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Penalized methods for bi-level variable selection
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In many applications, covariates possess a grouping struc-
ture that can be incorporated into the analysis to select
important groups as well as important members of those
groups. This work focuses on the incorporation of grouping
structure into penalized regression. We investigate the pre-
viously proposed group lasso and group bridge penalties as
well as a novel method, group MCP, introducing a frame-
work and conducting simulation studies that shed light on
the behavior of these methods. To fit these models, we use
the idea of a locally approximated coordinate descent to de-
velop algorithms which are fast and stable even when the
number of features is much larger than the sample size. Fi-
nally, these methods are applied to a genetic association
study of age-related macular degeneration.
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1. INTRODUCTION

In this paper we consider regression problems in which
the covariates can be grouped; our interest is in selecting
important groups as well as identifying important members
of these groups. We refer to this as bi-level selection. Here,
we propose a new framework for thinking about grouped
penalization, develop fast algorithms to fit group-penalized
regression models, and apply these models to a genetic as-
sociation study.

Variable selection is an important issue in regression anal-
ysis. Typically, measurements are obtained for a large num-
ber of potential predictors in order to avoid missing a po-
tentially important link between a predictive factor and the
outcome. However, to reduce variability and obtain a more
interpretable model, we are often interested in selecting a
smaller number of important variables.

There is a large body of available literature on the topic
of variable selection, but the majority of this work is fo-
cused on the selection of individual variables. In many re-
gression problems, however, predictors are not distinct but
arise from common underlying factors. Categorical factors
are often represented by a group of indicator functions; like-
wise for continuous factors and basis functions. Groups of
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measurements may be taken in the hopes of capturing unob-
servable latent variables or of measuring different aspects of
complex entities. Some specific examples include measure-
ments of gene expression, which can be grouped by pathway,
and genetic markers, which can be grouped by the gene or
haplotype that they belong to. Methods for individual vari-
able selection may perform inefficiently in these settings by
ignoring the information present in the grouping structure,
or even give rise to models that are not sensible.

A common approach to variable selection is to identify
the best subset of variables according to some criterion.
However, this approach is unstable (Breiman, 1996) and be-
comes computationally infeasible as the number of variables
grows to even moderate sizes. For these reasons, penalized
approaches to regression have gained popularity in recent
years.

In addition to penalties designed for individual vari-
able selection such as the lasso (Tibshirani, 1996), bridge
(Frank and Friedman, 1993), smoothly clipped absolute de-
viation penalty (SCAD, Fan and Li (2001)) and minimax
concave penalty (MCP, Zhang (2007)), several methods have
been developed that accommodate selection at the group
level. Yuan and Lin (2006) proposed the group lasso, in
which the penalty function is comprised of L2 norms of
the groups. This has the effect of encouraging sparsity at
the group level while applying ridge regression-like shrink-
age within a group. Meier et al. (2008) extend this idea to
logistic regression, and Zhao et al. (2006) extend the idea to
overlapping and hierarchical groups. These approaches per-
form at group level but not at an individual level variable se-
lection. The group bridge (Huang et al., 2007), in contrast,
applies a bridge penalty to the L1 norm of the groups, per-
forming bi-level selection by encouraging sparse solutions at
the group and individual variable levels.

Group lasso and group bridge are not without their short-
comings, however. Group lasso is incapable of variable se-
lection at the individual level and heavily shrinks large co-
variates. Meanwhile, group bridge suffers from a number of
practical difficulties due to the fact that the bridge penalty
is not everywhere differentiable. Furthermore, both meth-
ods make inflexible grouping assumptions that can cause the
methods to suffer when groups are misspecified or sparsely
represented.

Given the wide variety of problems that can give rise
to grouped covariates, we feel that there is a need for a
larger array of tools that perform bi-level selection. This
paper takes two large steps towards that aim: by proposing

http://www.intlpress.com/SII/


a general framework through which the behavior of group
penalties can be better understood, and by developing an
efficient set of algorithms that can be used to fit models
with grouped penalties.

The algorithms that have been proposed thus far to fit
models with grouped penalties are either (a) inefficient for
models with large numbers of predictors, or (b) limited to
linear regression models, models in which the members of a
group are orthogonal to each other, or both. We combine the
ideas of coordinate descent optimization and local approxi-
mation of penalty functions to introduce a new, general algo-
rithm for fitting models with grouped penalties. The result-
ing algorithm is stable and very fast even when the number
of variables is much larger than the sample size. We apply
the algorithm to models with grouped penalties, but note
that the idea may be applied to other penalized regression
problems in which the penalties are complicated but not nec-
essarily grouped. We provide these algorithms as an R pack-
age, grpreg (available at http://cran.r-project.org).

In Section 2, we describe our proposed group penaliza-
tion framework, show how group lasso and group bridge fit
into this framework, and use the framework to motivate a
new method for bi-level selection which we call group MCP.
In Section 3, we discuss our computational approach to fit-
ting group penalized models based on coordinate descent
algorithms. Group lasso, group bridge, and group MCP are
then compared via simulation studies in Section 4, applied
to a genetic association study in Section 5, and discussed in
Section 6.

2. SPECIFICATION OF MODELS WITH
GROUPED PENALTIES

Suppose we have data {(xi, yi)n
i=1}, where yi is the re-

sponse variable and xi is a p-dimensional predictor contain-
ing groups that the analyst wishes to select among. We de-
note xi as being composed of an unpenalized intercept and
J groups xij , with Kj denoting the size of group j. Covari-
ates that do not belong to a group may be thought of as a
group of one. The problem of interest involves estimating a
sparse vector of coefficients β using a loss function L which
quantifies the discrepancy between an observation yi and a
linear predictor ηi = xi

′β = β0 +
∑J

j=1 xij
′βj , where βj

represents the coefficients belonging to the jth group.
To ensure that the penalty is applied equally, covariates

are standardized prior to fitting such that
∑n

i=1 xijk = 0 and
1
n

∑n
i=1 x2

ijk = 1 ∀j, k. We assume without loss of general-
ity that the covariates are standardized in this way during
the model fitting process and then transformed back to the
original scale once all models have been fit.

2.1 Grouped penalization framework for
squared error loss

The effect of a penalty upon the solution is determined
by its gradient. The derivatives of several common penalties
are plotted in Fig. 1. The left panel depicts penalties of the

Figure 1. Derivatives of penalty functions referenced in this
paper. Left: Ridge (gray line), lasso (dashed line) and bridge
(γ = 1/2, solid black line) penalties. Right: MCP (solid black

line) and SCAD (dashed line) penalties.

form λβγ . As the plot illustrates, the ridge regression (γ = 2)
rate of penalization increases with β, which has the effect
of applying little to no penalization near 0 while strongly
discouraging large coefficients. Meanwhile, the lasso (γ = 1)
rate of penalization is constant. Finally, setting γ = 1/2
results in a rate of penalization that is very high near 0 but
steadily diminishes as β grows larger.

The solution to the group lasso is defined to be the value
β that minimizes the objective function

(1) Q(β) =
1
2n

‖y − Xβ‖2 + λ
J∑

j=1

√
Kj‖βj‖,

where ‖·‖ is the L2 norm. The group bridge estimate mini-
mizes

(2) Q(β) =
1
2n

‖y − Xβ‖2 + λ

J∑
j=1

Kγ
j ‖βj‖γ

1 ,

where ‖·‖1 is the L1 norm. Throughout this paper, we take
γ = 1/2 for group bridge.

To greater understand the action of these penalties and
to illuminate the development of new ones, we can consider
grouped penalties to have a form in which an outer penalty
fO is applied to a sum of inner penalties fI . The penalty
applied to a group of covariates is

(3) fO

(
Kj∑
k=1

fI(|βjk|)
)

and the partial derivative with respect to the jkth covariate
is

(4) f ′
O

(
Kj∑
k=1

fI(|βjk|)
)

f ′
I(|βjk|).

Note that both group lasso and group bridge fit into this
framework with an outer bridge penalty; the former pos-
sesses an inner ridge penalty, while the latter has an inner
lasso penalty. We have intentionally left the above frame-
work general in the sense of not rigidly specifying the role
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of constants or tuning parameters such as λ, γ, or
√

Kj . A
more specific framework would obscure the main point as
well as create the potential of excluding useful forms.

From (4), we can understand group penalization to be
applying a rate of penalization to a covariate that consists
of two terms: the first carrying information regarding the
group; the second carrying information about the individual
covariate. Variables can enter the model either by having a
strong individual signal or by being a member of a group
with a strong collective signal. Conversely, a variable with
a strong individual signal can be excluded from a model
through its association with a preponderance of weak group
members.

However, one must be careful not to let it oversimplify
the situation. Casually combining penalties will not nec-
essarily lead to reasonable results. For example, using the
lasso as both an inner and outer penalty is equivalent to the
conventional lasso, and makes no use of the grouping struc-
ture. Furthermore, properties may emerge from the com-
bination that are more than the sum of their parts. The
group lasso, for instance, possesses a convex penalty despite
the fact that its outer bridge penalty is nonconvex. Nev-
ertheless, the framework described above is a helpful lens
through which to view the problem of group penalization
which emphasizes the dominant feature of the method: the
gradient of the penalty and how it varies over the feature
space.

2.2 Group MCP

Zhang (2007) proposes a nonconvex penalty called MCP
which possesses attractive theoretical properties. MCP and
its derivative are defined on [0,∞) by

fλ,a(θ) =

{
λθ − θ2

2a if θ ≤ aλ
1
2aλ2 if θ > aλ

(5)

f ′
λ,a(θ) =

{
λ − θ

a if θ ≤ aλ

0 if θ > aλ

for λ ≥ 0. The rationale behind the penalty can again be
understood by considering its derivative: MCP begins by
applying the same rate of penalization as the lasso, but con-
tinuously relaxes that penalization until, when θ > aλ, the
rate of penalization drops to 0. MCP is motivated by and
rather similar to SCAD. The connections between MCP and
SCAD are explored in detail by Zhang (2007); we will briefly
discuss the connections from a grouped penalty perspective
in Section 6. The derivatives of MCP and SCAD are plotted
in Fig. 1.

The goal of both penalties is to eliminate the unimpor-
tant variables from the model while leaving the important
variables unpenalized. This would be equivalent to fitting an
unpenalized model in which the truly nonzero variables are
known in advance (the so-called “oracle” model). Both MCP

and SCAD accomplish this asymptotically and are said to
have the oracle property (Fan and Li, 2001; Zhang, 2007).

From Fig. 1, we can observe that λ is the regularization
parameter that determines the magnitude of penalization
and a is a tuning parameter that affects the range over which
the penalty is applied. When a is small, the region in which
MCP is not constant is small; when a is large, MCP penalty
has a broader influence. Generally speaking, small values of
a are best at retaining the unbiasedness of the MCP penalty
for large coefficients, but they also run the risk of creating
objective functions with problematic nonconvexity that are
difficult to optimize and yield solutions that are discontin-
uous with respect to λ. It is therefore best to choose an a
that is big enough to avoid problems but not too big. For
linear regression models, when the response and covariates
are standardized to have standard deviation 1, we recom-
mend using a = 3. In our simulations, we have found this
works well. It should be noted, however, that a is not scale-
invariant with respect to y. If the standard deviation of the
response were dramatically larger or smaller, a = 3 will
not work well. As practical advice, we recommend always
standardizing the variables and using a = 3. For further
discussion regarding the choice of a, see Zhang (2007).

The group MCP estimate minimizes

(6) Q(β) =
1
2n

‖y − Xβ‖2 +
J∑

j=1

fλ,b

⎛
⎝ Kj∑

k=1

fλ,a(|βjk|)

⎞
⎠ ,

where b, the tuning parameter of the outer penalty, is cho-
sen to be Kjaλ/2 in order to ensure that the group level
penalty attains its maximum if and only if each of its com-
ponents are at their maximum. In other words, the deriva-
tive of the outer penalty reaches 0 if and only if |βjk| ≥ aλ
∀k ∈ {1, . . . ,Kj}. The relationship between group lasso,
group bridge, and group MCP is illustrated for a two-
covariate group in Fig. 2.

One can see from Fig. 2 that the group MCP penalty
is capped at both the individual covariate and group lev-
els, while the group lasso and group bridge penalties are
not. This illustrates the two rationales of group MCP: (1)
to avoid overshrinkage by allowing covariates to grow large,
and (2) to allow groups to remain sparse internally. Group
bridge allows the presence of a single large predictor to con-
tinually lower the entry threshold of the other variables in
its group. This property, whereby a single strong predic-
tor drags others into the model, prevents group bridge from
achieving consistency for the selection of individual vari-
ables. Group MCP, on the other hand, limits the amount
of signal that a single predictor can contribute towards the
reduction of the penalty applied to the other members of
the group.

2.3 Other loss functions

In generalized linear models (McCullagh and Nelder,
1999), the negative log-likelihood is used as the loss function.
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Figure 2. Penalties applied to a two-covariate group by the group lasso, group bridge, and group MCP methods. Note that
where the penalty comes to a point or edge, there is the possibility that the solution will take on a sparse value; all penalties

come to a point at 0, encouraging group-level sparsity, but only group bridge and group MCP allow for bi-level selection.

The usual approach to model fitting is to make a quadratic
approximation to the loss function using the current esti-
mate of the linear predictors η(m), and update coefficients
using an iteratively reweighted least squares algorithm:

L(η) ≈ L(η(m)) + (η − η(m))′v

+
1
2
(η − η(m))′W(η − η(m)),

where v and W are the first and second derivatives of L(η)
with respect to η, evaluated at η(m). Now, letting z = η(m)−
W−1v and dropping terms that are constant with respect
to β, we can complete the square to obtain

(7) L(β) ≈ 1
2
(z − Xβ)′W(z− Xβ).

For generalized linear models, W is a diagonal matrix,
and the quadratic approximation renders the loss function
equivalent to squared error loss in which the observations
are weighted by w = diag(W). For the sake of clarity, we
will present the algorithms in Section 3 primarily from the
perspective of squared error loss, but mention the steps in
the algorithm that are altered by iterative reweighting.

For group MCP penalties applied to logistic regression
loss functions, we use the value a = 30 throughout. In logis-
tic regression, the response variable is always on the same
scale; consequently, a = 30 seems to be an appropriate value
for all of the logistic regression problems we have encoun-
tered, both simulated and real.

3. LOCAL COORDINATE DESCENT

The approach that we describe for minimizing Q(β) re-
lies on obtaining a first-order Taylor series approximation of
the penalty. This approach requires continuous differentia-
bility. Here, we treat penalties as functions of |β|; from this
perspective, penalties like the lasso are continuously differ-
entiable, with domain [0,∞).

Coordinate descent algorithms optimize a target func-
tion with respect to a single parameter at a time, itera-
tively cycling through all parameters until convergence is
reached. The idea is simple but efficient—each pass over the

parameters requires only O(np) operations. Since the num-
ber of iterations is typically much smaller than p, the solu-
tion is reached faster even than the np2 operations required
to solve a linear regression problem by QR decomposition.
Furthermore, since the computational burden increases only
linearly with p, coordinate descent algorithms can be ap-
plied to very high-dimensional problems. Only recently has
the power of coordinate descent algorithms for optimizing
penalized regression problems been fully appreciated; see
Friedman et al. (2007) and Wu and Lange (2008) for addi-
tional history and a fuller treatment.

Coordinate descent algorithms are ideal for problems like
the lasso where deriving the solution is simple in one dimen-
sion. The group penalties discussed in this paper do not have
this feature; however, one may approximate these penalties
to obtain a locally accurate representation that does. The
idea of obtaining approximations to penalties in order to
simplify optimization of penalized likelihoods is not new.
Fan and Li (2001) propose a local quadratic approximation
(LQA), while Zou and Li (2008) describe a local linear ap-
proximation (LLA). The LQA and LLA algorithms can also
be used to fit these models, but as we will see in Section 4,
the LCD algorithm is much more efficient.

Letting β̃ represent the current estimate of β, the over-
all structure of the local group coordinate descent (LCD)
algorithm is as follows:

(1) Choose an initial estimate β̃ = β(0)

(2) Approximate loss function, if necessary
(3) Update covariates:

(a) Update β̃0

(b) For j ∈ {1, . . . , J}, update β̃j

(4) Repeat steps 2 and 3 until convergence

First, let us consider the updating of the intercept in
step (3)(a). The partial residual for updating β̃0 is ỹ = y−
X−0β̃−0, where the −0 subscript refers to what remains of
X or β̃ after the 0th column or element has been removed,
respectively. The updated value of β̃0 is therefore the simple
linear regression solution:

β̃0 ← x′
0ỹ

x′
0x0

=
1
n
x′

0ỹ.
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An equivalent but computationally more efficient way of
updating β̃0 is to take advantage of the current residuals
r̃ = y − Xβ̃ (Friedman et al., 2008). Here, we note that
ỹ = r̃ + x0β̃0; thus, our update becomes

(8) β̃0 ← 1
n
x′

0r̃ + β̃0.

Updating β̃0 in this way costs only 2n operations: n oper-
ations to calculate x′

0r̃ and n operations to update r̃. In
contrast, obtaining ỹ requires n(p − 1) operations. Mean-
while, for iteratively reweighted optimization, the updating
step is

(9) β̃0 ← x′
0Wr̃/x′

0Wx0 + β̃0,

requiring 3n operations.
Updating β̃j in step (3)(b) depends on the penalty. We

discuss the updating step separately for group MCP, group
bridge, and group lasso.

3.1 Group MCP

Group MCP has the most straightforward updating step.
We begin by reviewing the univariate solution to the lasso.
When the penalty being applied to a single parameter is
λ|β|, the solution to the lasso (Tibshirani, 1996) is

β =
S( 1

nx′y, λ)
1
nx′x

= S

(
1
n
x′y, λ

)
,

where S(z, c) is the soft-thresholding operator
(Donoho and Johnstone, 1994) defined for positive c
by

S(z, c) =

⎧⎪⎨
⎪⎩

z − c if z > c

0 if |z| ≤ c

z + c if z < −c.

Group MCP does not have a similarly convenient form for
updating individual parameters. However, by taking the first
order Taylor series approximation about β̃j , the penalty as
a function of βjk is approximately proportional to λ̃jk|βjk|,
where

(10) λ̃jk = f ′
λ,b

⎛
⎝ Kj∑

m=1

fλ,a(|β̃jm|)

⎞
⎠ f ′

λ,a(|β̃jk|)

and f , f ′ were defined in equation (5). Thus, in the local
region where the penalty is well-approximated by a linear
function, step (3)(b) consists of simple updating steps based
on the soft-thresholding cutoff λ̃jk: for k ∈ {1, . . . ,Kj},

(11) β̃jk ← S

(
1
n
x′

jkr̃ + β̃jk, λ̃jk

)

or, when weights are present,

(12) β̃jk ←
S( 1

nx′
jkWr̃ + 1

nx′
jkWxjkβ̃jk, λ̃jk)

1
nx′

jkWxjk

.

3.2 Group bridge

The local coordinate descent algorithm for group bridge
is rather similar to that for group MCP, only with

(13) λ̃jk = λγKγ
j ‖β̃j‖γ−1

1 .

The difficulty posed by group bridge is that, because the
bridge penalty is not everywhere differentiable, λ̃jk is un-
defined at β̃j = 0 for γ < 1. This is not a problem caused
by the algorithm; 0 presents a fundamental issue with the
penalty itself. For any positive value of λ, 0 is a local mini-
mum of the group bridge penalty. Clearly, this complicates
optimization. Our approach is to begin with an initial value
away from 0 and, if β̃j reaches 0 at any point during the
iteration, to restrain β̃j at 0 thereafter. Obviously, this in-
curs the potential drawback of dropping groups that would
prove to be nonzero when the solution converges. There are
alternatives to this approach, such as adding a small con-
stant to β̃j in (13). However, doing so would prevent the
algorithm from taking advantage of sparsity and greatly re-
duce computational efficiency for large, sparse problems. In
comparing the algorithm we propose with this alternative,
we did not observe a large enough difference in the quality
of the fitted models to justify the increase in computational
burden.

3.3 Group lasso

Updating is more complicated in the group lasso because
of its sparsity properties: group members go to 0 all at once
or not at all. Thus, we must update β̃j at step (3)(b) in two
steps: first, check whether β̃j = 0 and second, if β̃j 
= 0,
update β̃jk for k ∈ {1, . . . , Kj}.

The first step is performed by noting that β̃j 
= 0 if and
only if

(14)
1
n
‖X′

j r̃ + X′
jXjβ̃j‖ >

√
Kjλ.

The logic behind this condition is that if βj cannot move in
any direction away from 0 without increasing the penalty
more than the movement improves the fit, then 0 is a lo-
cal minimum; since the group lasso penalty is convex, 0
is also the unique global minimum. The conditions defined
by (14) are in fact the Karush-Kuhn-Tucker conditions for
this problem, and were first pointed out by Yuan and Lin
(2006).

If this condition does not hold, then we can set β̃j = 0
and move on. Otherwise, we once again make a local approx-
imation to the penalty and update the members of group j.
However, instead of approximating the penalty as a function
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of |βjk|, for group lasso we can obtain a better approxima-
tion by considering the penalty as a function of β2

jk. Now, the
penalty applied to βjk may be approximated by λ̃jkβ2

jk/2,
where

(15) λ̃jk =
λ
√

Kj

‖β̃j‖
.

This approach yields a shrinkage updating step instead of a
soft-thresholding step:

(16) β̃jk ←
1
nx′

jkr̃ + β̃jk

1 + λ̃jk

or, for weighted optimization,

(17) β̃jk ←
1
nx′

jkWr̃ + 1
nx′

jkWxjkβ̃jk

1
nx′

jkWxjk + λ̃jk

.

Note that, like (13), (15) is undefined at 0. Unlike group
bridge, however, this is merely a minor algorithmic inconve-
nience. The penalty is differentiable; its partial derivatives
simply have a different form at 0. This issue can be avoided
by adding a small positive quantity δ to the denominator in
equation (15).

It should be noted that Meier et al. (2008) have also pro-
posed a coordinate descent algorithm for fitting group lasso
models, and several of the ideas above are similar to ones
they present. However, Meier et al. (2008) consider only the
special case in which groups are orthonormal, whereas we
present a more general algorithm.

3.4 Convergence of the LCD algorithm

Let β(m) denote the value of the coefficients at a given
step of the algorithm, and let β(m+1) be the value after the
next updating step has occurred. With the exception of the
sparsity check during the first stage of the group lasso algo-
rithm, β(m+1) and β(m) will differ by, at most, one element.

Proposition 1. At every step of the algorithms described
in Sections 3.1–3.3,

(18) Q(β(m+1)) ≤ Q(β(m))

Thus, all three algorithms decrease the objective function at
every step and therefore are guaranteed to converge.

This result follows from the general theory of MM (ma-
jorization-minimization) algorithms (Lange et al., 2000).
A function h is said to majorize a function g if h(x) ≥
g(x) ∀x and there exists a point x∗ such that h(x∗) = g(x∗).
All that remains to prove the proposition is to show that the
approximations referred to by (10), (13), and (15) majorize
their respective penalty functions. This is straightforward

for group bridge and group MCP, as both penalties are con-
cave on [0,∞). They are therefore majorized by any tan-
gent line. For group lasso, one can demonstrate majoriza-
tion through inspection of second derivatives by observing
that h′′(βjk) − g′′(βjk) ≥ 0 on (0,∞).

The LCD algorithm is therefore stable and guaranteed to
converge, although not necessarily to the global minimum
of the objective function. The group bridge and group MCP
penalty functions are nonconvex; group bridge always con-
tains local minima and group MCP may have them as well.
Furthermore, coordinate descent algorithms for penalized
squared error loss functions are guaranteed to converge to
minima only when the penalties are separable. Group penal-
ties are separable between groups, but not within them.
Convergence to a minimum cannot be guaranteed, then, for
the one-at-a-time updates that we propose here. Neverthe-
less, we have not observed this to be a significant problem in
practice. Comparing the convergence of the LCD algorithms
to LQA/LLA algorithms (which update all parameters si-
multaneously) for the same data, the algorithms rarely con-
verge to different values, and when they do, the differences
are quite small.

3.5 Pathwise optimization and initial values

The local coordinate descent algorithm requires an initial
value β(0). Usually, we are interested in obtaining β̂ not just
for a single value of λ, but for a range of values and then
applying some criterion to choose an optimal λ.

Usually, the range of λ values one is interested in ex-
tends from a maximum value λmax for which all penalized
coefficients are 0 down to λ = 0 or to a minimum value
λmin at which the model becomes excessively large or ceases
to be identifiable. The estimated coefficients vary continu-
ously with λ and produce a path of solutions regularized by
λ. Example coefficient paths for group lasso, group bridge,
and group MCP over a fine grid of λ values are presented in
Fig. 3; inspecting the path of solutions produced by a pe-
nalized regression method is often a very good way to gain
insight into the methodology.

Figure 3 reveals much about the behavior of grouped
penalties. In particular, we note the following. (1) Even
though each of the nonzero coefficients is of the same magni-
tude, the coefficients from the more significant solid group
enter the model much more easily than the lone nonzero
coefficient from the dashed group. (2) This phenomenon is
less pronounced for group MCP, as it makes weaker assump-
tions about grouping. (3) For group MCP at λ ≈ 0.4, all
of the variables with true zero coefficients have been elim-
inated while the remaining coefficients are unpenalized. In
this region, the group MCP approach is performing as well
as the oracle model. (4) In general, the coefficient paths for
these group penalization methods are continuous, but are
not piecewise linear, unlike those for the lasso.

Because the paths are continuous, a reasonable approach
to choosing initial values is to start at one extreme of the
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Figure 3. Coefficient paths from 0 to λmax for group lasso, group bridge, and group MCP for a simulated data set featuring
two groups, each with three covariates. In the underlying model, the solid line group has two covariates equal to 1 and the

other equal to 0; the dotted line group has two coefficients equal to 0 and the other equal to −1.

path and use the estimate β̂ from the previous value of λ as
the initial value for the next value of λ.

For group MCP and group lasso (and in general for any
penalty function that is differentiable at 0), we can easily
determine λmax, the smallest value for which all penalized
coefficients are 0. From (14), it is clear that

λmax = max
j

‖X∗′

j r̃‖
n
√

Kj

,

where the current residuals and likelihood approximation
(if necessary) are obtained using a regression fit to the
intercept-only model. For group MCP,

λmax = max
j,k

√
|x′

jkr̃|
n

.

For these methods, we can start at λmax using β(0) = 0 and
proceed towards λmin.

This approach does not work for group bridge, however,
because β̃ must be initialized away from 0. We must there-
fore start at λmin and proceed toward λmax (i.e., work in
the opposite direction as group MCP and group lasso). For
the initial value at λmin, we suggest using the unpenalized
univariate regression coefficients.

For all the numerical results in this paper, we follow the
approach of Friedman et al. (2008) and compute solutions
along a grid of 100 λ values that are equally spaced on the
log scale.

3.6 Regularization parameter selection

Once a regularization path has been fit, we are typi-
cally interested in selecting an optimal point along the path.

Three widely used criteria are:

AIC (λ) = 2Lλ + 2dfλ,(19)
BIC (λ) = 2Lλ + log (n)dfλ,(20)

and

GCV (λ) =
2Lλ

[1 − (dfλ/n)]2
,(21)

where dfλ is the effective number of parameters. The opti-
mal value of λ is chosen to be the one that minimizes the
criterion.

We propose the following estimator for dfλ. Let β̂jk de-
note the fitted value of βjk and β̂∗

jk denote the unpenalized
fit to the partial residual: β̂∗

jk = x′
jkỹ/n. Then

(22) d̂fλ =
J∑

j=1

Kj∑
k=1

β̂jk

β̂∗
jk

.

This estimator is attractive for a number of reasons. For
linear fitting methods such that ŷ = Sy, there are sev-
eral justifications for choosing d̂f = trace(S) (Hastie et al.,
2001). Ridge regression is an example of a linear fitting
method in which S = X(X′X + λI)−1X′. For the special
case of an orthonormal design, (22) is equal to the trace of
S. The estimator also has an intuitive justification, in that it
makes a smooth transition from an unpenalized coefficient
with df = 1 to a coefficient that has been eliminated with
df = 0. Another attractive feature is convenience: the esti-
mator is obtained as a byproduct of the coordinate descent
algorithm with no additional calculation.

Yuan and Lin (2006) propose an estimator for the effec-
tive number of parameters of the group lasso, but it in-
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volves the ordinary least squares estimator, which is un-
defined in high dimensions, so we do not consider it here.
Another common approach is to set d̂f equal to the num-
ber of nonzero elements of β̂ (Efron et al., 2004; Zou et al.,
2007). However, this has two drawbacks. One is that the es-
timator (and, hence, the model selection criterion) is not a
continuous function of λ. The other is that this approach is
inappropriate for methods that perform a heavy amount of
coefficient shrinkage like the group lasso. We examine the
performance of this estimator and estimator (22) using sim-
ulation studies in Section 4.

3.7 Adding an L2 penalty

Zou and Hastie (2005) have suggested that incorporat-
ing an additional, small L2 penalty can improve the perfor-
mance of penalized regression methods, especially when the
number of predictors is larger than the number of observa-
tions or when large correlation exists between the predictors.
This does not pose a complication to the above algorithms.
When minimizing the previously defined objective functions
plus λ2

∑
j,k β2

jk/2, the updating step (11) becomes

β̃jk ←
S( 1

nx′
jkr̃ + β̃jk, λ̃jk)
1 + λ2

for group MCP and group bridge and the updating step (16)
becomes

β̃jk ←
1
nx′

jkr̃ + β̃jk

1 + λ̃jk + λ2

for group lasso. We use λ2 = .001λ for the numerical results
in Sections 4 and 5.

4. SIMULATION STUDIES

4.1 Efficiency

We will examine the efficiency of the LCD algorithm by
measuring the average time to fit the entire path of so-
lutions for group lasso, group bridge, and group MCP, as
well as the lasso as a benchmark. Besides LCD, we consider
the following algorithms: lars (Efron et al., 2004), the most
widely used algorithm for fitting lasso paths as of this writ-
ing; glmnet (Friedman et al., 2008), a very efficient coordi-
nate descent algorithm for computing lasso paths; glmpath
(Park and Hastie, 2007), an approach to fitting lasso paths
for GLMs not based on coordinate descent; and the LQA
(Fan and Li, 2001) and LLA (Zou and Li, 2008) algorithms
mentioned in Section 3.

We will consider three situations:

• Linear regression with n = 500, p = 200
• Logistic regression with n = 1000, p = 200
• Linear regression with n = 500, p = 2000

Table 1. Linear regression with n = 500, p = 200
Penalty Algorithm Average Time (s)

Lasso glmnet .03
Lasso lars .43
Group lasso LQA 3.54
Group bridge LLA 7.02
Group MCP LLA 5.13
Group lasso LCD .63
Group bridge LCD .11
Group MCP LCD .10

Table 2. Logistic regression with n = 1000, p = 200
Penalty Algorithm Average Time (s)

Lasso glmnet 0.24
Lasso glmpath 13.77
Group lasso LQA 21.78
Group bridge LLA 29.77
Group MCP LLA 15.08
Group lasso LCD 1.80
Group bridge LCD 0.67
Group MCP LCD 0.47

Table 3. Linear regression with n = 500, p = 2000. For the
LQA and LLA algorithms, only one replication was performed;

this is noted with an asterisk

Penalty Algorithm Average Time (s)

Lasso glmnet 1.60
Lasso lars 22.69
Group lasso LQA 1900.49∗
Group bridge LLA 1985.19∗
Group MCP LLA 1823.32∗
Group lasso LCD 23.00
Group bridge LCD 1.46
Group MCP LCD 3.47

For the data sets with n > p, paths were computed down to
λ = 0; for the p > n data sets, paths were computed down
to 5% of λmax.

The results of these efficiency trials are presented in Ta-
bles 1, 2, and 3. All entries are the average time in num-
ber of seconds, averaged over 100 randomly generated data
sets.

These timings dramatically verify the efficiency of coordi-
nate descent algorithms for high-dimensional penalized re-
gression. The LCD algorithm is not only much faster than
LLA/LQA for small p, its computational burden increases
in a manner that is roughly linear with p as opposed to
the polynomial increase suffered by LLA/LQA. Indeed, the
LCD algorithms are, generally speaking, even faster than the
LARS algorithm, a somewhat remarkable fact considering
that the latter takes explicit advantage of special piecewise
linearity properties of linear regression lasso paths.

Among the grouped penalties, group lasso is the slowest
due to its two-step updating procedure. Group bridge was
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Figure 4. Model error for each method after selecting λ with BIC using one of two estimators for the effective number of
model parameters. Solid line: Estimator (22). Dashed line: Using number of nonzero elements of β.

timed here to be the fastest, although this is potentially
misleading. Group bridge saves time by not updating groups
that reach 0 with no guarantee of converging to the true
minimum. This is a weakness of the method, not a strength,
although it does result in shorter computing times.

4.2 Regularization parameter selection

In this section, we will conduct a simulation study to
compare the performance of our proposed estimator of the
number of effective model parameters versus using the num-
ber of nonzero covariates as an estimator. In this section and
the next, we study penalized linear regression and use BIC
as the model selection criterion; simulations we have con-
ducted for logistic regression and using AIC and GCV all
illustrate the same basic trends.

We simulated data from the generating model

(23) yi = x′
i1β

(0)
1 + · · · + x′

i10β
(0)
10 + εi, εi

iid∼ N(0, 1),

with 100 observations and 10 groups, each of which contain-
ing 10 members (n = p = 100). We set β4 = · · · = β10 = 0,
and randomly generated the elements of β1 through β3 in
such a way as to have the models span signal-to-noise (SNR)
ratios over the range (0.5, 3) in a roughly uniform manner.
Data sets were generated independently 500 times. Model
error was chosen as the outcome; lowess curves were fit to
the results and plotted in Fig. 4. We define model error and
SNR as follows:

ME = (β̂ − β(0))′E(xx′)(β̂ − β(0))

and

SNR =
1
σ2

β(0)′E(xx′)β(0).

As Fig. 4 illustrates, the performance of estimator (22)
is similar to (perhaps slightly better than) that of counting
the nonzero elements of β for group bridge and group MCP,

but much better for the more ridge-like penalty group lasso.
We consider this sufficient justification for the use of (22)
throughout the remainder of this article; however, further
study of this approach to estimating model degrees of free-
dom is warranted.

4.3 Performance

In this section, we will compare the performance of the
group lasso, group bridge, and group MCP methods across
a variety of independently generated data sets. Once again,
data are generated from (23) with n = p = 100, J = 10.
However, the sparsity of the underlying models varied over
a range of true nonzero groups J0 ∈ 2, 3, 4, 5 and over a range
of nonzero members within a group K0 ∈ 2, 3, . . . , 10. Fur-
thermore, the magnitude of the coefficients was determined
according to

β
(0)
jk = ajkI(j ≤ J0)I(k ≤ K0),

where a was chosen such that the SNR of the model was
approximately one (actual range from 0.84 to 1.45). This
specification ensures that each model covers a spectrum of
groups ranging from those with with small effects to those
with large effects, and that each group contains large and
small contributors.

We note the average number of groups and coefficients
selected by the approaches for two representative cases in
Table 4, and plot model errors in Fig. 5.

The most striking difference between the methods is the
extent to which the form of the penalty enforces grouping:
group lasso forces complete grouping, group MCP encour-
ages grouping to a rather slight extent, and group bridge
is somewhere in between. This is seen most clearly by ob-
serving the average number of variables selected per group
for the cases listed in Table 4. For group lasso, of course,
this number is always 10. For group MCP, approximately
two or three variables were selected per group, while group
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Table 4. Variables and groups selected by the group selection methods for the simulation study described in Section 4.3. The
results for two representative models are reported. The total number of groups/individual variables is reported along with the

number of those that were false positive (FP) and the number of truly nonzero groups that were not selected (false
negatives, FN)

Variables Groups Variables
/group Selected FP FN Selected FP FN

Generating model 3 groups, 3 variables per group
Group lasso 10.0 2.9 0.3 0.4 28.5 20.7 1.2
Group bridge 4.2 2.5 0.3 0.8 9.9 5.2 4.3
Group MCP 2.2 5.9 3.0 0.1 12.6 7.5 3.9

Generating model 3 groups, 8 variables per group
Group lasso 10.0 2.9 0.2 0.3 28.9 7.3 2.4
Group bridge 5.0 2.5 0.3 0.8 11.8 2.1 14.3
Group MCP 2.7 5.6 2.6 0.0 14.4 4.7 14.3

Figure 5. Model error simulation results. In each panel, the number of nonzero groups is indicated in the strip at the top. The
x-axis represents the number of nonzero elements per group. At each tick mark, 500 data sets were generated. A lowess curve

has been fit to the points and plotted.

bridge selected four or five per group. We will address the
underlying causes of this in the discussion.

Because group MCP makes rather cautious assumptions
about grouping, the method performs well when there are a
larger number of rather sparse groups – situations in which
the underlying model exhibits less grouping. However, it suf-
fers in comparison to the other methods when the nonzero
coefficients are tightly clustered into groups as group MCP
tends to select too many groups and make insufficient use
of the grouping information. Group lasso exhibits the oppo-
site trend in its performance, overshrinking individual coef-
ficients when groups are sparsely populated.

5. GENETIC ASSOCIATION STUDY

Genetic association studies are an increasingly impor-
tant tool for detecting links between genetic markers and
diseases. The example that we will consider here involves
data from a case-control study of age-related macular de-
generation consisting of 400 cases and 400 controls. We con-
fine our analysis to 30 genes that previous biological studies
have suggested may be related to the disease. These genes
contained 532 markers with acceptably low rates of missing
data (< 20% no call rate) and high minor allele frequency
(> 10%).
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Table 5. Application of the three group penalization methods
and a one-at-a-time method to a genetic association data set.

The first three columns refer to the analysis of the actual
data set; the last is the average test error over the 10

cross-validations

# of # of Error Test
groups covariates rate error rate

One-at-a-time 19 49 .312 .441
Group lasso 10 190 .321 .429
Group bridge 3 19 .342 .421
Group MCP 7 10 .364 .418

We analyzed the data with the group lasso, group
bridge, and group MCP methods by considering markers
to be grouped by the gene they belong to. Logistic re-
gression models were fit assuming an additive effect for all
markers (homozygous dominant = 2, heterozygous = 1,
homozygous recessive = 0). Missing (“no call”) data was
imputed from the nearest non-missing marker for that sub-
ject. In addition to the group penalization methods, we ana-
lyzed these data using a traditional one-at-a-time approach,
in which univariate logistic regression models were fit and
marker effects tested using a p < .05 cutoff. For group lasso
and group bridge, using BIC to select λ resulted in the selec-
tion of the intercept-only model. Thus, more liberal model
selection criteria were used for those methods: AIC for group
lasso and GCV for group bridge.

To assess the performance of these methods, we computed
10-fold cross-validation error rates for the methods. For the
one-at-a-time approach, predictions were made from an un-
penalized logistic regression model fit to the training data
using all the markers selected by individual testing. The re-
sults are presented in Table 5.

Table 5 strongly suggests the benefits of using group pe-
nalized models as opposed to one-at-a-time approaches: the
three group penalization methods achieve lower test error
rates and do so while selecting fewer groups. Although the
error rates of ≈ .42 indicate that these 30 genes likely do not
include SNPs that exert an overwhelming effect on an indi-
vidual’s chances of developing age-related macular degener-
ation, the fact that they are well below 0.5 demonstrates
that these genes do contain SNPs related to the disease. In
particular, bi-level selection methods seem to perform quite
well for these data. Group bridge identifies 3 promising genes
out of 30 candidates, and group MCP achieves a similarly
low test error rate while identifying 10 promising SNPs out
of 532.

There are a number of important practical issues that
arise in genetic association studies that are beyond the scope
of this paper to address. Nearby genetic markers are linked;
indeed, this is the impetus for addressing these problems
using grouped penalization methods. However, genetic link-
age also results in highly correlated predictors. We have ob-
served that the choice of λ2 for group bridge and group

MCP has a noticeable impact on the SNPs selected. Fur-
thermore, most genetic association studies are conducted
on much larger scales than we have indicated here: moving
from hundreds of SNPs to hundreds of thousands of SNPs
presents a new challenge to both the computation and the
assigning of group labels. The handling of missing data, the
search for interactions, and the incorporation of non-genetic
covariates are also important issues. The fact that signals
from markers are known to be grouped in genetic association
studies is a strong motivation for the further development
of bi-level selection methods.

6. DISCUSSION

High-dimensional problems in which p exceeds n are in-
creasingly common as automated data collection and stor-
age becomes cheaper to obtain and easier to implement. For
these problems, traditional likelihood methods break down
and the need to introduce additional structure into the prob-
lem arises. Regression problems with grouped covariates are
an important class of these types of problems. Furthermore,
because we are often interested not only in selecting groups
but in identifying the important members of groups, meth-
ods that can perform bi-level selection are needed.

This paper introduces a framework that sheds light on the
behavior of grouped penalization methods, describes a fast,
stable algorithm for implementing group penalty approaches
to this problem, and applies them to an important applica-
tion: genetic association studies. In addition, we describe
a novel type of group penalty, group MCP, in which the
effects of group and individual variable penalization are lo-
calized. The behavior of this penalty raises interesting ques-
tions about the nature of group penalization.

The derivatives of the bridge, SCAD, and MCP penalties
were plotted in Fig. 1. Suppose there are 10 covariates in a
group, one of which is large (i.e., at least aλ for MCP); what
happens to the rate of penalization applied to the rest? For
MCP, the group penalty drops to 9/10 of the initial rate.
This produces rather weak grouping effects. By compari-
son, the derivative of the bridge penalty drops rapidly upon
the introduction of any nonzero elements; this produces the
stronger grouping effects seen in group bridge. The SCAD
penalty, by contrast, might not drop at all; indeed, our work
with a group SCAD method reveals that it displays even less
grouping than group MCP.

The bridge penalty is attractive from the perspective of
performing bi-level selection while still producing grouped
solutions, but it introduces complications into the optimiza-
tion process. The efficiency of the LCD algorithm provides
a powerful incentive to work with penalties that are con-
tinuously differentiable; this was indeed one of the motivat-
ing factors behind the development of group MCP. To de-
velop continuously differentiable penalties that can perform
bi-level variable selection while producing strongly grouped
solutions is an important next step. That these methods re-
main robust even when grouping is less pronounced is also
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desirable. This seemingly requires penalties whose deriva-
tives look like that of the bridge penalty, but that do not
suffer from a singularity at 0; to the knowledge of the au-
thors, these tools have not yet been developed or studied.

Another area for the further development of these meth-
ods is their extension to cases in which groups may be over-
lapping. This case would arise, for instance, in gene expres-
sion studies where genes may be grouped by pathways that
are not mutually exclusive.

Nevertheless, group lasso, group bridge, and group MCP
can all be valuable tools depending on the application. Fur-
thermore, using the LCD algorithm, these grouped penal-
ization methods can be conveniently applied to large data
sets that, not long ago, would have been deemed infeasible
to analyze using penalized regression.
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