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1 Introduction

PRAXAIR (www.praxair.com) is a large industrial gases company with about 60
production facilities and over 10,000 customers across North America. PRAX-
AIR recently negotiated a policy with its customers in which PRAXAIR is in
charge of managing its customers’ inventories. Customers will no longer be call-
ing PRAXAIR to request a delivery. Instead, PRAXAIR will determine who
receives a delivery each day and what the size of that delivery will be. PRAX-
AIR will use gauge readings received from remote telemetry units as well as
regular customer phone calls to monitor and forecast product inventories. The
distribution planning problems associated with such vendor managed resupply
policies are known as inventory routing problems.
Inventory routing problems are very different from vehicle routing problems.

Vehicle routing problems occur when customers place orders and the delivery
company, on any given day, assigns the orders for that day to routes for trucks.
In inventory routing problems, the delivery company, not the customer, decides
how much to deliver to which customers each day. There are no customer
orders. Instead, the delivery company operates under the restriction that its
customers are not allowed to run out of product. Another difference is the
planning horizon. Vehicle routing problems typically deal with a single day,
with the only requirement being that all orders have to be delivered by the end
of the day. Inventory routing problems deal with a longer horizon. Each day
the delivery company makes decisions about which customers to visit and how
much to deliver to each of them, while keeping in mind that decisions made
today impact what has to be done in the future. The objective is to minimize
the total cost over the planning horizon while making sure no customers run
out of product. The flexibility to decide when customers receive a delivery and
how large these deliveries will be may significantly reduce distribution costs.
However, this flexibility also makes it very difficult to determine a good, much
less an optimal, cost effective distribution plan. When the choice becomes which
of the customers to serve each day (PRAXAIR has over 10,000 customers) and
how much to deliver to them, the choices become virtually endless.
Vendor managed resupply policies can be used in many situations. In some

instances, the use of such a policy is natural, such as when the “customers” are
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really part of the same company. In others, the use of a vendor managed resup-
ply policy is often the result of lengthy negotiations with customers who have for
years followed a policy in which they call in their orders. Examples of industries
where vendor managed resupply policies are being used or considered include,
the petrochemical industry (gas stations), the grocery industry (supermarkets),
the soft drink industry (vending machines), and the automotive industry (parts
distribution). The number of industries using vendor managed resupply policies
is increasing rapidly. An important reason for this is technology. For a variety
of industries/products, the monitoring technology that existed several years ago
was not sophisticated enough to make a vendor managed resupply system pos-
sible. The only way to check a customer’s inventory for many types of products
has been for the vendor to call the customer and for the customer to go look at
the meter on the tank, to count the number of items in the vending machine,
etc. Now the use of remote telemetry units, scanners, computers and modems
allows the monitoring of inventory levels directly by the vendor, opening up new
opportunities for vendor managed resupply policies.
The remainder of the chapter is organized as follows. In Section 2, we

formally introduce the inventory routing problem and in Section 3, we give a
brief literature review. In Section 4, we discuss the two-phase approach we have
chosen to solve instances of the IRP. In Section 7, we present the results of some
computational experiments.

2 Problem Definition

The inventory routing problem (IRP) is concerned with the repeated distribu-
tion of a single product from a single facility, to a set N of customers over a
planning horizon of length T , possibly infinity. Customer i consumes the prod-
uct at a rate ui (volume per day) and has the capability to maintain a local
inventory of the product up to a maximum of Ci. The inventory at customer i
is I0i at time 0. A fleetM of homogeneous vehicles, with capacity Q, is available
for the distribution of the product. The objective is to minimize the average
daily distribution cost during the planning period without causing stockouts
at any of the customers. Vehicles are allowed to make multiple trips per day.
Three decisions have to be made:

1. When to serve a customer?

2. How much to deliver to a customer when served?

3. Which delivery routes to use?

Real-life inventory routing problems are obviously stochastic. No customer
will use product the same way every single day. In many situations, however, us-
age is relatively predictable and customers generally use about the same amount
each day if we look at their total usage for several days in a row. Therefore,
solution approaches developed for the IRP as defined above will still provide
useful planning tools.
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3 Literature Review

Even though the IRP is a long-term problem, almost all proposed solution
approaches solve only a short-term version of the problem to make it easier. In
early work, short-term was often just a single day, but in later work this was
expanded to several days. Besides the number of days modeled, key features
that distinguish different solution approaches include how the long-term effects
of short-term decisions are modeled, and how it is determined which customers
are included in the short-term problem. Also whether demand at the customers
is treated as deterministic or stochastic can be significant. Summaries of various
approaches are included in [3], [15], [26], and [11]. The following is not meant
to be a complete review of work done in this area, but a good introduction to
the types of approaches that have been taken.
Those following a single day approach include Federgruen and Zipkin [17];

Golden, Assad,and Dahl[22]; and Chien, Balkarishnan and Wong[13]. Feder-
gruen and Zipkin, in their single day approach, capitalize on many of the ideas
from vehicle routing. Their model, which is a nonlinear integer program, decom-
poses into a routing portion and inventory portion. They construct an initial
feasible solution to the routing part of the problem and iteratively improve the
solution by exchanging customers between routes and then resolving the inven-
tory part of the problem. Golden, Assad, and Dahl [22] develop a heuristic
based on a measure of the ‘urgency’ of each customer, determined by the ratio
of tank inventory level to tank size. All customers with an urgency smaller than
a certain threshold are excluded. Customers are iteratively selected to receive
a delivery according to the highest ratio of urgency to extra time required to
visit this customer. Chien, Balakrishnan, and Wong [13] also develop a single
day approach, but it does not treat each day as a completely separate entity.
By passing some information from one day to the next, the system simulates a
multiple day planning model.
The work of Fisher et al. is very interesting since they were also motiviated

by applications in industrial gases. Fisher et al. [19], [8] consider an objective
of profit maximization from product distribution over several days. Demand is
given by upper and lower bounds on the amount to be delivered to each customer
for every period in the planning horizon. An integer program is formulated that
captures delivery volumes, assignment of customers to routes, assignments of
vehicles to routes, and assignment of start times for routes. It is solved using a
Lagrangean dual ascent approach.
In two companion papers, Dror and Ball [15, 14] again plan for a short-term,

but became the first ones to really try to consider what happens beyond the
next few days in doing so. Dror and Ball consider demand to be stochastic
and use the probability that a customer will run out on a specific day in the
planning period, the average cost to deliver to the customer, and the anticipated
cost of a stockout, to find the optimal replenishment day t∗ for each customer.
If t∗ falls within the short-term planning period, the customer will definitely be
visited, and a value ct is computed for each of the days in the planning period
that reflects the expected increase in future cost if the delivery is made on day
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t instead of on t∗. An integer program is then solved that assigns customers
to a vehicle and a day, or just day, that minimizes the sum of these costs plus
the transportation costs. Delivery amounts are considered to be dictated by the
day of the week on which the delivery is made, and thus are not a decision to
be made by the integer program.
Some of the ideas of Dror and Ball are extended and improved in Trudeau

et al. [28]. Dror and Levy [16] use a similar analysis to yield a weekly schedule,
but then apply node and arc exchanges to reduce costs in the planning period.
Jaillet et al. [23, 5, 4] discuss another extension of this idea. They take a rolling
horizon approach to the problem by determining a schedule for two weeks, but
only implementing the first week. An analysis similar to Dror and Ball’s is done
to determine an optimal replenishment day for each customer, and incremental
costs are computed which represent the cost for changing the next visit to a
customer to a different day but keeping the optimal schedule in the future.
These costs are used in an assignment problem formulation that assigns each
customer to a day in the two week planning horizon.
Anily and Federgruen [1, 2] look at minimizing long run average transporta-

tion and inventory costs by determining long term routing patterns for a set
of customers with deterministic demand. The routing patterns are determined
using a modified circular partitioning scheme. After the customers are parti-
tioned, customers within a partition are divided into regions so as to make the
demand of each region roughly equal to a truck load. A customer may appear
in more than one region, but then a certain percent of his demand is allocated
to each region. When one customer in a region gets a visit, all customers in the
region are visited. They also determine a lower bound for the long run average
cost to be able to evaluate how good their routing patterns are. Using ideas
similar to those of Anily and Federgruen, Gallego and Simchi-Levi [21] evaluate
the long run effectiveness of direct shipping (separate loads to each customer).
They conclude that direct shipping is at least 94% effective over all inventory
routing strategies whenever minimal economic lot size is at least 71% of truck
capacity. This shows that direct shipping becomes a bad policy when many
customers require significantly less than a truck load, making more complicated
routing policies the appropriate choice.
Another adaptation of these ideas can be found in Bramel and Simchi-Levi

[10]. They consider the variant of the IRP in which customers can hold an
unlimited amount of inventory. To obtain a solution, they transform the problem
to a capacitated concentrator location problem (CCLP), solve the CCLP, and
transform the solution back into a solution to the IRP. The solution to the
CCLP will partition the customers into disjoint sets, which in the inventory
routing problem, will become the fixed partitions. These partitions are then
served similar to the regions of Anily and Federgruen.
In the last few years, many have been concentrating on a stochastic version

of the problem. They are trying to make better use of the stochastic information
available in trying to solve a fairly simple version of the problem. Work in this
direction that considers a short planning horizon includes Bassok and Ernst [7]
and Berman and Larson [9]. Considering a long term horizon are Minkoff [25],
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Barnes-Schuster and Bassok [6], Cetinkaya and Lee [12], Fumero and Vercellis
[20], and Nori [26].

4 Solution Approach

A short-term approach has the tendency to defer as many deliveries as possible
to the next planning period, which may lead to an undesirable situation in the
next planning period. Therefore, the proper projection of a long-term objective
into a short-term planning problem is essential. It needs to capture the costs and
benefits of delivering to a customer earlier than necessary. Our focus has been
on developing a flexible system capable of handling large instances that properly
balances short-term and long-term goals and that considers all the key factors,
i.e., geography, inventory, capacity, and usage rate. We wanted also to create a
system that would consider routing customers together on a day where none of
them are at the point of run out, but where they combine to make a good, full
truckload delivery route. We found that most systems reduce the problem by
starting with only the “emergency” customers, never putting together certain
combinations that make sense with regard to location and delivery size. The
basis for our system is a two-phase solution approach. In the first phase, we
determine which customers receive a delivery on each day of the planning period
and decide on the size of the deliveries. In the second phase, we determine the
actual delivery routes and schedules for each of the days.
As mentioned earlier, real-life inventory routing problems are stochastic.

Therefore, any distribution plan covering more than a couple of days will never
be executed completely as planned. Actual volumes delivered differ from planned
volumes because usage rates deviate from their forecasts, planned driving time
is off due to traffic congestion, etc.. Therefore, any planning system needs to be
flexible. It needs to take advantage of the latest changes in the data. Given this,
our approach is to embed our two-phase solution approach in a rolling horizon
framework. We always construct a distribution plan for a month to reflect the
long-term nature of the planning problem, but we expect to implement only the
first few days. We repeat this as often as necessary using the latest information
available.

4.1 Phase I: An Integer Programming Model

At the heart of the first phase is an integer program. Central to the model are
two quantities: Lti = max(0, tui − I0i ), a lower bound on the total volume that
has to be delivered to customer i by the end of day t, and U ti = tui + Ci − I0i ,
an upper bound on the total volume that can be delivered to customer i by the
end of day t. Let dti represent the delivery volume to customer i on day t, then
to ensure that no stockout occurs at customer i and to ensure that we do not
exceed the inventory capacity at customer i, we need to have that

5



Lti ≤
X
1≤s≤t

dsi ≤ U ti ∀i ∈ N, t = 1, ..., T.

To model the resource constraints with some degree of accuracy and to have
a meaningful objective function, we found it necessary to explicitly use delivery
routes. However, when we refer to a “route”, we are really referring to a set
of customers without enforcing a specific ordering among the customers in the
set. We estimate the distance required to visit the customers in the set by the
length of the optimal traveling salesman tour through all the customers. Now,
let R be the set of delivery routes, let Tr denote the duration of route r (as a
fraction of a day), and let cr be the cost of executing route r. Furthermore, let
xtr be a 0-1 variable indicating whether route r is used on day t (x

t
r = 1) or not

(xtr = 0). The total volume that can be delivered on a single day is limited by
a combination of capacity and time constraints. Since vehicles are allowed to
make multiple trips per day, we cannot simply limit the total volume delivered
on a given day to be the sum of the vehicle capacities. To be more precise, the
resource constraints can be modeled by

X
i:i∈r

dtir ≤ Qxtr ∀r ∈ R, t = 1, ..., T,

and

X
r:r∈R

Trx
t
r ≤ |M | t = 1, ..., T.

These constraints ensure that we do not exceed the vehicle capacity on any of
the selected routes and that the time required to execute the selected routes
does not exceed the time available.
The basic Phase I integer programming model is given by

min
X
t

X
r

crx
t
r

Lti ≤
X
1≤s≤t

dsi ≤ U ti ∀i ∈ N, t = 1, ..., T,

X
i:i∈r

dtir ≤ Qxtr ∀r ∈ R, t = 1, ..., T,

X
r:r∈R

Trx
t
r ≤ |M | t = 1, ..., T.
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The first variation of the basic model handles fixed and variable stop times
at the customers as well as a vehicle reloading time at the facility. The duration
of a route Tr can be modified to include not only the estimated time to drive
the distance between the customers on the route, but also a fixed stop time for
each customer and an initial fill time for the vehicle required before the route
can start. Dispense time at a customer clearly cannot be included in Tr a priori
because it depends on the size of the delivery. Therefore, we must alter the
resource constraint as follows, where F is the percentage of the day required to
dispense each unit of product

X
r:r∈R

(Trx
t
r +

X
i:i∈r

Fdtir) ≤ |M | t = 1, ..., T.

The second variation handles operating modes of customers. Operating
mode refers to the start and end time of customer usage on each day of the
week. Before, we assumed that each customer i uses product 24 hours per day
everyday. Operating modes are important. When a customer does not use prod-
uct on the weekend, for example, it has a big impact on properly timing the
deliveries. Operating modes can be handled easily by appropriately modifying
the lower and upper bound parameters. The value for the upper bound and
lower bound on day t now depend on where in the week days 1 through t fall.
The third variant handles time windows at customers. An operating mode

restricts when a customer uses product. A time window restricts when a cus-
tomer can receive a delivery. Time windows may be day dependent as well. To
handle time windows, the lower and upper bound parameters need to modified
again, but in a slightly different way. Now the lower bound Lti needs to be
defined as the total volume that has to be delivered to customer i by the closing
of the time window on day t to allow customer i to last until the opening of
the time window on day t + 1 (or the opening of the time window on the first
available day for the next delivery if no deliveries can be made on day t + 1).
The upper bound U ti is now defined as the largest volume that customer i can
receive by the close of the delivery window on day t.

4.2 Phase I: Solving the Integer Programming Model

The integer programming model presented above is not very practical for two
reasons: the huge number of possible delivery routes and, although to a lesser
extent, the length of the planning horizon. To make the integer program com-
putationally tractable we consider a small (but good) set of delivery routes and
aggregate periods toward the end of the planning horizon.

4.2.1 Clusters

Our approach to reduce the number of routes is based on allowing customers to
be on a route together only if they are in the same cluster. A cluster is a group
of customers that can be served cost effectively by a single vehicle for a long
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period of time. The cost of a cluster is an approximation of the distribution
cost for serving the customers in the cluster for a month. The cost of serving
a cluster does not only depend on the geographic locations of the customers in
the cluster, but also on whether the customers in the cluster have compatible
inventory capacities and usage rates. Therefore, to evaluate the cost of a cluster,
we need a model that considers all of these factors.
The following approach is used to identify a good set of disjoint clusters

covering all customers:

1. Generate a large set of possible clusters.

2. Estimate the cost of serving each cluster.

3. Solve a set partitioning problem to select clusters.

Observe that the selection of clusters only has to be done once as a pre-
processing step before the actual planning starts. It does not have to be re-run
before every execution of the Phase I integer program. In practice it makes
sense to re-cluster when new customers have been added or there have been
significant changes to the data.
Since we generate a large number of clusters to choose from, we need a

costing procedure that is fast, but able to provide an accurate estimate of the
cost of serving the cluster. We decided to use a simple integer program with
key features represented.

4.2.2 Aggregation/Relaxation

Given that our two-phase solution approach will be embedded in a rolling hori-
zon framework, the emphasis should be on the quality and detail of the decisions
concerning the first few days of the plan. This provides us with an excellent op-
portunity to reduce the size of the integer program by aggregating days towards
the end of the planning period.
For the first k days, we will still have route selection variables for each day,

but for the days after that, we will have route selection variables covering periods
of several days. Instead of making a decision on whether to execute each route
on days 8 to 14 individually, for example, we now decide how many times each of
the routes will be executed during the whole week instead. Several aggregation
schemes were tested. We found that considering weeks rather than days towards
the end of the planning horizon still does a good job of preserving the costs
associated with the effect of short-term decisions on the future and yields a
significant reduction in CPU time. Therefore, the daily variables associated
with these later days are replaced by weekly variables. Upper and lower bounds
are altered accordingly as well.
A further simplification is obtained by relaxing the integrality restrictions

on the variables representing the weekly decisions. Therefore, the only binary
variables appearing in the integer program will be those representing route se-
lections for the first k days.
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4.3 Phase II: Scheduling

A solution to the integer program of Phase I specifies the volumes to deliver
to each customer for the next k days. It does not specify departure times
and customer sequences for the different vehicles. Therefore, we still need to
construct vehicle routes and schedules.
Since the delivery volumes specified by the solution to the integer program

may not fit before a specific time of the day and may need to be received before
a certain later time to prevent run out, these deliveries have self imposed time
windows. Therefore, to convert the information provided by the solution to the
integer program to daily vehicle routes and schedules, we can solve a sequence
of vehicle routing problems with time windows.
However, such an approach does not capitalize on the flexibility inherent in

the inventory routing problem. The delivery volumes specified by the solution
to the integer program are good from a long-term perspective; they may not be
good from a short-term perspective. Therefore, we treat the delivery volumes
and timing specified by the solution to the integer programs as suggestions. We
try to follow these suggestions as closely as possible, since this helps to achieve
our long-term goals, but we allow small deviations when it helps to construct
better short-term plans. To be more precise, we construct vehicle routes and
schedules for two consecutive days, where we force the total volume delivered to
a customer over the two days to be greater than or equal to the total delivery
volume specified by the solution to the integer program for these two days,
but we do not enforce specific delivery volumes on individual days. In this
way, we stay close to the delivery volumes suggested by the integer program,
which is good from a long-term perspective, but we introduce some flexibility in
the daily routing and scheduling, which is good from a short-term perspective.
Deliveries can be split into smaller pieces, delivering one part on the first day
and the second part on the second day if this works out to be better, for example
when resources are very tight on one of the days. This flexibility is even more
important when we consider the fact that in practice a few customers may not
follow a vendor managed resupply policy and may call in orders that need to
be added to the daily routing and scheduling problem. With new orders and
new accurate up-to-date information on customer inventory levels, it may make
sense to shift around some of the deliveries over the next couple of days.
Because of customer usage and customer inventory capacities, there may

be customers that require a delivery on both days or even multiple times a
day. Consequently, in our two day routing and scheduling problem, we can
distinguish two types of customers: customers that require multiple deliveries
over the two days and customers that require only one.
We have developed and implemented an insertion heuristic for this two day

routing and scheduling problem. The heuristic is a logical progression of com-
monly used techniques in insertion heuristics for the vehicle routing problem
with time windows, see for example Solomon [27] and Kindervater and Savels-
bergh [24].
In the description of the heuristic, we assume, for ease of presentation, that
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there are no operating modes and no time windows restricting when deliveries
can take place. Both complications can easily be handled. We also do not
discuss explicitly the use of fixed stop times and unloading times, though both
can be included in the travel time value used here.
The flexibility to change delivery volumes makes checking the feasibility of

insertions much more complex than in the VRP. For example, the insertion of
a customer on a route can affect the delivery volume of another customer on an
earlier or later route for the same vehicle, which can affect the size and timing
of other deliveries for the customers on that route, etc.
To be able to evaluate the feasibility of an insertion, we maintain several

quantities related to deliveries to customers already scheduled. Consider a de-
livery to customer i on route r. The predecessor on the route is denoted by
p(i) and the successor on the route is denoted by s(i). The total volume to
be delivered to customer i over the two days prescribed by the solution to the
Phase I integer program is di. We consider a day as ranging from time 0 to
1 for convenience. There is a slight difference for customers that need multi-
ple deliveries over the two days, but the basic quantities we maintain are the
following:

1. The minimum delivery volume qminri .

qminri = di.

2. The earliest time a delivery can be made tearlyri

tearlyri = max(tearlyrp(i) + ttp(i),i,

(qminri − Ci + Ii)/ui)

where tearlyr0 = tearlystartr , the earliest time the route can start, and ttj,k
is the travel time from customer j to k. The first term of the maximum
represents the time to get to customer i from p(i) and the second term
represents the time that the minimum delivery volume can fit at customer
i.

3. The latest time a delivery can be made tlateri

tlateri = min(tlaters(i) − tti,s(i), Ii/ui)

where tlater(n+1) = t
lateend
r , the latest time route r can end. The first term

of the minimum represents the latest departure time from i to be able to
reach s(i) by the latest time for its delivery. The second term represents
the time when customer i runs out of product.

4. The maximum delivery volume qmaxri
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qmaxri = min(Q−
X
j 6=i∈r

qminrj , Ci, di,

Ci − Ii + uitlateri )

The first term of the minimum is the capacity remaining in the vehicle
if we assume all other customers on the route will receive their minimum
delivery volumes, the second and third terms are obvious, and the fourth
term represents the volume that will fit at the latest time a delivery can
be made.

Because vehicles can drive multiple routes per day we also maintain several
quantities for each route.

1. The earliest time the route can start tearlystartr

2. The latest time the route can start tlatestartr

3. The earliest time the route can end tearlyendr

4. The latest time a route can end tlateendr

Given these quantities the feasibility of an insertion is checked as follows.
First, we check whether the minimum delivery volume fits in the vehicle given
the other planned deliveries. Next, we compute the earliest time and the latest
time a delivery can take place. If the earliest delivery time is greater than the
latest delivery time, the insertion is infeasible. Using the latest delivery time, we
compute the maximum delivery size. If it is smaller than the minimum delivery
size, the insertion is infeasible. If the insertion passes both of these tests, it is
feasible.
If an insertion is feasible, the cost of the insertion is evaluated. The cost

of an insertion is a weighted sum of several components. The first component
is the increase in distance and the second component is an approximation of
the minimum increase in waiting time if the insertion is carried out. The third
component is a charge for making routes “inflexible”. In the final two day plan,
we like to have near capacity routes. Therefore, we want to discourage the
construction of routes with a small difference tlatestartr − tearlystartr and a large
difference Q−Pj∈r q

max
rj , since it is unlikely that such routes can be extended

to near capacity routes. A charge is incurred if the insertion forces a route to
have a gap between earliest and latest starting time that is less than x minutes
and a total maximum delivery volume that is less than y% of capacity. The
charge is inversely related to the size of the gap.
For each delivery to a customer, we maintain the cheapest feasible insertion

and the second cheapest feasible insertion, if it exists. Since we can always
construct a feasible route with just a delivery to a single customer, there exists
at least one feasible insertion.
All that remains to complete the description of the insertion heuristic is to

specify how we select the deliveries to be inserted in each iteration. Note that we
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select deliveries rather than customers, because customers may require multiple
deliveries over the two days. We use the following selection rule:

1. If there are deliveries that cannot be inserted into any existing route, then
among those deliveries select the one with the most expensive route for
itself.

2. If all deliveries can be inserted into at least one existing route, then select
the one with the largest difference between the cost of its cheapest and
second cheapest insertion.

The first part of the rule captures the idea that if there are deliveries that
cannot be inserted in the current set of routes, we know that we have to create
at least one more route, so we might as well do it now. The second part of the
rule captures the idea of trying to insert a delivery well and before all of its
good potential insertion points become infeasible.
These rules are first applied to the deliveries to customers that require mul-

tiple deliveries over the two days. The idea is that these deliveries will be the
most difficult to schedule feasibly, so we need to handle these first. When all of
these are scheduled, these same insertion rules are then applied to the remaining
deliveries.
After a feasible schedule is created, we run one more heuristic, the delivery

amount optimization routine, which finalizes the schedule. It reviews the current
schedule, decides which of the customers should have their delivery amounts set
above the minimum and, if so, the new amount and decides where in the final
feasible time ranges the delivery times should be set.
The insertion heuristic described above is embedded into a greedy random-

ized adaptive search procedure (GRASP) [18]. A GRASP combines a greedy
heuristic with randomization. Whenever the heuristic selects the next delivery
to be inserted, it will pick randomly from the q best choices, where q is pre-
specified. This allows the algorithm to make choices that do not seem to be
the best at the time, but may provide better opportunities later. In a GRASP
framework, the heuristic is executed many times and the best plan obtained is
picked.

5 Computational Experience

In this section, we present the results of various computational experiments that
demonstrate the viability and value of the approach presented in Section 4 and
illustrate many of the complexities of inventory routing problems.

5.1 Instances

For our computational experiments we have used actual data from two of PRAX-
AIR’s production facilities. We have chosen these two production facilities be-
cause the characteristics of the set of customers they serve are quite different in
terms of geography, tank capacities, and usage rates.
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Figure 1: Map of Plant A and its Customers
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Figure 2: Delivery frequency

Production facility A serves 50 customers that are fairly spread out, covering
a mostly rural area with some small clusters of customers near cities. The
facility is located in the northwestern corner of the state, not in the center, and
is represented graphically by the large square. (See Figure 5.1.) Customers are
between 4 minutes to 4 and a half hours driving time from the facility, with
an average of 3 hours. The average driving time between two customers is 2
hours and 10 minutes. Of the 50 customers, 72 % require less than 1 delivery
per week, 16% require between 1 and 2, 8% require between 2 and 3, and 4%
require between 3 and 6 deliveries per week. (See Figure 5.1.) With respect
to tank capacities, 22% of the customers can receive a delivery of more than a
truckload, but 58% cannot receive even half of a truckload. (See Figure 5.1.) In
the graph, the heavy line indicates truck capacity.
Production facility B serves 87 customers spread over a large geographic area

in the northern United States. The customers are concentrated heavily in the
middle of the area, where the facility is also located, and become less concen-
trated as the distance from the center increases. (See Figure 5.1.) Customers
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Figure 3: Tank capacity

Figure 4: Map of Plant B and its Customers

are between 6 minutes and 10 hours driving time from the facility, with an av-
erage of 2 hours and 20 minutes. The average driving time between two points
is 3 hours and 40 minutes. In terms of usage, 90% need less than 1 delivery per
week, 8% need between 1 and 2, and only 2% require more than 1 delivery per
week. (See Figure 5.1.) Furthermore, 21% can receive a delivery of a truckload
and 41 % cannot receive half of a truckload. (See Figure 5.1.)
Roughly 75% of the customers at both plants use product 24 hours a day, 7

days a week. Of the customers that are not constant users, many change how
they use product depending on the day of the week. Most use product roughly
the same way Monday through Friday, but often only 8 to 10 hours per day. The
usage pattern usually changes on the weekend, with many of these customers
not using product at all on Sundays and less than half of a weekday amount on
Saturdays.
Other relevant information used in our computational experiments is that the

time of a delivery is calculated as .5 + (vehicle pump rate)(̇quantity delivered),
that it takes 1 hour to reload a vehicle at the facility before it can depart again
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on another route, that all vehicles drive at a speed of 45 mph, and that deliveries
can be made 24 hours a day.
Finally, the initial inventory for all customers was choosen randomly, with

the restriction that the inventory level should be sufficient to last the customer
until the first time a vehicle would be able to arrive at the customer to refill its
tank.

5.2 Solution quality

A solution to the inventory routing problem for a given planning period specifies
which vehicles are visiting which customers on each day of the planning period,
in what order the deliveries are being made, and how much is delivered to each
customer. However, even with all this information it is still nontrivial to evaluate
the quality of the solution. Since the IRP is really an infinite horizon problem,
we have only specified the first part of a solution. For example, if we consider a
planning period of two weeks, as we will do in our computational experiments,
it is not obvious how to compare two solutions and claim that one is better than
the other. If the total distance traveled in one solution is less than in the other
solution, this represents a smaller driving costs. However, if, in the solution
with a higher total distance traveled, only full truckload deliveries are made,
how can we say this solution is worse? It utilizes the trucks extremely well and
may end in a state that is a much better starting point for the deliveries that
have to be made in the following weeks.
Therefore, in addition to looking at the obvious statistics, such as the number

of trips, the number of stops, the total volume delivered, and the total distance
traveled, we also look at several other statistics to evaluate the quality of a
solution for a two week planning period. Some of these statistics are used
by PRAXAIR to evaluate their own performance, others are proposed in the
literature, and some we just found to be interesting.
A popular statistic used in industry is average volume per mile. This statistic

averages the volume per mile of all the trips, where the volume per mile of a trip
is what we expect it to be, namely the total volume delivered on a trip divided
by the total distance traveled on the trip. It is easy to see that this number
is very sensitive to the distance of customers to the facility and therefore does
not seem to provide reliable information in an averaged form. For example, if
we consider a trip to a customer 4 miles away from the facility where a full
truckload is delivered, the volume per mile is equal to truckload divided by 8. If
we consider another trip to a customer 40 miles away from the facility where we
also deliver a full truckload, the volume per mile is equal to truckload divided
by 80. The average of these two volumes per mile ( 11160 truckload) does not
provide much information.
A more sensible statistic, especially over a period of several days, is total

volume per mile, defined as the total volume delivered to all customers over
the time period considered divided by the total distance traveled over this time
period. Since we are looking only at the first piece of a long-term problem, it
makes sense, in this first piece, to deliver more product than required to ensure
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that customers will not run out, if it can be done at a relative small cost, i.e.,
a small increase in distance traveled. A large value of total volume per mile
indicates that we are successful at doing so.
A third statistic, inspired by [8], is weighted volume per mile. In ??, the

authors discuss computing a ”weighted delivery radius” which for a period equals
the amount delivered to each tank times the distance of that tank from the
depot summed over all tanks and divided by the amount delivered. Together
with a representative from PRAXAIR, we modified this statistic so that it can
be computed for an individual route and such that comparisons of this value
among different routes can have meaning. The weighted volume per mile for a
trip with n customers is computed as:

d1 · tt0,1 + d2 · tt0,2 + ...+ dn · tt0,n
total round trip distance

The intuition behind this statistic is revealed when we look at the values
it gives for the example given above. The value it gives for both trips is 0.5
truckload (which is the largest value possible). It says that both trips are
equally good, in fact as good as possible, since the best we can do when serving
a customer for a long period of time is to deliver full truckloads. When a trip
contains several stops to deliver a full truckload or when a trip does not deliver
a full truckload, the value of this statistic will go down. The other benefit of
this statistic is that it still provides relevant information when it is averaged
over a number of trips (assuming all vehicle capacities are equal).
Other statistics that are also important to consider include the average in-

ventory level before delivery and average inventory level after delivery, both
given as percent of capacity. Obviously, higher values are preferred, especially
with respect to the average inventory level before delivery, because a high value
indicates that we are less likely to experience stockouts due to fluctuations in
usage rates. Furthermore, the average vehicle utilization is an interesting sta-
tistic. It tracks what percent of the truck’s capacity is used in making deliveries
to the customers on a route. We would like this value to be high, but not at all
costs. We do not want to drive many extra miles just to ensure a high vehicle
utilization. (In practice, there is a strong belief that every vehicle should leave
the facility fully loaded and return empty. In part though, this is motivated
by the inherent stochasticity which sometimes allows for larger than expected
deliveries.)
Finally, we may also want to look at the number of vehicles used. We do not

want to put too much importance on this statistic in our experiments though. In
the long-term, eliminating a vehicle represents significant savings for a company,
but in the short-term, we cannot really argue that one solution is really better
than another just because it uses one less vehicle.
In our tests, we used the number of vehicles used in practice as the maxi-

mum number of vehicles available. We operated under the assumption that the
number used in practice was necessary (long-term) and that therefore minimiz-
ing this number (short-term) does not make sense. If everything else is equal,
though, this may be used as criterion for preferring one solution over another.
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5.3 Alternate heuristic

To be able to compare the quality of the solutions produced by our proposed
approach to current industrial practices, we implemented a solution approach
based on the rules-of-thumb and ideas most commonly used in practice. After
many discussion with the planners at PRAXAIR, we identified the following
rules:

1. Create trips around customers that must receive a delivery on the day
being considered. Fill up that customer to capacity and then add nearby
customers to the trip if there is remaining inventory in the vehicle.

2. All customers on a trip are filled up to capacity except for the last one.

3. Discourage a vehicle from returning to the facility without delivering its
remaining capacity to some customer.

4. Do not create trips involving only customers that do not require a delivery
on the day being considered unless there are excess resources that day, and
it appears that there will be insufficient resources when the first of these
customers requires delivery.

We refer to the heuristic that implements these ideas in our computational
experiments as INDAPP since it represents an approximation of what is being
done in industry.

5.4 Computational experiments

The first experiment compares the solutions obtained by our proposed approach
to the solutions obtained by the industry approximation approach. The results
can be found in Table 1. For all of these tables, the results for plant A will
appear first, and after the dividing line will be the results for plant B.

Table 1:

Setting V T S U Vol Mile V/M aV/M wV/M Bef Aft
BASE 3 65 118 95.72 2613027 18841 138.69 410 18856 24.54 81.64
IND APP 4 67 90 89.58 2519989 18988 132.71 309 18357 11.41 81.27
BASE 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49
IND APP 3 61 93 85.41 28656473 15042 1905.10 7016 206276 9.83 88.97

Our approach clearly outperforms the industry approximation approach. It
does better for both facilities on all the important statistics. The difference in
the underlying ideas of the two approaches is most clearly observed in the ”av-
erage inventory before delivery” column. The industry approximation approach
is driven by customers that are getting close to running out and that have to
be visited, which results in a low ”average inventory before delivery”, whereas
our approach looks further ahead and attempts to identify good opportunities
to visit customers before they are getting near to run out.

18



As we indicated above, we believe that the strength of our approach is that
it considers “enough” of the future to make the right decisions. In the next
two experiments, we investigate the impact of varying the amount of future
considered. In our chosen approach, we consider 5 days in full detail plus 4
weeks in aggregated form beyond this. We note that considering 5 days in full
detail is already more than many of the solution approaches proposed in the
literature. In Table 2, we show the results when we vary the amount of future
considered in aggregated form.

Table 2:

Setting V T S U Vol Mile V/M aV/M wV/M Bef Aft
5 days, 0 wk 4 69 119 92.43 2678599 20284 132.05 408 18114 29.87 87.76
5 days, 1 wk 4 67 117 95.04 2674527 19640 136.18 411 18687 25.26 82.18
5 days, 4 wk 3 65 118 95.72 2613027 18841 138.69 410 18856 24.54 81.64
5 days, 6 wk 4 74 125 88.10 2738189 20836 131.42 392 17514 24.26 80.74
5 days, 0 wk 3 64 105 84.58 29773123 14512 2051.62 7087 204340 20.30 92.33
5 days, 1 wk 3 60 102 89.02 29375272 14050 2090.77 7855 218711 18.03 92.16
5 days, 4 wk 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49
5 days, 6 wk 3 57 111 89.40 28026955 13789 2032.56 7496 214607 19.28 85.22

It is interesting to observe the increase in the number of deliveries when 6
weeks are considered. When 6 weeks are considered, a larger portion of the
objective function value is representing future costs, and optimizing with this
objective apparently allows us to make some unwise and expensive decisions in
the part of the planning period that really counts, i.e., the first five days. If we
do not consider any of the future beyond the 5 days, we appear to be missing
some beneficial opportunities. There is not much difference,though, between
considering 1 week or 4 weeks beyond the 5 days.
Next, we decided to investigate the effect of considering fewer days in full

detail. By reducing this number from 5, we make the IPs smaller and therefore
easier to solve, but it is not clear what the impact will be on the solutions. In
Table 3, we show the results when we vary the number of days considered in
full detail.

Table 3:

Setting V T S U Vol Mile V/M aV/M wV/M Bef Aft
2 days, 4 wk *
3 days, 4 wk 4 69 103 90.32 2617434 19856 131.82 283 18188 27.99 91.30
5 days, 4 wk 3 65 118 95.72 2613027 18841 138.69 410 18856 24.54 81.64
2 days, 4 wk 3 66 102 86.19 31285911 14027 2230.41 7298 214827 18.40 94.75
3 days, 4 wk 3 65 103 84.53 30220444 13172 2294.29 8357 219112 17.83 92.99
5 days, 4 wk 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49

As expected the quality of the solutions decreases when we consider fewer
days in full detail. In fact, when we just consider two days, we are unable to
construct a solution in which none of the customers runs out of product during
the planning period. In this case, the IP selects delivery amounts for customers
that turn out to be impossible to schedule with the routing heuristic, because
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too many deliveries must occur on a specific day and roughly at the same time.
It is interesting to observe that when we consider fewer days, the number of
stops decreases significantly. Apparently, when we consider more days in full
detail, the IP starts looking for inexpensive opportunities to make deliveries to
customers that only require a delivery a few days out, whereas the IP is unable
to do that when fewer days are considered in full detail.
Besides the amount of future considered, the quality of the solution is also

impacted by the parameter settings used in the routing and scheduling heuristic
and whether or not delivery amount optimization is active. When delivery
amount optimization is not active, a delivery amount cannot be set above the
amount specified by the IP. In Table 4 we present the results of our approach
with and without delivery optimization. Without delivery optimization, we
expect the average vehicle utilization and the total volume to be less. On the
other hand, we do not want it to be much less because that would suggest that
our integer program is not making good the right decisions.

Table 4:

Setting V T S U Vol Mile V/M aV/M wV/M Bef Aft
IP AMT 3 69 126 87.56 2537554 19929 127.33 330 17077 24.90 78.00
BASE 3 65 118 95.72 2613027 18441 138.69 410 18856 24.54 81.64
IP AMT 3 61 111 85.81 28789623 15274 1884.88 6612 202495 19.12 85.10
BASE 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49

Looking at the summary statistics, the delivery amount optimization clearly
does improve truck utilization and also leads to a significantly better total vol-
ume per mile and weighted volume per mile. The increase in total volume
delivered, though, was slightly less than 3%.
Our default settings for the GRASP are to run the routing and scheduling

heuristic 25 times and to select from among the 3 best choices. To investi-
gate the impact of these settings as well as the importance of randomization,
we conducted an experiment in which we executed the heuristic without any
randomization (pure greedy) and with different settings for the number of repli-
cations. The results are presented in Table 5.

Table 5:

Setting V T S U Vol Mile V/M aV/M wV/M Bef Aft
NO RAND 4 71 121 87.82 2618675 21799 120.13 394 17092 23.54 79.87
5 3 67 116 93.70 2636760 19315 136.51 419 18592 24.76 82.77
25 3 65 118 95.72 2613027 18441 138.69 410 18856 24.54 81.64
50 4 65 121 93.22 2544803 19176 132.71 327 17793 23.74 77.21
NO RAND 3 59 99 86.22 27979401 14378 1945.99 6990 200752 15.28 88.34
5 3 62 111 87.99 30004693 15094 1987.86 6773 201000 19.88 89.13
25 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49
50 3 63 111 87.57 30343074 14605 2077.58 7762 211049 19.88 89.61

Without randomization the solution has a noticeably low average vehicle
utilization, total volume per mile, and average weighted volume per mile. On
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Figure 7: Effects of randomization

the other hand, going to 50 replications does not seem to improve over 25 repli-
cations, in fact it does slightly worse. This is possible because the replications
are for two days of the schedule at a time. Which schedule is selected affects
what deliveries are made, what the customer inventories are at the end of the
two days, and thus the input for the next integer program that is solved.
To obtain more insight in the behavior of the GRASP, we kept track of the

total distance traveled for all 50 replications at two different points in the two
week planning period. The results are plotted in Figure 7.
The criterion used to pick the best solution out of the 25 produced by the

GRASP is total travel distance. However, the results may be quite different if we
decide to use average weighted volume per mile as the criterion to pick the best
solution. Our last computational experiment relating to the GRASP compares
the behavior based on different selection criteria. The results are presented in
Table 6. (D) indicates schedules selected based on mileage and (WVM) stands
for schedules selected based on average weighted volume per mile.
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Table 6:

Setting V T S U Vol Mile V/M aV/M wV/M Bef Aft
(D) 3 65 118 95.72 2613027 18441 138.69 410 18856 24.54 81.64
(WVM) 4 65 120 96.83 2643371 19341 136.67 423 19018 24.99 82.64
(D) 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49
(WVM) 3 58 105 91.34 29138802 14235 2046.98 8291 220091 20.50 91.76

There are various other parameters that can be set in the routing and
scheduling heuristic. Some of these help to construct solutions that reflect
company policy. For example, in our default approach, we have not penalized
waiting time at customers. In practice, though, waiting time is often strongly
discouraged or not even allowed. To see the impact of discouraging waiting time
on the quality of the solutions, Table 7 presents the solution statistics when we
penalize waiting time significantly.

Table 7:

Setting V T S U Vol Mile V/M aV/M wV/M Bef Aft
NO CHG 3 65 118 95.72 2613027 18441 138.69 410 18856 24.54 81.64
WAIT CHG 4 70 119 90.50 2660785 20019 132.91 390 17817 21.26 77.66
NO CHG 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49
WAIT CHG 3 58 103 88.46 28220108 14908 1892.95 6298 197806 18.06 88.17

As we expected, when we allow waiting at customers, we get a higher truck
utilization, a better total volume per mile, and average weighted volume per
mile.

6 Conclusion

We have presented the inventory routing problem and an optimization-based
approach for its solution. Extensive computational experiments indicate the
value and potential of optimization based approaches for complex routing and
scheduling problems. The inventory routing problem is of special interest be-
cause it integrates two components of supply chain management: inventory
control and vehicle routing. This type of integration is essential to improve
overall system performance.
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