$outsidei;j�1
þ d; ð36Þ
and
 OD0Ei;jjfig$insidei;j ¼ D0Ei;j�1jfig$insidei;j�1
þ c. ð37Þ
Then, by Eq. (35), we can write the following recursive expression
 R
D0Ei;j ¼ D0Ei;j�1 þ dþ c. ð38Þ
PIn Appendix B, we complete the derivation by showing that it is possible to express the �residual� terms d

and c of Eq. (38) in terms of the already defined matrices A, B, and Q 0, Q0, defined as follows
DQ0
i;j ¼

Yj
iþ1

q; Q0
i;j ¼

Yiþn�1

jþ1

q. ð39Þ
T
EExpressing the D 0Ei,j expressions in terms of these defined matrices allows to minimize the number of cal-

culations necessary in evaluating a neighborhood of local search moves. By substituting the expression for d
(Eq. (60)) and c (Eq. (63)) from Appendix B in Eq. (38), we obtain the following final recursive equations
for the 1-shift local search for j = i + k and k P 2:
R
E
CD0Ei;j ¼ D0Ei;j�1 þ Q0

i;j �
1

Q0
i;j

 !
ðqjAi;k � Ai;kþ1Þ þ

1

Q0
i;j

� Q0
i;j

 !
Bi;n�k �

1

qj
Bi;n�kþ1

 !

þ 1� 1

qj

 !
Q0

i;jBi;1 þ
1

qi
� 1

� �
Bj;kþ1 þ ð1� qjÞQ0

i;jAi;1 þ 1� 1

qi

� �
Aj;n�kþ1

þ ðqi � 1ÞðAj;1 � Aj;n�kÞ þ ð1� qiÞðBj;1 � Bj;kÞ. ð40Þ
U
N
C
O
RIt is possible to verify that when pi = p and qi = q = 1 � p, we obtain the same recursive D 0Ei,j expressions

as for the homogeneous PTSP in [5].
The 1-shift algorithm for the heterogeneous PTSP proceeds similarly as for the 2-p-opt. In the first phase

of computation, D 0Ei,i+1 values for every i are computed by means of Eq. (34), while only the required rows
of the matrices A and B are computed. At the end of the first phase, the matrices A and B are re-computed,
and Q 0 and Q0 are computed. This phase requires O(n2) time, the same as with 2-p-opt. The second phase of
the local search consists of computing D 0Ei,j values recursively by means of Eq. (40). Like 2-p-opt, since
each D 0Ei,j in phase two is computed in O(1) time, this phase, and thus the entire 1-shift checking sequence,
may be performed in O(n2). With a straightforward implementation that does not utilize recursion, evalu-
ating the 1-shift neighborhood would require O(n4) time instead of O(n2).

The expression for D 0Ei,j derived by Chervi in [7] is of the form D 0Ei,j = D 0Ei,j�1 + n 0. Again, the n 0 term,
as derived in [7], is not computable in O(1) time but requires O(n). This expression is also incorrect since it
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reduces to the incorrect 1-shift expression for the homogeneous PTSP published in [3] when all customer
probabilities are equal [5].
O
F

5. Conclusions

In this paper, we focused on the general PTSP problem where no assumption is made on the value of
customer probabilities (heterogeneous PTSP). We have derived new expressions for the efficient computa-
tion of the expected cost of 2-p-opt and 1-shift local search moves. These derivations imply that it is pos-
sible to compute the cost evaluations of the entire neighborhood of a solution in O(n2) time, as in the
homogeneous PTSP. Moreover, this result corrects the methods known in the literature and improves them
by an O(n) time factor. Future work will evaluate and compare alternate solution techniques for the het-
erogeneous PTSP. As this problem becomes increasingly important, so will the need for efficient, successful
solution techniques.
 O
P
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Appendix A

We first re-define the matrices A (Eq. (4)) and B (Eq. (5)) in terms of the matrix Q (Eq. (23))
C
T

Ai;k ¼
Xn�1

r¼k

dði; iþ rÞpipiþrQiþ1;iþr�1; ð41Þ

Bi;k ¼
Xn�1

r¼k

dði� r; iÞpi�rpiQi�rþ1;i�1. ð42Þ
R
E

Let us now focus on the �residual� terms on the right hand side of EðsÞ
i;j , s = 1, 2, 3 in Eqs. (20)–(22). Recalling

that j = i + k, the second term on the right hand side of Eq. (20) is the following
O
R� qi

qj
E½Lðsiþ1;j�1Þ�jinsideiþ1;j�1!fi;jg ¼ � qi

qj

Xk�1

t¼1

dðiþ t; iÞpiþtpiQiþ1;iþt�1Qi;j�1

� qi
qj

Xk�1

t¼1

dðiþ t; iþ kÞpiþtpiþkQiþ1;iþt�1. ð43Þ
U
N
CThe right hand side of the above equation is in two pieces. In the first piece, the factor Qi;j�1 may be taken

out from the sum and, by applying the definition of A from Eq. (41) to the remaining terms in the sum, we
get � qi

qj
Qi;j�1ðAi;1 � Ai;kÞ. Also the second piece can be expressed in terms of the A matrix, but it requires a

bit more work. First, we substitute (qi/qj)Qi+1,i+t�1 with Qi,i+t�1/qj. Then, we multiply and divide it by the
product qjqj+1 � � � qi+n�1, and we obtain the term Qj+1,i+t�1/Qj,i+n�1, whose denominator (which is equiva-
lent to Qi;j�1) may be taken out from the sum. Finally by replacing i + t with j + n�k + t, and by applying
the definition of A to the remaining terms in the sum, the second piece of the right hand side of Eq. (43)
becomes 1

Qi;j�1
Aj;n�kþ1, and the whole Eq. (43) may be rewritten as
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� qi
qj
E½Lðsiþ1;j�1Þ�jinsideiþ1;j�1!fi;jg ¼ � qi

qj
Qi;j�1ðAi;1 � Ai;kÞ �

1

Qi;j�1

Aj;n�kþ1. ð44Þ
The rightmost term of Eq. (20) may be written as
E½Lðsi;jÞ�jfi;jg!outsidei;j
¼
Xn�k�1

r¼1

dði; iþ k þ rÞpipiþkþrQiþkþ1;iþkþr�1

þ
Xn�k�1

r¼1

dðiþ k; iþ k þ rÞpiþkpiþkþrQiþkþ1;iþkþr�1Qi;iþk�1. ð45Þ
F

By applying the definition of A from Eq. (41) to the right hand side of the last equation we obtain
OE½Lðsi;jÞ�jfi;jg!outsidei;j
¼ qi

qj

1

Qi;j�1

Ai;kþ1 þ Qi;j�1ðAj;1 � Aj;n�kÞ. ð46Þ
OThe second term on the right hand side of Eq. (21) is the following
P
R�

qj
qi
E½Lðsiþ1;j�1Þ�jfi;jg!insideiþ1;j�1

¼ �
qj
qi

Xk�1

t¼1

dði; iþ k � tÞpipiþk�tQiþk�tþ1;iþk�1

�
qj
qi

Xk�1

t¼1

dðiþ k; iþ k � tÞpiþkpiþk�tQiþk�tþ1;iþk�1Qiþ1;j; ð47Þ
which, by applying the definition of B from Eq. (42), becomes
D

�
qj
qi
E½Lðsiþ1;j�1Þ�jfi;jg!insideiþ1;j�1

¼ �
qj
qi

1

Qi;j�1

Bi;n�kþ1 � Qi;j�1ðBj;1 � Bj;kÞ. ð48Þ
E

The rightmost term of Eq. (21) may be written as
C
T

E½Lðsi;jÞ�joutsidei;j!fi;jg ¼
Xn�k�1

r¼1

dði� r; iÞpi�rpiQi�rþ1;i�1Qiþ1;iþk þ
Xn�k�1

r¼1

dði� r; iþ kÞpi�rpiþkQi�rþ1;i�1.

ð49Þ
EBy applying the definition of B from Eq. (42) to the right hand side of the last equation we obtain
RE½Lðsi;jÞ�joutsidei;j!fi;jg ¼
qj
qi
Qi;j�1ðBi;1 � Bi;n�kÞ þ

1

Qi;j�1

Bj;kþ1. ð50Þ
The second term on the right hand side of Eq. (22) is the following
N
C
O
R

�E½LðsÞ�jfi;jg$insideiþ1;j�1
¼ �

Xk�1

t¼1

dði; iþ tÞpipiþtQiþ1;iþt�1 �
Xk�1

t¼1

dðiþ k; iþ tÞpiþkpiþtQi�nþkþ1;iþt�1

�
Xk�1

t¼1

dðiþ k � t; iÞpiþk�tpiQiþk�tþ1;iþk�1Qiþk;iþn�1

�
Xk�1

t¼1

dðiþ k � t; iþ kÞpiþk�tpiþkQiþk�tþ1;iþk�1; ð51Þ
which, by applying the definition of A (Eq. (41)) and B (Eq. (42)), becomes
U�E½LðsÞ�jfi;jg$insideiþ1;j�1
¼ � Ai;1 � Ai;k þ Aj;n�kþ1 þ Bi;n�kþ1 þ Bj;1 � Bj;k

� �
. ð52Þ
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The rightmost term of Eq. (22) is the following
E½LðsÞ�jfi;jg$outsidei;j

¼
Xn�k�1

r¼1

dði� r; iÞpi�rpiQi�rþ1;i�1 þ
Xn�k�1

r¼1

dði� r; iþ kÞpi�rpiþkQi�rþ1;iþk�1

þ
Xn�k�1

r¼1

dði; iþ k þ rÞpipiþkþrQiþ1;iþkþr�1 þ
Xn�k�1

r¼1

dðiþ k; iþ k þ rÞpiþkpiþkþrQiþkþ1;iþkþr�1; ð53Þ
Fwhich, by applying the definition of A (Eq. (41)) and B (Eq. (42)), becomes
E½LðsÞ�jfi;jg$outsidei;j
¼ Bi;1 � Bi;n�k þ Bj;kþ1 þ Ai;kþ1 þ Aj;1 � Aj;n�k. ð54Þ
O
R
OAppendix B

We first re-define the matrices A (Eq. (4)) and B (Eq. (5)) in terms of the matrix Q 0 (Eq. (39))
PAi;k ¼
Xn�1

r¼k

dði; iþ rÞpipiþrQ
0
i;iþr�1; ð55Þ

Bi;k ¼
Xn�1

r¼k

dði� r; iÞpi�rpiQ
0
i�r;i�1. ð56Þ
E
D

Let us now focus on the �residual� term d from (36). The contribution to D 0Ei,j due to arcs between in-
sidei,j [ {i} and outsidei,j for si,j is the following:
E
C
TD0Ei;jjðinsidei;j[figÞ$outsidei;j ¼

Xn�k�1

r¼1

dði� r; iÞpi�rpiQ
0
i�r;i�1 Q0

i;j�1
� �

þdði; iþ kþ rÞpipiþkþrQ
0
iþk;iþkþr�1 1�Q0

i;j

� �h i

þ
Xk
t¼1

Xn�k�1

r¼1

dði� r; iþ tÞpi�rpiþtQ
0
i�r;i�1Q

0
i;iþt�1ð1�qiÞ

h

þdðiþ k� tþ1; iþ kþ rÞpiþk�tþ1piþkþrQ
0
iþk�tþ1;iþkQ

0
iþk;iþkþr�1ðqi�1Þ

i
; ð57Þ
Rwhile the contribution to D 0Ei,j�1 due to arcs between insidei,j�1 [ {i} and outsidei,j�1 for si,j�1 is
C
O
RD0Ei;j�1jðinsidei;j�1[figÞ$outsidei;j�1

¼
Xn�k

r¼1

dði� r; iÞpi�rpiQ
0
i�r;i�1 Q0

i;j�1 � 1
� �

þ dði; iþ k � 1þ rÞpipiþk�1þrQ
0
iþk�1;iþkþr�2 1� Q0

i;j�1

� �h i

þ
Xk�1

t¼1

Xn�k

r¼1

dði� r; iþ tÞpi�rpiþtQ
0
i�r;i�1Q

0
i;iþt�1ð1� qiÞ

h

þ dðiþ k � t; iþ k þ r � 1Þpiþk�tpiþkþr�1Q
0
iþk�t;iþk�1Q

0
iþk�1;iþkþr�2ðqi � 1Þ

i
. ð58Þ
U
N

Observe that here, exactly like in the homogeneous PTSP [5], the difference between
D 0Ei,jj(insidei,j[{i})Moutsidei,j and D 0Ei,j�1j(insidei,j�1[{i})Moutsidei,j�1 will only involve arcs which are connected to
nodes i and j, that is,
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d ¼ terms with i and j in D0Ei;jjðinsidei;j[figÞ$outsidei;j

� terms with i and j in D0Ei;j�1jðinsidei;j�1[figÞ$outsidei;j�1
. ð59Þ
So, by extracting the terms which contain the appropriate arcs from Eqs. (57) and (58) and by expressing
them in terms of the matrices A (Eq. (55)) and B (Eq. (56)) we obtain the following expression for d
F

d ¼ ð1� Q0
i;jÞ

1

Q0
i;j

Ai;kþ1 � ðBi;1 � Bi;n�kÞ
" #

þ qi � 1ð Þ ðAj;1 � Aj;n�kÞ � q�1
i Bj;kþ1

� 	

� 1� Q0
i;j�1

� � 1

Q0
i;j�1

Ai;k � ðBi;1 � Bi;n�kþ1Þ
" #

� qi � 1ð Þ ðBj;1 � Bj;kÞ � q�1
i Aj;n�kþ1

� 	
; ð60Þ
Owhich completes the recursive expression of Eq. (36). Let us now focus on the �residual� term c from Eq.
(37). The contribution to D 0Ei,j due to arcs between {i} and inside is the following:
O

D0Ei;jjfig$insidei;j ¼ ðQ0
i;j � 1Þ

Xk
t¼1

½dði; iþ tÞpipiþtQ
0
i;iþt�1 � dðiþ k � t þ 1; iÞpiþk�tþ1piQ

0
iþk�tþ1;iþk�; ð61Þ
Rwhile the contribution to D 0Ei,j�1 due to arcs between {i} and insidei,j�1 for si,j�1 is
PD0Ei;j�1jfig$insidei;j�1

¼ ðQ0
i;j�1 � 1Þ

Xk�1

t¼1

½dði; iþ tÞpipiþtQ
0
i;iþt�1 � dðiþ k � t; iÞpiþk�tpiQ

0
iþk�t;iþk�1�. ð62Þ
DNow, by subtracting Eq. (62) from Eq. (61) and by applying the definition of A (Eq. (55)), and B (Eq. (56)),
we obtain the following expression for c
Ec ¼ ðQ0
i;j � 1Þ Ai;1 � Ai;kþ1 �

1

Q0
i;j�1

Bi;n�kÞ
" #

þ 1� Q0
i;j�1

� �
Ai;1 � Ai;k �

1

Q0
i;j�1

Bi;n�kþ1

" #
; ð63Þ
Twhich completes the recursive expression of Eq. (37).
U
N
C
O
R
R
E
C
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