Aerosol Short Course: Physics, Measurement, and Sampling

Boeing Ed Wells Course

Tom Peters
The University of Iowa
Department of Occupational and Environmental Health
Iowa City, IA

I. Background and Physics
Why study aerosols?
Naturally Occurring Aerosols
Man-made Aerosols
Aerosols and Aircraft

- **Production**
 - Part manufacturing
 - Assembly of planes

- **Cabin air quality**
 - 1,462 Million airline passengers worldwide (1998)
 - Over 105,000 flight crew in the US

- **Exhaust**
 - Global atmosphere
 - Local exposures to crew, passengers, communities

- **Maintenance**
 - Refurbish older aircraft
Aerosols in Aircraft Production

- **Metals**
 - Aluminum, titanium, beryllium, chromium, cobalt, nickel
 - Pulmonary fibrosis, immune-mediated response, metal fume fever

- **Metalworking fluids**
 - Asthma
 - Hypersensitivity pneumonitis (HP) from microbes

- **Composite materials**
 - Dusts, fibers
Aerosols in Cabins

• On ground
 – Exhaust

• In-air events
 – Air conditioning smoke from incoming bleed air
 • Engine / hydraulic fluid oil leaks
 – Overheated electrical equipment
 • Smoke, fume
 – Person-to-person disease transmission
 • TB, cold, flu, Norwalk virus, SARS
Aircraft Emissions

- Gasses
 - CO
 - NOx
 - Water vapor

- Aerosols
 - Sulphates
 - Soot

http://www.grida.no/climate/ipcc/aviation/004.htm
To recognize, evaluate, and control particle hazards...

We must understand particle behavior

- Generation
- Transport
- Fate
Overview

• Background and Physics
• Measurement
• Sampling
Handouts

- Class slides
- Formula sheet
- Frank chart
What is an aerosol?

An assembly of liquid or solid particles suspended in a gaseous medium
Particle Size

1 µm = 10^{-4} \text{ cm} = 10^{-6} \text{ m}

- Pea (1 µm)
- Golf ball (10 µm)
- Soccer ball (100 µm)
- 1000 nm
- Me
- Room
- Building

- 0.001 µm
- 0.01 µm
- 0.1 µm
- 1.0 µm
- 10 µm
- 100 µm
- 1000 µm

- Gas Molecules
- Virus
- Light
- Bacteria
- Human Hair
- Raindrops

Soccer ball
Golf ball
Pea
Virus
Human Hair
Raindrops
Particle Shape

- Fiber
- Crystal
- Chain agglomerate
- Droplet

Asbestos
Sand
MgO
Particle Density, ρ_p

- ~ 1000 times greater than air (1.2×10^{-3} g/cm3)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density g/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollen</td>
<td>0.4 - 1</td>
</tr>
<tr>
<td>Oil</td>
<td>0.9</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
</tr>
<tr>
<td>Sand</td>
<td>2.5</td>
</tr>
<tr>
<td>Lead</td>
<td>11.3</td>
</tr>
<tr>
<td>Quantity</td>
<td>Units</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Number</td>
<td>#/cm3</td>
</tr>
<tr>
<td>Surface Area</td>
<td>µm2/cm3</td>
</tr>
<tr>
<td>Volume</td>
<td>µm3/cm3</td>
</tr>
<tr>
<td>Mass</td>
<td>mg/m3</td>
</tr>
</tbody>
</table>
Chemical Composition

- **Irritants**
 - Dusts

- **Immune provoking**
 - Pollen
 - Some metals

- **Carcinogenic**
 - PAH

- **Biologically active**
 - Virus
 - Bacteria
Size Distribution

Polydisperse

Monodisperse

N

0

d

N

d on logscale
Quantity vs Size

Particle Diameter

Mass

Surface

Number

Ultrafine Fine Coarse

1 10 100 1000 10^4 nm

0.001 0.01 0.1 1 10 µm
Particle Generation

- **Hot processes**
 - Vapor → particle
 - Dp < 1 µm
 - Welding, combusting

- **Dusty processes**
 - Mechanical
 - Dp > 1 µm
 - Grinding, sanding
Forces Acting on Particles

Gravity
Diffusion
Electrical
Centrifugal

10-µm Particle

Gas Molecule
0.005-µm Particle
Force Balance: Gravitational Settling

How fast does a particle settle in air?

<table>
<thead>
<tr>
<th>Diameter</th>
<th>1 µm</th>
<th>10 µm</th>
<th>100 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity, cm/s</td>
<td>0.0035</td>
<td>0.36</td>
<td>25</td>
</tr>
<tr>
<td>Distance in 1 min, ft</td>
<td>0.006</td>
<td>0.7</td>
<td>49</td>
</tr>
</tbody>
</table>
Aerodynamic Diameter

All have the same settling velocity; thus equal aerodynamic diameter
Inertial force

Larger particles resist change in direction more \rightarrow larger τ
A Bug on Your Windshield

HUMMER

Airflow

Drag Force

Force of Inertia

Bug
Impactors

Large particles hit plate

Small particles reach filter
Diffusion

- Particles move because gas molecules hit them
 - The smaller the particle, the larger the movement
 - Dominant for particles smaller than 0.1 µm (100 nm)
Electrical Forces

- Charged particle in an electric field
- Very high velocity can result

Electrical Force

Gravity

Millikan Oil Drop Experiment
Optical Behavior

• Light wavelength
 – 0.4 µm → 0.8 µm
 – 400 nm → 800 nm

• Scattering, absorption, extinction
Particles in the Respiratory Tract

Conducting Passages

- Upper respiratory tract
 - Nasal cavity
 - Pharynx
 - Larynx
- Lower respiratory tract
 - Trachea
 - Primary bronchi
 - Lungs

Percent Deposited

- Total
- Head
- Alv
- TB

Deposition Mechanism

- Diffusion Dominated
- Inertial Dominated

Particles Deposited in the Respiratory Tract:

- 0.001 µm
- 0.01 µm
- 0.1 µm
- 1 µm
- 10 µm
- 100 µm
Aerosol Physics Summary

• Important parameters
 – Size, shape, composition, density, quantity

• Size distribution
 – Most aerosols are polydisperse

• Forces
 – Gravity, inertia, diffusion, electrical