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Insertion heuristics have proven to be popular
methods for solving a variety of vehicle routing and
scheduling problems. Insertion heuristics were first
introduced and analyzed, as were so many other pop-
ular optimization techniques, for the traveling sales-
man problem (Rosenkrantz et al. 1977).
Insertion heuristics construct a feasible solution, i.e.,

a set of feasible routes, by repeatedly and greedily
inserting an as of yet unrouted customer into a par-
tially constructed feasible solution. Different variants
of the insertion heuristic arise as a result of how the
two key decisions that are made at every iteration
are answered: which unrouted customer to insert, and
where to insert it in the partial solution?
Insertion heuristics are popular because they are

fast, they produce decent solutions, they are easy
to implement, and they can easily be extended to
handle complicating constraints. The literature con-
tains many examples of insertion heuristics applied
to various routing and scheduling problems. These
include the vehicle routing problem with time win-
dows (Solomon 1987), the asymmetric capacitated
vehicle routing problem (Vigo 1996), the fleet size and
mix vehicle routing problem with time window con-
straints (Liu and Shen 1999), and the vehicle routing
problem with backhauling (Salhi and Nagy 1999).

Insertion heuristics are also typically the method
of choice for constructing an initial feasible solution
in local search and metaheuristics for vehicle routing
and scheduling problems (Desrosiers et al. 1995).
In this paper, we focus on the impact of incorpo-

rating complicating constraints on efficiency. Efficient
implementations of insertion heuristics are of interest
for two reasons:
• Technological developments have created an

environment in which we are able at every moment
in time to know where our transportation assets are
and to communicate with them. As a result, there is a
growing interest in and demand for real-time routing
and scheduling technology. In real-time routing and
scheduling environments, decisions typically have to
be made in a very short amount of time, often in a
matter of seconds, and fast insertion heuristics may
provide one of the few viable options for decision
making. There may not be enough time to employ
local search and metaheuristics.
• Many commercial routing and scheduling soft-

ware packages rely on insertion heuristics as the core
decision technology, the reason being that most rout-
ing and scheduling software packages are interactive,
i.e., support user interaction. In such situations, it is
often the case that solution quality is sacrificed in
favor of fast response times.
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The basic insertion heuristic for the standard vehi-
cle routing problem has a time complexity of O�n3�.
However, straightforward implementations of han-
dling complicating constraints lead to an undesirable
time complexity of O�n4�. We demonstrate that with
careful implementation it is possible, in most cases,
to maintain the O�n3� complexity or, in a few cases,
increase the time complexity to O�n3 logn�. These
same techniques should be applicable to complexities
beyond those discussed here.
As mentioned earlier, insertion heuristics are often

succeeded by iterative improvement heuristics. Vari-
ous papers have been written on how to efficiently
implement iterative improvement heuristics in the
presence of complicating constraints. For a survey
of these techniques, see Kindervater and Savelsbergh
(1997).
The complicating constraints we consider in this

paper are time windows, shift time limits, variable
delivery quantities, fixed and variable delivery times,
and multiple routes per vehicle. Some of these com-
plexities have received considerable attention over
the years (particularly time windows), whereas oth-
ers have received little or no attention (e.g., variable
delivery quantities and variable delivery times). How-
ever, all of them are common in practice and have a
significant impact on the feasibility of a schedule as
well as the efficiency of insertion heuristics. We have
opted to discuss all of them, turning this paper into
one that is part survey and part new material, because
it allows us to illustrate a general framework in which
all of these techniques can be applied. This may bet-
ter serve researchers and practitioners who want or
need to develop insertion heuristics for complex rout-
ing and scheduling situations where several of these
complicating constraints exist.

1. Basic Insertion Heuristic
In this section, we analyze the complexity of the basic
insertion heuristic for the vehicle routing problem. We
assume that the reader is familiar with the vehicle
routing problem, but if not, the recent book edited
by Toth and Vigo (2002) provides an excellent intro-
duction to the vehicle routing problem, its variants,
and existing solution procedures. The basic insertion
heuristic is presented next in great detail to introduce
the reader to the various steps of the analysis that we
will carry out for each of the more complex variants.
Before describing the basic insertion heuristic, we

define the relevant terminology and notation that will
be used. There are n customers and the delivery vol-
ume at customer j is denoted by Dj . We assume that
each Dj is less than the truck capacity Q, and that
we have a homogeneous fleet of vehicles. The travel
time between two customers i and j is denoted by Ti
 j ,

and initially there is no additional time required
for delivery at a customer beyond the travel time.
A route is a trip from the depot to a sequence of cus-
tomers and back to the depot. For presentational con-
venience, we abuse notation and represent a route
as (0
1
2
 � � � 
 i
 � � � 
n + 1), where 0 and n + 1 both
refer to the depot and where we will refer to cus-
tomer i, when in fact we refer to the customer cur-
rently in position i in the route. In describing an
insertion heuristic, we will always consider inserting
(unrouted) customer j between customers i− 1 and i
on the route (0
1
2
 � � � 
 i− 1
 i
 � � � 
n+ 1).
The basic insertion heuristic for the standard vehi-

cle routing problem can be found in Algorithm 1. It
is a parallel insertion heuristic, as discussed in Potvin
and Rousseau (1993), where multiple routes are being
built at the same time. In a sequential version, each
route is completed before another one is created. We
do not make any assumptions about selecting seed
points to initialize any of the routes. Any seed selec-
tion method can be used here without changing the
complexity of the algorithm as long it its complexity is
less than O�n3�. No seed selection is required, though,
for the insertion algorithm to work. When it is cheap-
est to insert an uninserted customer on an empty
route rather than an existing route, the customer will
be inserted on the new route.

Algorithm 1. Insertion Heuristic

1. N = set of unassigned customers
2. R= set of routes; always contains the empty

route; initially contains only the empty route
3. while N �= ∅ do
4. p∗=−�
5. for j ∈N do
6. for r ∈R do
7. for �i− 1
 i� ∈ r do
8. if Feasible�i
 j� and Profit�i
 j� > p∗ then
9. r∗= r
10. i∗= i
11. j∗= j
12. p∗= Profit�i
 j�
13. end if
14. end for
15. end for
16. end for
17. Insert�i∗
 j∗�
18. N =N \ j∗
19. Update�r∗�
20. end while

The complexity of the procedure is O�n3� under the
assumption that checking the feasibility of an inser-
tion (function Feasible( )) and computing the profitabil-
ity of an insertion (function Profit( )) can be done in
constant time and that updating a route (function
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Update( )) can be done in O�n2� time (the latter is usu-
ally no issue).

Information Maintained
To achieve a O�n3� complexity for the basic insertion
heuristic for the standard vehicle routing problem, we
need to maintain for every route the sum of the deliv-
ery quantities currently assigned to that route, qr .

Checking Feasibility
In the standard vehicle routing problem, the only con-
straint that needs to be verified is the vehicle capacity
constraint. If we know the sum of the delivery quan-
tities currently assigned to a route, it is easy to verify
the feasibility of inserting customer j into the route;
i.e., Dj <Q− qr , and this takes constant time.
Computing Profitability
For the time being, we assume that our objective is to
minimize the total travel time. Therefore, we assign
the following profit to an insertion −�Ti−1
 j + Tj
 i −
Ti−1
 i�. This quantity is the negative of the extra travel
time introduced for the route by inserting j between
i−1 and i. The larger this value, the smaller the extra
travel time. Again, it is easy to see that computing the
profitability can be done in constant time.

Updating the Route
After the customer to be inserted has been selected
and it has been decided where to insert the customer,
the affected route needs to be updated. In terms of the
information we maintain to facilitate feasibility check-
ing, all we need to do is update the sum of the deliv-
ery volumes currently assigned to the route; i.e., qr =
qr + Dj . Of course, we also need to update the data
structures used to maintain the current set of routes.
In each major iteration of the insertion heuristic, a

customer is selected and inserted into a partial route,
which is subsequently updated. Because there are
n customers, there are O�n� major iterations. In each
major iteration, we evaluate every unrouted customer
at every possible insertion point. Because there are
O�n� unrouted customers and there are O�n� possible
insertions, and because evaluating an insertion, i.e.,
checking its feasibility and calculating its profit, can
be done in constant time, the selection of a customer
and its best insertion place takes O�n2� time. Updat-
ing the affected route takes O�1� time. Consequently,
each major iteration takes O�n2� time. This gives an
overall time complexity of O�n3�.
From the above discussion it is clear that to ensure

an overall complexity of O�n3� when incorporating
complicating constraints, we have to focus on effi-
ciently checking feasibility and computing profitabil-
ity. Straightforward implementations perform these
two functions by physically inserting j between i− 1
and i (temporarily) and traversing the route to check

feasibility, which takes O�n� time and increases the
overall time complexity to O�n4�. We will show that
by maintaining appropriate information about the
current partial feasible solution, it is often possible to
perform these two functions in constant time or in at
most O�logn� time, leading to an overall complexity
of O�n3� and O�n3 logn�, respectively.

2. Vehicle Routing Problem with
Time Windows

In the vehicle routing problem with time windows
(VRPTW), a time window �Ej
Lj� is specified for each
customer j , with Ej denoting the earliest time a deliv-
ery can take place and Lj denoting the latest time a
delivery can take place. How to handle time windows
efficiently in insertion heuristics is well known, and
included here mainly for completeness and for illus-
trative purposes. The same notation and methodology
will be expanded for the complexities discussed later.

Information Maintained
For every customer i already assigned to a route, we
maintain two quantities: the earliest time a delivery
can be made at i, denoted by ei, and the latest time a
delivery can be made at i, denoted by li. For conve-
nience, we set e0 = 0 and ln+1 = T , where T is the end
of the planning period. Note that initially ej = Ej and
lj = Lj , but that ej and lj are specifically introduced to
capture interactions between customers on the same
route.

Checking Feasibility
The feasibility of inserting customer j between i − 1
and i can now be checked as follows. First compute
the earliest time a delivery can take place at j :

ej =max�Ej
 ei−1+ Ti−1
 j �


and the latest time a delivery can take place at j :

lj =min�Lj
 li− Tj
 i��

Given these quantities, checking the feasibility of
the insertion amounts to verifying whether Dj <Q−
qr and ej ≤ lj .
Evaluating profitability works the same as in the

basic version of the algorithm because the time win-
dows do not impact the extra travel time. To con-
sider an objective related to route duration instead,
it is necessary to maintain additional information
(representing travel time from a node to the end of
the route). This modification is discussed in detail in
the next section on shift time limits.
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Updating the Route
An inserted customer can impact the deliveries to cus-
tomers that come both before it and after it on the
route. More specifically, the late values for the prior
customers and the early values for the later customers
may be affected by the insertion. Due to the travel
time required to visit the new customer, there might
not be as much room to postpone prior deliveries and
subsequent deliveries may have to start later. Updat-
ing these early and late values can be done in O�n�
time as follows, where we use the already computed
values ej and lj .
• For k = i− 1 to 0, the new delivery impacts the

latest time that deliveries at these locations may occur:

lk =min�lk
 lk+1− Tk
k+1��
• For k= i to n+ 1, the insertion alters the earliest

time that these deliveries can begin:

ek =max�ek
 ek−1+ Tk−1
 k��
In practice, we only need to continue the updates of

late values backward (early values forward) as long
as the late (early) value for the most recently eval-
uated customer changed. For example, in working
backwards from i−1 to 0, if li−1 does not change, then
there is no need to reevaluate li−2. Because we may
have to update the l values for all prior deliveries and
the e values for all subsequent deliveries, updating
has complexity O�n�.

Finalizing the Solution
After a feasible set of routes has been created, there is
often some flexibility remaining with regard to deliv-
ery times. It is easy, however, to establish a feasible
solution from the values we have maintained about
the route. By construction, it is always feasible to
deliver the requested volume to all customers at the
earliest time, ei, or to all customers at the latest time,
li. Both of these solutions clearly require the same
amount of travel time. To minimize waiting time for a
given route, which is often a consideration, it is best to
begin each route at the latest time possible (l0). After
this, begin delivery to the following customers at the
earliest feasible time. This minimizes the duration of
the route, which in turn minimizes the waiting time.

3. Shift Time Limit
The Department of Transportation places limits on
how many hours drivers can work, including a
16-hour limit on how long a driver can be on duty
(shift time limit), a 10-hour limit on the amount of
time spent driving (drive time limit), and a limit of
70 total hours in any 8 consecutive days. If a driver
works five 14-hour work days in a row, this driver

then cannot work at all for the next three days because
of this last restriction. Often companies place even
more restrictive time limits on how long drivers can
be on the road each day for either safety reasons,
scheduling reasons, or both. We will discuss here how
to modify insertion heuristics to consider a shift time
limit. A drive time limit can be included similarly.
Note that the basic insertion heuristic will not nec-

essarily produce a solution that satisfies shift time
limits. To consider this variation, we will let S repre-
sent the shift time limit. We will continue to assume
that all customers have delivery time windows. Oth-
ers have considered a shift time limit in a version of
the vehicle routing problem that minimizes comple-
tion time of the routes, including de Jong et al. (1996)
and Potvin and Bengio (1996), where our methodol-
ogy will maintain time limit feasibility with a variety
of objectives.

Information Maintained
The values of e0 and ln+1 will be used to reflect
the shift time limit. We define e0 =max�0
 en+1 − S�;
i.e., the difference between the earliest ending time of
the route and the earliest start time of the route will
be within the shift time limit, and ln+1 =min�l0+S
T �.
That is, the difference between the latest completion
time of the route and the latest start time of the route
will be within the shift time limit. Furthermore, we
maintain a quantity ai representing the cumulative
travel time from customer i forward to the end of the
route.

Checking Feasibility
In addition to computing the earliest and latest times
the delivery can take place at j , we also compute the
earliest completion time of the shift if j is inserted,
the implied earliest departure time, the latest depar-
ture time of the shift if j is inserted, and the implied
latest completion time. The first two values, com-
puted as described in the previous section, help deter-
mine whether the insertion is feasible with regard to
the time windows, and the latter values help decide
whether the insertion is feasible with regard to the
shift time limit.
The earliest completion time of the shift if j is

inserted is computed as:

ēn+1 =max
(
en+1
 ej + Tj
 i+ ai

)
�

The first term of the maximum can dominate if the
current shift has substantial waiting time on the por-
tion of the route from i forward. If, for example, ei
is determined by Ei, the opening of the customer-
defined delivery window, rather than travel time from
preceding customers, then ei may exceed ei−1 by sig-
nificantly more than the travel time between these
two stops. In this case, if ej + Tj
 i is still less than ei,
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then the early completion time of the shift may be
unchanged. The implied earliest departure of the shift
is ē0 =max�e0
 ēn+1− S�. If ē0 is defined by the second
term, the added time required to visit j will reduce the
amount of time available before the delivery because
of the strict time limit.
The latest departure time of the shift is computed as:

l̄0 =min
(
l0
 lj − Ti−1
 j − �a0− ai−1�

)
�

The first term of the minimum will dominate if the
current route has waiting time on the portion of
the route preceding i − 1 due to customer-defined
time windows. The implied latest completion time of
the shift is l̄n+1 = min�ln+1
 l̄0 + S�. If l̄n+1 is defined
by the second term, the added time required to visit
j will reduce the amount of time available after the
delivery because of the strict time limit.
Verifying feasibility now amounts to checking

whether or not Dj ≤Q− qr , ej ≤ lj , ē0 ≤ l̄0, and l̄n+1 ≥
ēn+1. The insertion will be infeasible if any of these are
violated.

Updating the Route
As before, we must update the e values for the deliv-
eries following the inserted customer j (or until no
change occurs). However, if the computed l̄n+1 is less
than ln+1 or ē0 > e0 due to the shift time limit, we have
to perform additional updates. If ē0 > e0, then after we
update the e values for the positions after the inser-
tion, we need to update e values from e0 forward to
just prior to the point of insertion. If l̄n+1 < ln+1, then
after we update the l values for the positions prior
to the insertion, we need to update l values from ln+1
backward to just after the point of insertion.
Obviously, we also need to update the cumulative

travel time information; i.e., aj = Tj
 i + ai. To update
the a values for the customers preceeding j , we com-
pute the change in time � caused by the insertion,
i.e., � = Ti−1
 j + Ti
 j − Ti−1
 i, and then update for k =
i−1
 � � � 
1 as follows: ak = ak+�. All of these updates
can clearly be accomplished in linear time, preserving
the O�n3� complexity.

4. Variable Delivery Volume
The delivery volume requested by a customer is typi-
cally based on consumption by the customer from the
time of the last delivery until the estimated time of
arrival of the next delivery. In many environments,
customers specify a fairly large delivery window and
are often willing and able to receive a larger delivery
volume later in the window. For example, if a grocery
store places an order for a specified number of loaves
of bread to arrive between 8:00 am and 12:00 pm on
a given day, the grocery store has more room on the
shelves the closer to 12:00 the truck arrives, due to

the bread sales during the morning. In the inventory
routing problem (Campbell 2000, Dror and Ball 1987,
Dror et al. 1985), the vendor has negotiated the right
to decide the day, time, and volume of all deliver-
ies to its customers. This complete transfer of inven-
tory management responsibility to the vendor allows
vendors to choose delivery quantities that combine
well to make efficient, full-truckload deliveries. In
the more restrictive case we consider in this paper,
a customer specifies a minimum delivery volume,
but allows the volume to increase over time accord-
ing to a customer-specific usage rate. The customer
still maintains responsibility for inventory manage-
ment, but allows some flexibility. Allowing a larger
delivery volume gives the customers added protec-
tion against running out of product, and the flexibility
gives the vendors the ability to make better use of
their resources.
We can model this complexity with a usage rate for

each customer j , represented by Uj , and the assump-
tion that we can deliver up to a certain capacity
indicated by Cj . We will use Ij to represent initial
inventory at customer j at the beginning of the plan-
ning period, and Dj will now represent the minimum
delivery volume to each customer.
We will use time windows implied by usage and

inventory status, rather than customer-defined deliv-
ery windows. These will show the influence that
usage and inventory can have on delivery times.
Customer-specified delivery windows can easily be
included as well.

Information Maintained
We replace qr with qminr to represent the minimum vol-
ume deliverable on a route (qminr = ∑

i=1
 ���
n Di). For
profitability, not feasibility, we also introduce fi�t�, a
piecewise linear concave function yielding the maxi-
mum volume deliverable to all customers up to and
including i on the route if delivery at i takes place at
time t, gi the maximum volume deliverable to i and
all customers succeeding i on the route, and qmaxr the
maximum volume deliverable on the route.

Checking Feasibility
The feasibility check is similar to what we have seen
before, with small changes to reflect the impact that
usage and inventory have on feasible delivery times.
We compute the earliest time a delivery can take

place considering the usage rate as:

ej =max
(
ei−1+ Ti−1
 j 


Dj −Cj + Ij
Uj

)
�

The first term of the maximum represents the earli-
est arrival after the previous delivery, as before, and
the second part represents the earliest time the quan-
tity Dj can be delivered to the customer given its
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capacity constraints. The value Cj − Ij represents the
available capacity at j at the beginning of the planning
period, so Dj − �Cj − Ij � is the extra capacity needed
for Dj to “fit” at j . Capacity is added at rate Uj , so
the second term of the maximum gives the point in
time when there is sufficient available capacity at j to
receive the quantity Dj . Note that we can view the sec-
ond term as the opening of an implied time window;
i.e., Ej = �Dj −Cj + Ij �/Uj .
We compute the latest time a delivery can take

place as follows:

lj =min
(
li− Tj
 i


Ij

Uj

)
�

The first term in the minimum represents the latest
feasible departure time from j to reach i by its latest
feasible time, and the second term represents the time
when customer j runs out of product given the initial
inventory level. Note that we can view the second
term as the closing of the implied time window; i.e.,
Lj = Ij/Uj .
Now checking feasibility amounts to verifying Dj <

Q− qminr and ej ≤ lj .

Computing Profitability
The costs typically associated with an insertion in
vehicle routing and scheduling problems involve
extra travel time, extra mileage, or extra waiting
time. With flexibility in delivery volume, however,
the objective should reflect the trade-off between the
increased cost and increased revenue associated with
each insertion. All previous variants had the same
total delivery volume and thus the same revenue.
To include this flexibility, we may want to evaluate

the maximum delivery volume for customer j if it is
inserted between i− 1 and i in a route, which can be
computed as follows:

dmaxj =min
(
Q− qminr 
Cj − Ij +Ujlj

)
�

The first term of the minimum is the capacity remain-
ing in the vehicle if we assume all other customers on
the route will receive their minimum delivery quanti-
ties, and the second term represents the volume that
will fit at the latest time a delivery can be made at j .
Unfortunately, the above quantity does not allow us

to compute the maximum volume that can be deliv-
ered on the route (or the change in maximum delivery
volume for the route). The delivery volume to j may
just be “taken away” from the delivery quantities to
one or more other customers on the route. Because
it is not possible to determine the impact a delivery
at j has on the maximum delivery volume to cus-
tomers preceding j on a route in constant time (due
to the possibility of waiting time between deliveries),
we cannot compute the exact change in total delivery

volume on the route with the insertion of j in constant
time. However, we will show that by maintaining
additional information (f and g), we can compute the
exact change in total delivery volume associated with
an insertion in O�logn� time, which results in a total
complexity for the insertion heuristic of O�n3 logn�.
As stated earlier, for each customer i, we will main-

tain a piecewise linear concave function fi�t� that
yields the maximum total delivery volume to all cus-
tomers up to and including i on the route if delivery
at i takes place at time t. This function is not a sim-
ple linear function with slope equal to the sum of the
usage rates of the preceding customers if there are
waiting times between the scheduled deliveries. Wait-
ing times can occur, for example, when the first cus-
tomer on a route has low inventory and thus requires
a delivery soon, but the minimum delivery volume to
the second customer is large and will not fit in inven-
tory until much later in the day.
The changes in the slope of the piecewise linear

functions occur exactly at delivery times correspond-
ing with a change in the number of customers con-
sidered in computing the maximum delivery volume.
The first “piece” of this function for each customer k
starts at the earliest delivery time (ek) and has the
steepest slope of all segments because the largest
number of preceding customers are included, where
the last piece is the flattest because the least num-
ber of customers are included. The piecewise function
will be concave because the total volume deliverable
will clearly be nondecreasing with time. Because each
of the changes in slope corresponds with the behavior
of a preceding customer, each piecewise function will
have at most O�n� points defining it. An example of
such a function can be found in the bottom portion of
Figure 1. The graph in the top portion represents the

6 109 12 20 24

4

1

7

11

12 2416 23

12

17.42

21.67 22

Figure 1 Time vs. Volume Deliverable
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quantities deliverable to three individual customers.
We will assume the travel time between each cus-
tomer is three time units, such that delivery at the first
at 6 leads to arrival at the second at 9, and a delivery
at the second at 9 leads to an arrival at the third at 12.
The bottom graph serves to summarize the maximum
volume deliverable to all three given a delivery time
at the third (i.e., it serves as f3). Beginning delivery at
the latest time for the third (at 24) creates wait before
this delivery because the latest delivery time for the
second is at 20 (24− 3− 20= 1 unit of waiting time).
The graph changes slope at 23 because this is where
the delivery time at the last customer starts to impact
the delivery volume at the second customer (because
23 − 3 = 20). A delivery to the second customer at
20 still leaves wait after the first customer because
20− 3 is greater than 10. Only when the second cus-
tomer starts delivery at 13 (third customer at 16) is
the wait removed from after the first customer. From
12 to 16, the usage rate at all three customers impacts
the delivery volume, which is why this portion of the
cumulative graph has the largest slope.
For each customer i, we also maintain gi, the maxi-

mum delivery volume possible to i and all of the cus-
tomers succeeding i on the route. Given functions fi�t�
and values gi for each customer on a route, we can
determine the profitability of an insertion in O�logn�
time. To find the volume deliverable on the route
(q̄maxr ) after customer j is inserted between i−1 and i,
we compute:

gj =min
(
Q− ∑

k=1
 ���
 i−1
Dk
Cj − Ij +Ujlj + gi

)
�

The first term of the minimum restricts the largest
volume deliverable to j and succeeding customers to
allow for the minimum volume to be delivered to the
preceding customers. The second term of the mini-
mum limits the largest volume deliverable to j to the
available capacity at lj plus the largest volume deliv-
erable to succeeding customers. (Note that the largest
volume deliverable at a customer always occurs at
the late time and that the late times are such that
it is always possible to travel to the next customer
and arrive at or before its late time.) Given this, we
compute:

q̄maxr =min
(
Q
fi−1�min�li−1
 lj − ti−1
 j ��+ gj

)
�

The gj computation takes constant time, but the q̄maxr

calculation requires O�logn� time because it involves
a function evaluation of a piecewise linear function
with O�n� pieces �fi−1�.
The difference between q̄maxr and qmaxr for the route

yields the change in delivery volume associated with
a particular insertion. The change in travel time can be

computed as discussed earlier, and the two values can
be combined in a variety of ways to define a measure
of the desirability of an insertion, e.g.,

$�q̄max− qmax�−%(Ti−1
 j + Tj
 i− Ti−1
 i)

where $ and % can be chosen to reflect the trade-off
between revenue and cost.
Note that if Di values are such that deliveries are

feasible for the full planning period, then we do not
need these piecewise linear functions. The objective
evaluations can be made in constant time, and the
overall complexity for the insertion heuristic remains
O�n3�.

Updating the Route
The updating procedures work the same as before
except that now we need to additionally update the
gi values and the piecewise linear concave func-
tions fi�t�. The gi values must be updated for cus-
tomers prior to the insertion, and the piecewise linear
concave functions change for customers after the
insertion. The ordering of the updates is critical for
the values to be updated correctly. After we have
updated the late values for all customers preceding j ,
we compute for k= i− 1
 � � � 
1:

gk =min
(
Q− ∑

s=1
 ���
 k−1
Ds
Ck− Ik+Uklk+ gk+1

)
�

After updating all gk values, we update qmaxr = g1.
We must create the piecewise linear concave func-

tion fj�t� and update fk�t� for k = i
 � � � 
n. We start
with fj�t� being a simple linear function between
ej and lj . The function values associated with the end-
points will be the maximum deliverable to j at these
times, and the slope will be equal to Uj . Next, we iter-
atively refine the function fj�t� based on the shape of
the function fi−1�t�. For each breakpoint s of fi−1�t�,
we compute ŝ = s + Ti−1
 j and see if ŝ falls between
ej and lj . If it does, we have found a new break-
point for fj�t�. The function value fj�ŝ� is increased
by fi−1�s�; i.e., fj�ŝ� is set to fi−1�s�+fj�ŝ�. The original
value fj�ŝ� can be computed in constant time given
fj�ej �, the volume deliverable at ej , and the usage
rate Uj . The slopes of the two segments of fj�t� created
by the introduction of a breakpoint at ŝ are obtained
similarly by adding the slope of the corresponding
segment in fi−1�t� and the slope of fj�t� at ŝ. We pro-
cess the breakpoints of fi−1�t� in time order until ŝ > lj .
The number of points added to fj�t� this way is at
most O�n�. Because we update the piecewise function
for at most O�n� customers, the updating procedure
has complexity O�n2�.
Summarizing, the selection of which customer to

insert, and where, now requires O�n2 logn� time, and
updating after an insertion can be done in O�n2�,
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resulting in a total complexity of O�n3 logn�. Note that
we do increase the memory requirements because we
have to store the functions fj�t�, which requires O�n2�
space.

Finalizing the Solution
When all insertions have been made, there may not
only be some flexibility in the timing, as in the
previous versions, but also in the delivery quanti-
ties. To optimize delivery quantities, deliveries should
start as late as possible. This allows more usage to
occur, which increases the volume deliverable. Set all
deliveries to begin at their late time, delivering the
smaller of Ci − Ii +Uili or the current available vehi-
cle capacity. The current available vehicle capacity is
the truck capacity, Q, minus the delivery quantities
already fixed, minus the minimum delivery quantities
to the remaining (unfixed) customers. This enables a
full-truckload delivery where possible, while ensur-
ing that the minimum volume is delivered to all
customers.

5. Fixed and Variable Delivery Time
Although it is often modeled as such, the delivery of
a product is never instantaneous. There are usually
check-in procedures at each customer as well as time
needed to take pallets of product from a truck or to
pump product into a customer’s tank. In other words,
there is often a fixed amount of delivery time where
the amount of time required is independent of the size
of the delivery (often called service or dwell time) and
a variable portion that is dependent on the size of the
delivery.
We let Si represent the fixed stop time at customer i,

and we model the variable portion of the delivery
time with a delivery rate Pi specifying the rate at
which a unit of product can be delivered from the
truck to customer i. The Si values, though influential
in determining the final solution, do not impact the
solution methodology. We can include the Si values
through a modification of the travel time values:

�Ti
 j = Ti
 j + Sj ∀�i
 j��

Similarly, there are often routine truck inspections
done at the beginning and end of each route which
can be included in the travel times to and from the
depot.
Delivery rates can also be added quite easily when

the delivery volume is fixed, as in the first few sec-
tions of this paper. Again, we can include the delivery
time for the prescribed volume in the time it takes to
reach the next customer:

�Ti
 j = Ti
 j + PiDi ∀�i
 j��

Therefore, if the delivery volume is fixed and there
is both a fixed and variable delivery time, we can use:

�Ti
 j = Pidi+ Ti
 j + Sj ∀�i
 j��
In this way, the ei and li values will now represent the
earliest and latest times that a delivery can literally
begin at i.
The situation changes, however, when there are

variable delivery quantities. With variable delivery
quantities, we argued earlier that it was best to begin
each delivery as late as possible so as to maximize
usage and thus maximize total delivery volume. As
we will see, this is not necessarily true when delivery
rates are added. For simplicity and ease of presenta-
tion, we discuss the case where all customers have the
same delivery rate, P .

Information Maintained
We maintain all of the values introduced earlier when
discussing variable delivery quantities, plus one addi-
tional piece of information: the latest delivery time
at i, tgi , associated with the maximum volume deliv-
erable to i and all customers succeeding i on the
route (gi).

Checking Feasibility
To evaluate the feasibility of inserting j between i− 1
and i, we first compute the earliest time a delivery
can take place at j :

ej =max
(
ei−1+Di−1P + Ti−1
 j 


Dj −Cj + Ij
Uj

)
�

The first term of the maximum represents the earliest
start time at customer i−1 plus the minimum delivery
time required at i− 1 plus the travel time from i− 1
to j . The second term of the maximum represents the
time when the minimum required delivery at j will fit.
Next, we compute the latest time a delivery can

begin at j :

lj =min
(
li− Tj
 i−DjP


Ij

Uj

)
� (1)

The late value lj must allow for at least the minimum
required volume to be delivered at j .
Feasibility is guaranteed if Dj <Q− qminr and ej ≤ lj .

Computing Profitability
When considering variable delivery times and vari-
able delivery quantities, it is again natural to have an
objective based on profit. For each feasible insertion,
we need to consider the increased revenue from the
delivery volume as well as the related costs. Again,
we cannot determine the change in maximum deliv-
ery volume for a route resulting from an insertion in
constant time, but only in O�logn� time. However,
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the definition of fi�t� will have to be slightly altered
to account for the dueling effects of the delivery and
usage rates. The function fi�t� will now represent the
maximum volume deliverable at i and all preceding
customers, given that the delivery at i can be com-
pleted by t.
The computation of dmaxj , i.e., the largest volume

deliverable to customer j , illustrates the difficulties
arising when simultaneously considering a usage rate
and a delivery rate. If lj is determined by the first term
in the minimum in Equation (1), then the volume that
can be feasibly delivered at lj is only Dj . If deliv-
ery to j begins earlier than lj , however, more may be
deliverable because of the increased time for delivery.
The dueling effects of usage rate and delivery time
are portrayed in Figure 2. The line with positive slope
represents increasing space available due to usage; the
line with negative slope represents decreasing amount
deliverable due to delivery time. The value of dmaxj is
found at the intersection of the two lines. This inter-
section occurs at time:

li− Tj
 i−CjP + IjP
1+UjP

�

Because the two lines may not always intersect
between ej and lj , the full equation defining dmaxj is:

dmaxj = min
(
Q−qminr 
 Cj−Ij+

(
li−Tj
i−CjP+IjP

1+UjP

)
Uj


Cj−Ij+Ujlj
�li−Tj
i−ej�P
)
�

The second term of the minimum represents the vol-
ume deliverable at the intersection, but the third term
is the volume deliverable at lj given the usage rate,
and the fourth term is the volume at ej given the ser-
vice time available. Let tmaxj represent the time where
dmaxj is deliverable.

tearly
tlate

volume there is time to deliver

volume can fit at customer

Figure 2 Time vs. Volume Deliverable

Given the functions fi�t� and the values gi and t
g
i ,

we can compute the increase in delivery volume on
a route associated with an insertion in O�logn� time.
We first compute gj . If ej +DjP + Tj
 i > tgi , then

gj =Dj + gi− �ej +DjP + Tj
 i− tgi �P

because the volume deliverable to the succeeding cus-
tomers will decrease at rate P after tgi . If ej +DjP +
Tj
 i ≤ t

g
i , then gj is determined by adding gi to the

largest feasible volume deliverable at j that can be
completed by tgj = t

g
i − Tj
 i (so that delivery at i can

start at tgi ). Summing gj and fi−1�t
g
j −Ti−1
 j � will yield

q̂maxr , the new maximum delivery volume resulting
from the insertion. The difference between q̂maxr and
qmaxr yields the change in revenue. Because of the
function evaluation involved, the objective evaluation
requires O�logn� time.

Updating the Route
The updating procedures are the same as those dis-
cussed in the section on variable delivery quantities,
except for the adaptations required to accommodate
the delivery rate as indicated above in the descrip-
tion of checking feasibility and computing profitabil-
ity. Also, we must update each tgk when we update gk.
Each piecewise linear function may now start with
one or two pieces, rather than one, as in Figure 2.
The total number of pieces for each function remains
O�n�, preserving the overall O�n3 logn� complexity of
the algorithm.

Finalizing the Solution
By maintaining the tgk values, we always know the
time at which to begin delivery to each customer k
to maximize the volume deliverable to k and all suc-
ceeding deliveries. We can use these times from the
last customer to the first to set the final delivery times
and volumes. We can set each final delivery volume
using the volume deliverable at each customer k at
time tgk , along with the sum of the committed deliv-
ery volumes for the succeeding deliveries, the sum of
the minimum delivery volumes to the preceding cus-
tomers, and the truck capacity to ensure feasibility.

6. Multiple Routes per Vehicle
In practice, it is often the case that vehicles make mul-
tiple trips per day (or more generally multiple trips
during the planning period). Insertion heuristics can
easily be adapted to handle multiple trips per vehicle
as has been shown in various articles in the literature.
This last section illustrates how all of the earlier com-
plexities we have discussed can easily be used with
several trips per vehicle and maintain both feasibility
and efficiency.
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Suppose vehicle m performs a sequence �r1
 r2
 � � � 

rk
 � � � 
 rt�m�� of routes, where t�m� is the number of
trips made by vehicle m. Up to now, we have assumed
that a route can start at time 0, modeled by initializ-
ing e0 = 0, and that a route needs to be completed by
the end of the planning period T , modeled by initial-
izing ln+1 = T . This no longer suffices, and we need
to maintain for each route the earliest time the route
can start, taking into account any prior routes, i.e.,
e
r1
0 = 0 and erk0 = l

rk−1
n+1 for k= 2
 � � � 
 t�m�, and the latest

time a route can be completed, taking into account
any subsequent routes; i.e., l

rt�m�
n+1 = T and lrkn+1 = l

rk+1
0 for

k= 1
 � � � 
 t�m�− 1.
Furthermore, we have to realize that a newly

inserted customer impacts not only the early and late
values for deliveries that come before it and after it
on the route, but also the early values for deliveries
for the subsequent routes on the same vehicle and the
late values for deliveries for the prior routes on the
same vehicle.
The ordering of the updates is important. If cus-

tomer j is inserted between customer i − 1 and i on
route rk, we first update the e values for the customers
coming after j on the route. Next, we set erk+10 = e

rk
n+1

and update the e values for route rk+1, and repeat until
we have processed route rt�m�. Likewise, we update
the l values for the customers coming before j on the
route, followed by setting lrk−1n+1 = l

rk
0 , updating l values

for the customers on route rk−1, and repeating until
we have processed r1.

7. Conclusions
Insertion heuristics are fairly easily adaptable to
a variety of practical complexities such as shift
time limit, variable delivery quantities, and vari-
able delivery times. Through careful implementa-
tions, which maintain appropriate information about
partial routes, we can retain the same time com-
plexity as the basic insertion heuristic for the stan-
dard vehicle routing problem, O�n3�, or increase it
slightly to O�n3 logn�. Such careful implementations
are important, because most practical vehicle rout-
ing and scheduling problems contain one or more of

these complexities, or even additional ones, and often
involve fairly large numbers of customers.
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