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Abstract

Understanding treatment heterogeneity is essential to the development of precision

medicine, which seeks to tailor medical treatments to subgroups of patients with sim-

ilar characteristics. One of the challenges to achieve this goal is that we usually do

not have a priori knowledge of the grouping information of patients with respect to

treatment. To address this problem, we consider a heterogeneous regression model

by assuming that the coefficients for treatment variables are subject-dependent and

belong to different subgroups with unknown grouping information. We develop a con-

cave fusion penalized method and derive an alternating direction method of multipliers

algorithm for its implementation. The method is able to automatically estimate the

grouping structure and the subgroup-specific treatment effects. We show that under

suitable conditions the oracle least squares estimator with a priori knowledge of the

true grouping information is a local minimizer of the objective function with high

probability. This provides a theoretical justification for the statistical inference about

the subgroup structure and treatment effects. We evaluate the performance of the

proposed method by simulation studies and illustrate its application by analyzing the

data from the AIDS Clinical Trials Group Study.
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1 Introduction

In this paper, we consider the problem of estimating heterogeneous treatment effects in the

context of linear regression models. We propose a new approach to estimating subgroup-

specific treatment effects without knowing the group membership of the subjects in advance.

It consists of two main ingredients: an individualized treatment effect model and a concave

fusion penalized method. We develop a computational algorithm and study the theoretical

properties of the approach.

Understanding treatment heterogeneity is critical to the eventual success of precision

medicine, which seeks to develop medical treatments tailored to heterogeneous subpopula-

tions of patients with similar characteristics. Treatment heterogeneity is present when the

same treatment yields different results in different subpopulations. For many complex dis-

eases, significant treatment heterogeneity exists among patients with different clinical char-

acteristics (Sorensen, 1996). Heterogeneity of treatment effects reflects diversity of patients

in genetic and environmental factors, responsiveness to treatment, vulnerability to adverse

effects, among others. When treatment heterogeneity is present, the average effect can be

misleading. Indeed, the modest benefit ascribed to many treatments in clinical trials can be

misleading, since average effects may reflect a mixture of substantial benefits for some, little

benefit for many, and harm for a few (Kravitz and Braslow, 2004).

The most commonly used approach to dealing with treatment heterogeneity is subgroup

analysis, but the existing subgroup analysis methods lack a rigorous statistical framework

and is prone to yielding misleading results (Kravitz and Braslow, 2004; Rothwell, 2005;

Lagakos, 2006). Another commonly used approach in modeling heterogeneity is based on

finite mixture models. Recently, this approach has been adapted to subgroup analysis (Shen

and He, 2015). However, the mixture model approach requires specifying the number of

components and a parametric assumption of the model, which is difficult to do in practice.

To estimate treatment effects in the presence of heterogeneous subgroups, a challenging

problem is that the grouping information of patients with respect to treatment is unknown in

advance. To address this problem, we consider a regression model with heterogeneous treat-

ment effects by allowing the coefficients for treatment variables to be subject-dependent and

assume these coefficients belong to different groups with unknown grouping information. We

propose a concave fusion penalized method that applies a suitable penalty to pairwise dif-

ferences of treatment effects. By using a data-driven procedure for determining the penalty

parameter, the method is able to automatically estimate the grouping structure in the data

and the subgroup-specific treatment effects. Because the number of subgroups is usually

much smaller than the sample size, there is an underlying sparsity structure in subgroup

analysis. This enables us to formulate the problem of subgroup analysis for treatment het-

erogeneity as a penalization problem. Thus our proposed method places the problem of
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subgroup analysis on a solid theoretical footing based on a well defined objective function.

As a result, statistical inference about subgroup structure and treatment effects can be car-

ried out in a rigorous fashion.

Computationally, we devise an alternating direction method of multipliers algorithm

(ADMM, Boyd et al., 2011) for implementing the proposed approach. This algorithm has

been used for solving a large class of convex optimization problems. In this paper, we

use concave penalties on the pairwise differences of the treatment effects. Such penalties

include the smoothly clipped absolute deviations penalty (SCAD, Fan and Li, 2001) and the

minimax concave penalty (MCP, Zhang, 2010). The main reason we use the concave penalties

is that they enjoy certain attractive properties, in that under certain conditions they can

correctly identify the number of subgroups and yield nearly unbiased estimates of treatment

effects with high probability. In addition, the thresholding operators corresponding to these

penalties have explicit expressions. This facilitates the implementation of the method in the

framework of ADMM. We also derive the convergence properties of the ADMM algorithm.

Our theoretical analysis gives insights into the properties of the proposed method. In

particular, we provide sufficient conditions under which the oracle least squares estimator

with a priori knowledge of the true subgroups is a local minimizer of the objective func-

tion with high probability. Consequently, the approximate distributional properties of the

estimator can be obtained. This gives theoretical support for using the method for making

statistical inference about the treatment effects in the presence of heterogeneity. Moreover,

we derive the lower bound of the minimum difference of coefficient values between groups in

order to identify the true subgroups of treatment.

The basic idea of our proposed approach grew out of several existing methods, including

the fused lasso (Tibshirani et al., 2005), the convex splitting method for clustering (Chi and

Lange, 2015), and the concave pairwise fusion method for subgrouping in the presence of

covariates (Ma and Huang, 2016). The fused lasso deals with the standard regression model

with ordered coefficients, which is different from the problem we consider. The convex split-

ting method is developed for clustering analysis, not for regression problems. The method

in Ma and Huang (2016) was proposed for regression models with subject-specific intercepts

in the model, while the present work considers estimation of subgroup-specific effects of

observed treatment variables.

For studying grouping effects of covariates, several penalization methods have been pro-

posed. For example, the group and adaptive group LASSO methods using an L2 norm of

coefficients for groups of covariates have been widely applied in various studies (Yuan and

Lin, 2006; van de Geer and Bühlmann, 2009; Huang et al., 2010; Breheny and Huang, 2015).

The fused concave penalization methods have been considered (Guo et al., 2010; Shen and

Huang, 2010; Ke et al., 2015) for grouping effects of covariates. Different from these stud-
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ies on grouping effects of covariates, our work concerns the estimation of subgroup-specific

treatment effects across subjects.

The rest of this paper is organized as follows. Section 2 describes the concave fusion

penalization method. Section 3 presents the ADMM algorithm with concave penalties. In

Section 4 we establish the theoretical properties of the proposed estimator. In Section 5

we evaluate the finite sample properties of the proposed method via simulation studies. In

Section 6 we illustrate the proposed method by analyzing the data from the AIDS Clinical

Trials Group Study. Concluding remarks are given in Section 7. The proofs are given in the

Appendix.

2 The model and the method

2.1 A heterogeneous treatment effects model

Suppose the data consists of (yi, zi,xi), i = 1, . . . , n, where yi is a response, zi is a q-

dimensional covariate vector and xi is a p-dimensional covariate vector of main interest.

To motivate the proposed model and approach, first consider the standard linear regression

model

yi = zTi η + xT
i β + εi, i = 1, . . . , n, (2.1)

where η and β are unknown regression coefficients and the εi’s are i.i.d. random errors with

E(εi) = 0 and Var(εi) = σ2. We assume that the first entry in each zi is 1 so the intercept is

included in η. We are interested in the effects of xi on the response in the presence of other

nuisance covariates in zi which also may be related to the response. For simplicity and to

emphasize the main role of xi, we refer to β as the treatment effect. In this model, a key

assumption is that β is the same for all individuals in the data. However, this homogeneity

assumption in treatment is violated if the observations consist of subgroups and the effects

are difference across the subgroups, that is, the treatment effects are subgroup-specific.

Applying this model to data with subgroup structure can lead to misleading results.

To estimate subgroup-specific treatment effects, we propose a heterogenous treatment

effects model given by

yi = zTi η + xT
i βi + εi, i = 1, . . . , n. (2.2)

The difference between (2.2) and (2.1) is that βi can be individual-specific. This enables us

to incorporate possible treatment heterogeneity in a natural way in regression modeling.

Clearly, it is impossible to estimate each individual-specific coefficient βi without addi-

tional information or further assumptions on the structure of the parameters. Here we assume

that there are K different subgroups and the treatment effects are the same within each sub-

group. Specifically, let G = (G1, . . . ,GK) be a mutually exclusive partition of {1, . . . , n}.
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Suppose βi = αk for all i ∈ Gk, where αk is the common value for the βi’s from group Gk.
In practice, the number of groups K is unknown, and we also have no knowledge of which

subjects belonging to which groups. Our task is to estimate K, identify the subgroups and

estimate the underlying parameters (α1, . . . ,αK) and η.

2.2 Concave fusion

For any vector a, denote its L2 norm by ‖a‖ = (
∑
|ai|2)1/2. Consider the criterion

Qn(η,β) =
1

2

∑n

i=1
(yi − zTi η − xT

i βi)
2 +

∑
1≤i<j≤n

p(‖βi − βj‖, λ), (2.3)

where β = (βT
1 , . . . ,β

T
n )T, and p(·, λ) is a penalty function with a tuning parameter λ ≥ 0.

We use sparsity-inducing penalties in (2.3). For a sufficiently large λ, the penalty shrinks

some of ‖βi − βj‖ to zero. We can partition the treatment effects into subgroups according

to the unique values of β̂. Specifically, let λ̂ be the value of the tuning parameter on

the path selected based on a data-driven procedure such as the BIC. For simplicity, write

(η̂, β̂) ≡ (η̂(λ̂), β̂(λ̂)). Let {α̂1, . . . , α̂K̂} be the distinct values of β̂. These are the estimates

of subgroup-specific treatment effects. The samples can then be divided into subgroups

accordingly. Let Ĝk = {i : β̂i = α̂k, 1 ≤ i ≤ n}, 1 ≤ k ≤ K̂. Then {Ĝ1, . . . , ĜK̂} constitutes

a partition of {1, . . . , n}.
A popular sparsity-inducing penalty is the L1 or lasso penalty with pγ(t, λ) = λ|t| (Tib-

shirani, 1996). But this penalty tends to produce too many subgroups (Ma and Huang,

2016). So we focus on two concave penalty functions: the smoothly clipped absolute devi-

ation penalty (SCAD, Fan and Li, 2001) and the minimax concave penalty (MCP, Zhang,

2010). The SCAD penalty is

pγ(t, λ) = λ

∫ |t|
0

min{1, (γ − x/λ)+/(γ − 1)}dx.

The MCP has the form

pγ(t, λ) = λ

∫ |t|
0

(1− x/(γλ))+dx.

These penalties are nearly unbiased and are more aggressive in enforcing a sparser solution.

Thus, they are better suited for the current problem, since the number of subgroups are

usually much smaller than the sample size.

For a given λ > 0, let

(η̂(λ), β̂(λ)) = argmin
η∈IRq

,β∈IRnp
Qn(η,β;λ). (2.4)

We compute (η̂(λ), β̂(λ)) for λ in a given interval [λmin, λmax], where λmax is the value that

forces a constant β̂ solution, i.e., β̂j(λmax) = β̂k(λmax), 1 ≤ j < k ≤ n; λmin is a small
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Figure 1: Solution paths for (β̂1(λ), . . . , β̂n(λ)) against λ with n = 200 for data from Example

1 in Section 5.
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positive number. We are particularly interested in the path {β̂(λ) : λ ∈ [λmin, λmax]}. The

algorithm for computing the solution path on a grid of λ values is described in detail in

Section 3.

Figure 1 illustrates the solution path for β̂(λ) = (β̂1(λ), . . . , β̂n(λ)) against λ using MCP,

SCAD and lasso penalties for data generated from the model in Example 1 in Section 5,

in which there are two subgroups with ‘treatment effects’ 2 and −2, respectively. The

path is calculated using a “bottom up” approach starting from λmin. It looks similar to

the dendrogram for agglomerative hierarchical clustering. However, unlike the clustering

algorithms which form the clusters based on a direct measure of dissimilarity, the fusion of

the coefficients is based on solving the optimization problems along the solution path. We

shall refer to the solution path {β̂(λ), λ ∈ [λmin, λmax]} as a fusiongram.

The fusiongrams for SCAD and MCP look similar. They both include a segment con-

taining nearly unbiased estimates of the treatment effects. When the λ value reaches around

0.6, the estimates of (β1, . . . , βn) merge to the two true values 2 and −2, respectively. When

the λ value exceeds 1.2, the estimates shrink to one value. For the lasso, we see that the

estimates of (β1, . . . , βn) merge to one value quickly at λ = 0.1 due to the overshrinkage of

the L1 penalty.

3 Computation

3.1 ADMM with concave penalties

We derive an ADMM algorithm for computing the solution (2.4). The key idea is to introduce

a new set of parameters δij = βi−βj. Then, we can reformulate the problem of minimizing
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(2.3) as that of minimizing

L0(η,β, δ) =
1

2

∑n

i=1
(yi − zTi η − xT

i βi)
2 +

∑
i<j

pγ(‖δij‖, λ),

subject to βi − βj − δij = 0, (3.1)

where δ = {δTij, i < j}T. Let 〈a,b〉 = aTb be the inner product of two vectors a and b with

the same dimension. The augmented Lagrangian is

L(η,β, δ,υ) = L0(η,β, δ) +
∑

i<j

〈
υij,βi − βj − δij

〉
+
ϑ

2

∑
i<j
‖βi − βj − δij‖2, (3.2)

where the dual variables υ = {υT
ij, i < j}T are Lagrange multipliers and ϑ is a penalty pa-

rameter. We then compute the estimates of (η,β, δ,υ) through iterations using the ADMM.

For a given value of δm and υm at step m, the iteration goes as follows:

(ηm+1,βm+1) = argmin
η,β

L(η,β, δm,υm), (3.3)

δm+1 = argmin
δ

L(ηm+1,βm+1, δ,υm), (3.4)

υm+1
ij = υmij + ϑ(βm+1

i − βm+1
j − δm+1

ij ). (3.5)

In (3.3), the problem is equivalent to the minimization of the function

f(η,β) =
1

2

∑n

i=1
(yi − zTi η − xT

i βi)
2 +

ϑ

2

∑
i<j
‖βi − βj − δmij + ϑ−1υmij ‖2 + C,

where C is a constant independent of (η,β). Let y = (y1, . . . , yn)T, Z = (z1, . . . ,zn)T, and

X =diag(xT
1 , . . . ,x

T
n ). Some algebra shows that we can write f(η,β) as

f(η,β) =
1

2
‖Zη + Xβ − y‖2 +

ϑ

2
‖Aβ − δm + ϑ−1υm‖2 + C, (3.6)

where A =D ⊗ Ip. Here D = {(ei − ej), i < j}T with ei being the ith unit n × 1 vector

whose ith element is 1 and the remaining ones are 0, Ip is a p× p identity matrix and ⊗ is

the Kronecker product.

Thus for given δm and υm at the mth step, the updates βm+1 and ηm+1 are

βm+1 = (XTQZX + ϑATA)−1[XTQZy + ϑAT(δm − ϑ−1υm)],

ηm+1 = (ZTZ)−1ZT(y −Xβm+1), (3.7)

where QZ = In − Z(ZTZ)−1ZT. Since

AT(δm − ϑ−1υm) = (DT ⊗ Ip)(δ
m − ϑ−1υm) = vec((∆m − ϑ−1Υm)D),

where ∆m = {δmij , i < j}p×n(n−1)/2 and Υm = {υmij , i < j}p×n(n−1)/2, then we have

βm+1 = (XTQZX + ϑATA)−1[XTQZy + ϑvec((∆m − ϑ−1Υm)D)]. (3.8)
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In (3.4), after discarding the terms independent of δ, we need to minimize

ϑ

2
‖ζmij − δij‖2 + pγ(‖δij‖, λ) (3.9)

with respect to δij, where ζmij = βmi −βmj +ϑ−1υmij . This is a groupwise thresholding operator

corresponding to pγ.

For the L1 penalty, the solution is

δm+1
ij = S(ζmij , λ/ϑ), (3.10)

where S(z, t) = (1− t/‖z‖)+z is the groupwise soft thresholding operator. Here (x)+ = x if

x > 0 and = 0, otherwise.

For the MCP with γ > 1/ϑ, the solution is

δm+1
ij =

{
S(ζm

ij ,λ/ϑ)

1−1/(γϑ) if ‖ζmij‖ ≤ γλ,

ζij if ‖ζmij‖ > γλ.
(3.11)

For the SCAD penalty with γ > 1/ϑ+ 1, the solution is

δm+1
ij =


S(ζmij , λ/ϑ) if ‖ ζmij‖ ≤ λ+ λ/ϑ,
S(ζm

ij ,γλ/((γ−1)ϑ))
1−1/((γ−1)ϑ) if λ+ λ/ϑ < ‖ζmij‖ ≤ γλ,

ζmij if ‖ζmij‖ > γλ.

(3.12)

Finally, the update of υij is given in (3.5).

We summarize the above analysis in Algorithm 1.

Algorithm 1 ADMM for concave fusion

Require: Initialize δ0, υ0.

1: for m = 0, 1, 2, · · · do

2: Compute βm+1 using (3.8)

3: Compute ηm+1 (3.7)

4: Compute δm+1 (3.10), (3.11) or (3.12)

5: Compute υm+1 using (3.5)

6: if convergence criterion is met, then

7: Stop and denote the last iteration by (η̂(λ), β̂(λ)),

8: else

9: m = m+ 1.

10: end if

11: end for

Ensure: Output
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Remark 3.1 Our algorithm enables us to have δ̂ij = 0 for a sufficiently large λ. We put

observations i and j in the group with the same treatment effect if δ̂ij = 0. As a result,

we have K̂ estimated groups Ĝ1, . . . , ĜK̂. The estimated treatment effect for the kth group is

α̂k = |Ĝk|−1
∑

i∈Ĝk β̂i, where |Ĝk| is the cardinality of Ĝk.

Remark 3.2 In the algorithm, we require the invertibility of XTQZX + ϑATA. It can be

derived that ATA = nInp−(1n⊗Ip)(1n⊗Ip)
T. For any nonzero vector a = (aij, 1 ≤ i ≤ n, 1 ≤

j ≤ p)T ∈ Rnp, we have aT(ϑATA)a ≥ 0 and aT(XTQZX)a ≥ 0. Note that aT(ϑATA)a = 0

if and only if aij = aj for all i. When aij = aj for all i, we have aT(XTQZX)a > 0 given

that λmin(
∑n

i=1(x
T
i , z

T
i )T(xT

i , z
T
i )) > 0, which is a common assumption that the design matrix

needs to satisfy in linear regression. Therefore, XTQZX + ϑATA is invertible.

Remark 3.3 It is worth noting that the algorithm can be applied to find the estimate of

parameter in the model yi = xT
i βi + εi, i = 1, . . . , n by letting QZ = In.

Remark 3.4 We track the progress of the ADMM based on the primal residual rm+1 =

Aβm+1−δm+1. We stop the algorithm when rm+1 is close to zero such that ‖rm+1‖ < a for

some small value a.

3.2 Initial value and computation of the solution path

To start the ADMM algorithm described above, it is important to find a reasonable initial

value. For this purpose, we consider the ridge fusion criterion given by

LR(η,β) =
1

2
‖Zη + Xβ − y‖2 +

λ∗

2

∑
1≤i<j≤n

‖βi − βj‖2,

where λ∗ is the tuning parameter having a small value. We use λ∗ = 0.001 in our analysis.

Then LR(η,β) can be written as

LR(η,β) =
1

2
‖Zη + Xβ − y‖2 +

λ∗

2
‖Aβ‖2,

where A is defined in (3.6). The solutions are

βR(λ∗) = (βT
R,1(λ

∗), . . . ,βT
R,n(λ∗))T = (XTQZX + λ∗ATA)−1XTQZy,

ηR(λ∗) = (ZTZ)−1ZT(y −XβR(λ∗)),

where QZ is given in (3.8). Next, we assign the subjects to K∗ groups by ranking the

median values of βT
R,i(λ

∗). We let K∗ =
⌊
n1/2

⌋
to ensure that it is sufficiently large, where

bac denotes the largest integer no greater than a. We then find the initial estimates η0 and
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β0 from least squares regression with K∗ groups. Let the initial estimates δ0ij = β0
i −β0

j and

υ0 = 0.

To compute the solution path of η and β along the λ values, we use the warm start and

continuation strategy to update the solutions. Let [λmin, λmax] be the interval on which we

compute the solution path, where 0 ≤ λmin < λmax < ∞. Let λmin = λ0 < λ1 < · · · <
λK ≡ λmax be a grid of λ values in [λmin, λmax]. Compute (η̂(λ0), β̂(λ0)) using (η0,β0) as

the initial value. Then compute (η̂(λk), β̂(λk)) using (η̂(λk−1), β̂(λk−1)) as the initial value

for each k = 1, . . . , K.

Note that we start from the smallest λ value in computing the solution path. This is

different from the coordinate descent algorithms for computing the solution path in penalized

regression problems (Friedman et al., 2007), where the algorithms start at the λ value that

forces all the coefficients to zero.

3.3 Convergence of the algorithm

We next derive the convergence properties of the ADMM algorithm. We show that the

primal feasibility and dual feasibility are achieved by the algorithm.

Proposition 3.1 Let rm = Aβm−δm and sm+1 = ϑAT(δm+1 − δm) be the primal residual

and dual residual in the ADMM described above, respectively. It holds that limm→∞ ‖rm‖2 = 0

and limm→∞ ‖sm‖2 = 0 for the MCP and SCAD penalties.

Proposition 3.1 shows that the ADMM algorithm converges to an optimal point. This

optimal point may be a local minimum of the objective function when a concave penalty

function is applied.

4 Theoretical properties

In this section, we study the theoretical properties of the proposed estimator. Specifically,

we provide sufficient conditions under which there exists a local minimizer of the objective

function equal to the oracle least squares estimator with a priori knowledge of the true

groups with high probability. We also derive the lower bound of the minimum difference of

coefficients between subgroups in order to be able to estimate the subgroup-specific treatment

effects.

4.1 Notation and conditions

Let W̃= {wik} be an n × K matrix with wik = 1 for i ∈ Gk and wik = 0 otherwise. Let

W =W̃⊗Ip. Let MG = {β ∈ IRnp : βi = βj, for any i, j ∈ Gk, 1 ≤ k ≤ K}. For each
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β ∈MG, it can be written as β = Wα, where α = (αT
1 , . . . ,α

T
K)T and αk is a p× 1 vector

of the kth subgroup-specific parameter for k = 1, . . . , K. Simple calculation shows

WTW = diag(|G1| , . . . , |GK |)⊗Ip,

where |Gk| denotes the number of elements in Gk. Denote the minimum and maximum group

sizes by |Gmin|= min1≤k≤K |Gk| and |Gmax|= max1≤k≤K |Gk|, respectively. For any positive

numbers an and bn, let an � bn denote a−1n bn = o(1). For any vector ζ = (ζ1, . . . , ζs)
T ∈ Rs,

let ‖ζ‖∞ = max1≤l≤s |ζl| . For any symmetric matrix As×s, denote its L2 norm by ‖A‖ =

maxζ∈Rs,‖ζ‖=1 ‖Aζ‖, and let λmin(A) and λmax(A) be the smallest and largest eigenvalues of

A, respectively. For any matrix A = (Aij)
s,t
i=1,j=1, denote ‖A‖∞ = max1≤i≤s

∑t
j=1 |Aij|. Let

X̃ = XW and U = (Z,XW). Finally, denote the scaled penalty function by

ρ(t) = λ−1pγ(t, λ).

We make the following basic assumptions.

(C1) The function ργ(t) is a symmetric, non-decreasing and concave on [0,∞). It is constant

for t ≥ aλ for some constant a > 0, and ρ(0) = 0. In addition, ρ′(t) exists and is

continuous except for a finite number values of t and ρ′(0+) = 1.

(C2) The noise vector ε = (ε1, . . . , εn)T has sub-Gaussian tails such that P (|aTε| > ‖a‖x) ≤
2 exp(−c1x2) for any vector a ∈ IRn and x > 0, where 0 < c1 <∞.

(C3) Assume
∑n

i=1 z
2
il = n for 1 ≤ l ≤ q, and

∑n
i=1 x

2
ij1{i ∈ Gk } = |Gk| for 1 ≤ j ≤ p,

λmin(UTU) ≥ C1 |Gmin|, λmax(U
TU) ≤ C ′1n, supi ‖xi‖ ≤ C2

√
p and supi ‖zi‖ ≤ C3

√
q

for some constants 0 < C1 <∞, 0 < C ′1 <∞, 0 < C2 <∞ and 0 < C3 <∞.

Conditions (C1) and (C2) are common assumptions in penalized regression in high-

dimensional settings. The concave penalties such as MCP and SCAD satisfy (C1). In

the literature, it is commonly assumed that the smallest eigenvalue of the transpose of the

design matrix multiplied by the design matrix is bounded by C1n, which may not hold for

UTU. By some calculation and X̃ = XW, we have

X̃TX̃ = diag(
∑

i∈Gk
xix

T
i , k = 1, . . . , K).

By assuming that λmin(
∑

i∈Gk xix
T
i )≥c |Gk| for some constant 0 < c <∞, we have λmin(X̃TX̃ ≥

c |Gmin|. If ZTX̃ = 0 and λmin(ZTZ) ≥Cn, we have

λmin(UTU) = min{λmin(ZTZ),λmin(X̃TX̃)} ≥ min(c |Gmin| , Cn),

and |Gmin| ≤ n/K. Therefore, we let the smallest eigenvalue in Condition (C3) be bounded

below by C1 |Gmin|.
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4.2 Heterogeneous model

In this section, we study the theoretical properties of the proposed estimator under the

heterogeneous model in which there are at least two subgroups, that is, K ≥ 2. If the

underlying groups G1, . . . ,GK were known, the oracle estimator of (η,β) would be

(η̂or, β̂
or

) = argmin
η∈IRq

,β∈MG

1

2
‖y − Zη −Xβ‖2. (4.1)

Since β = W̃α, the oracle estimators for the common coefficient α and the coefficients η

are

(η̂or, α̂or) = argmin
η∈ IRq

,α∈ IRKp

1

2
‖y − Zη − X̃α‖2

= (UTU)−1UTy.

Let α0
k be the true common coefficient vector for group Gk, k = 1, . . . , K and α0 =

((α0
k)

T, k = 1, . . . , K)T. Of course, oracle estimators are not real estimators, they are theo-

retical constructions useful for stating the properties of the proposed estimators.

Theorem 4.1 Suppose

|Gmin| � (q +Kp)1/2n3/4.

Then under Conditions (C1)-(C3), we have with probability at least 1− 2(Kp+ q + 1)n−1,∥∥((η̂or − η0)T, (α̂or −α0)T)T
∥∥ ≤ φn, (4.2)

and ∥∥∥β̂or − β0
∥∥∥ ≤√|Gmax|φn, sup

i

∥∥∥β̂ori − β0
i

∥∥∥ ≤ φn,

where

φn = c
−1/2
1 C−11

√
q +Kp |Gmin|−1

√
n log n. (4.3)

Moreover, for any vector an ∈ IRq+Kp with ||an|| = 1, we have as n→∞,

σn(an)−1aT
n ((η̂or − η0)T, (α̂or −α0)T)T →D N(0, 1), (4.4)

where

σn(an) = σ
[
aT
n (UTU)−1an

]1/2
. (4.5)

Remark 4.1 Since |Gmin| ≤ n/K, by the condition |Gmin| � (q+Kp)1/2n3/4, then q, K and

p must satisfy K
√
q +Kp = o{(n)1/4}, and hence K = o(n1/6). Thus in this theorem, the

number of subgroups K is required to grow slower than n1/6.
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Remark 4.2 By letting |Gmin| = δn/K for some constant 0 < δ ≤ 1, the bound (4.2) is

φn = c
−1/2
1 C−11 δ−1K

√
q +Kp

√
log n/n. Moreover, if q, K and p are fixed quantities, then

φn = C∗
√

log n/n for some constant 0 < C∗ <∞.

Let

bn = min
i∈Gk,j∈Gk′ ,k 6=k′

‖β0
i − β0

j‖ = min
k 6=k′
‖α0

k −α0
k′‖

be the minimal difference of the common values between two groups.

Theorem 4.2 Suppose the conditions in Theorem 4.1 hold. If bn > aλ and λ� φn, for some

constant a > 0, where φn is given in (4.3), then there exists a local minimizer (η̂(λ), β̂(λ))

of the objective function Qn(η,β;λ) given in (2.3) satisfying

P
(

(η̂(λ), β̂(λ)) = (η̂or, β̂
or

)
)
→ 1.

Remark 4.3 Theorem 4.2 shows that the oracle estimator (η̂or, β̂
or

) is a local minimizer

of the objective function with a high probability, and thus the true groups can be recovered

with the estimated common value for group k given as α̂k(λ) = β̂
or

i for i ∈ Gk. This result

holds given that bn � φn. As discussed in Remark 4.2, when K, p and q are finite and

fixed numbers and |Gmin| = δn/K for some constant 0 < δ ≤ 1, bn � C∗
√

log n/n for some

constant 0 < C∗ <∞.

Let α̂(λ) = (α̂1(λ)T, . . . , α̂K(λ)T)T be the estimated treatment effects such that α̂k(λ) =

β̂i(λ) for i ∈ Gk, where k = 1, . . . , K, and β̂(λ) = {β̂i(λ)T, 1 ≤ i ≤ n}T is the local minimizer

given in Theorem 4.2. Based on the results in Theorems 4.1 and 4.2, we obtain the asymptotic

distribution of (η̂(λ)T, α̂(λ)T)T given in the following corollary.

Corollary 4.1 Under the conditions in Theorem 4.2, we have for any an ∈ IRq+Kp with

||an|| = 1, as n→∞,

σn(an)−1aT
n ((η̂(λ)− η0)T, (α̂(λ)−α0)T)T →D N(0, 1),

with σn(an) given in (4.5). As a result, we have for any vectors an1 ∈ IRq with ||an1|| = 1

and an2 ∈ IRKp ||an2|| = 1, as n→∞,

σ−1n1 (an1)a
T
n1(η̂(λ)− η0)→D N(0, 1) and σ−1n2 (an2)a

T
n2(α̂(λ)−α0)→D N(0, 1),

where

σn1(an1) = σ
[
aT
n1[Z

TZ− ZTX̃(X̃TX̃)−1X̃TZ]−1an1

]1/2
,

σn2(an2) = σ
[
aT
n2[X̃

TX̃− X̃TZ(ZTZ)−1ZTX̃]−1an2

]1/2
.
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Remark 4.4 The asymptotic distribution of the penalized estimators provides a theoretical

justification for further conducting statistical inference about heterogeneity. By the results

in Corollary 4.1, for given an1 ∈ IRq and an2 ∈ IRKp, 100(1 − α)% confidence intervals for

aT
n1η

0 and aT
n2α

0 are given by

aT
n1η̂(λ)± zα/2σ̂n1(an1) and aT

n2α̂(λ)± zα/2σ̂n2(an2),

respectively, where zα/2 is the (1− α/2)100 percentile of the standard normal, and σ̂n1(an1)

and σ̂n2(an2) are estimates of σn1(an1) and σn2(an2) with σ2 estimated by

σ̂2 = (n− q − K̂p)−1
∑n

i=1
(yi − zTi η̂ − xT

i β̂i)
2,

where K̂ is the estimated number of subgroups satisfying P (K̂ = K) → 1 from the oracle

property in Theorem 4.2.

4.3 Homogeneous model

When the true model is the homogeneous model given as yi = zTi η+xT
i α+ εi, i = 1, . . . , n,

we have β1 = · · · = βn = α and K = 1. The penalized estimator (η̂(λ), β̂(λ)) of (η,β),

where β = (βT
1 , . . . ,β

T
n )T, also has the oracle property given as follows. We define the oracle

estimator for (η,α) as

(η̂or, α̂or) = argmin
η∈ IRq

,α∈ IRp

1

2
‖y − Zη − xα‖2

= (U∗TU∗)−1U∗Ty.

where x =(x1, . . . ,xn)T and U∗ = (Z,x). Let β̂
or

= (β̂
orT

1 , . . . , β̂
orT

n )T, where β̂
or

i = α̂or for

all i. Let η0 and α0 be the true coefficient vectors. We introduce the following condition.

(C3∗) Assume
∑n

i=1 z
2
il = n for 1 ≤ l ≤ q, and

∑n
i=1 x

2
ij = n for 1 ≤ j ≤ p, λmin(U∗TU∗) ≥

C1n, λmax(U
∗TU∗) ≤ C ′1n, supi ‖xi‖ ≤ C2

√
p and supi ‖zi‖ ≤ C3

√
q for some constants

0 < C1 ≤ C ′1 <∞, 0 < C2 <∞ and 0 < C3 <∞.

Theorem 4.3 Suppose Conditions (C1∗), (C2) and (C3) hold. If p = o(n1/2) and q =

o(n1/2), the oracle esitmator has the property that with probability at least 1−2(p+q+1)n−1,∥∥((η̂or − η0)T, (α̂or −α0)T)T
∥∥ ≤ φn,

sup
i

∥∥∥β̂ori − β0
i

∥∥∥ ≤ φn, (4.6)

where

φn = c
−1/2
1 C−11

√
q + p

√
n−1 log n,
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in which c1 and C1 are given in Conditions (C2) and (C3∗), respectively, and for any vector

an ∈ IRq+p with ||an|| = 1, as n→∞,

σn(an)−1aT
n ((η̂or − η0)T, (α̂or −α0)T)T → N(0, 1), (4.7)

where

σn(an) = σ
[
aT
n (U∗TU∗)−1an

]1/2
.

Moreover, if λ� φn, then there exists a local minimizer (η̂(λ), β̂(λ)) of the objective function

Qn(η,β;λ) given in (2.3) satisfying

P
(

(η̂(λ), β̂(λ)) = (η̂or, β̂
or

)
)
→ 1. (4.8)

Remark 4.5 By Theorem 4.3, the local minimizer β̂i(λ) = α̂(λ) = α̂or for all i. Then, we

have for any vectors an1 ∈ IRq with ||an1|| = 1 and an2 ∈ IRp with ||an2|| = 1, as n→∞,

σ−1n1 (an1)a
T
n1(η̂(λ)− η0)→D N(0, 1) and σ−1n2 (an2)a

T
n2(α̂(λ)−α0)→D N(0, 1),

where

σn1(an1) = σ
[
aT
n1[Z

TZ− ZTx(xTx)−1xTZ]−1an1
]1/2

,

σn2(an2) = σ
[
aT
n2[x

Tx− xTZ(ZTZ)−1ZTx]−1an2
]1/2

.

5 Simulation studies

We use the modified Bayes Information Criterion (BIC) (Wang et al., 2007) for high-

dimensional data settings to select the tuning parameter by minimizing

BIC(λ) = log[
∑n

i=1
(yi − zTi η̂(λ)− xT

i β̂i(λ))2/n] + Cn
log n

n
(K̂(λ)p+ q), (5.1)

where Cn is a positive number which can depend on n. When Cn = 1, the modified BIC

reduces to the traditional BIC (Schwarz, 1978). Following Lee et al. (2014), we use Cn =

log(np+ q). We select λ by minimizing the modified BIC.

Example 1 (One treatment variable). We simulate data from the heterogeneous model

with one treatment variable:

yi = zTi η + xiβi + εi, i = 1, . . . , n, (5.2)

where zi = (zi1, zi2, . . . , zi5)
T with zi1 = 1 and (zi2, . . . , zi5)

T simulated from multivariate

normal with mean 0, variance 1 and an exchangeable correlation ρ = 0.3, xi is simulated

from standard normal, and the error terms εi are from independent N(0, 0.52). Let η =

15



(η1, . . . , η5)
T with ηk simulated from Uniform[1, 2] for k = 1, . . . , 5. We randomly assign the

treatment coefficients to two groups with equal probabilities, i.e., we let p(i ∈ G1) = p(i ∈
G2) = 1/2, so that βi = α1 for i ∈ G1 and βi = α2 for i ∈ G2, where α1 = 2 and α2 = −2.

We use different sample sizes by letting n = 100, 200. We fix ϑ = 1 and γ = 3. We compare

the performance of the estimators using the two concave penalties (MCP and SCAD) and

the LASSO penalty.

Table 1: The sample mean, median and standard deviation (s.d.) of K̂ and the percentage

(per) of K̂ equaling to the true number of subgroups by MCP and SCAD based on 100

replications with n = 100, 200 in Example 1.

n = 100 n = 200

mean median s.d. per mean median s.d. per

MCP 2.380 2.000 0.716 0.710 2.210 2.000 0.520 0.790

SCAD 2.340 2.000 0.708 0.710 2.210 2.000 0.541 0.800

We select the λ value by minimizing the modified BIC given in (5.1). Table 1 reports the

sample mean, median and standard deviation (s.d.) of the estimated number of groups K̂

and the percentage of K̂ equaling to the true number of subgroups by the MCP and SCAD

methods based on 100 simulation realizations with n = 100, 200. The median of K̂ is 2 which

is the true number of subgroups for all cases. As n increases, the mean gets closer to 2 and

the standard deviation becomes smaller. Moreover, the percentage of correctly selecting the

number of subgroups becomes larger as n increases.

Without considering the possible heterogeneity in treatment effects, the estimates from

ordinary least squares (OLS) can be misleading. To demonstrate this point, in Figure 2, we

plot the values of xiβi (black solid lines), xiβ̂i (red dashed lines) and xiβ̂
ols(blue dotted lines)

against values of xi by using the 79 replications which have two estimated groups by the

MCP method for n = 200, where βi are the true values, β̂i are the estimated values by MCP

and β̂ols is the estimated value from OLS. We observe that the fitted lines by the MCP are

close to the true lines. However, the fitted lines by the OLS center around the line y = 0,

which are far away from the true lines.

To further study the estimation accuracy and evaluate the asymptotic properties stated

in Section 4, Table 2 presents the sample mean, median and asymptotic standard deviation

(ASD) obtained according to Corollary 4.1 of the estimators α̂1 and α̂2 by the MCP and

SCAD methods and oracle estimators α̂or1 and α̂or2 based on 100 replications with n = 100

and 200. The medians of α̂1 and α̂2 are close to the true values 2 and -2 for all cases, and

the means are closer to the true values as n increases. Moreover, the asymptotic standard
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Figure 2: Plots of xiβi (black solid lines), xiβ̂i (red dashed lines) and xiβ̂
ols(blue dotted lines)

against values of xi, where βi are the true values, β̂i are the estimated values by MCP and

β̂ols is the estimated value from OLS in Example 1.
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Table 2: The sample mean, median and asymptotic standard deviation (ASD) of the es-

timators α̂1 and α̂2 by MCP and SCAD and oracle estimators α̂or1 and α̂or2 based on 100

replications with n = 100, 200 in Example 1.

n = 100 n = 200

mean median ASD mean median ASD

α̂1 MCP 1.884 1.928 0.077 1.907 1.963 0.055

SCAD 1.874 1.964 0.078 1.899 1.928 0.057

α̂or1 1.993 1.998 0.072 1.998 1.999 0.051

α̂2 MCP −1.783 −1.929 0.078 −1.823 −1.959 0.071

SCAD −1.770 −1.954 0.078 −1.778 −1.921 0.071

α̂or2 −1.993 −1.988 0.073 −2.001 −2.005 0.052
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deviations of the penalized estimates α̂1 and α̂2 are close to those of the oracle estimators

α̂or1 and α̂or2 . This supports the oracle property established in Theorem 4.2.

Figure 3: The boxplots of the MSEs of η̂ using MCP and SCAD, respectively, with n = 100

(white) and n = 200 (grey) in Example 1.
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Next, we calculate the mean squared error (MSE) of the estimates η̂ by using the formula

‖η̂ − η‖/√q. Figure 3 depicts the boxplots of the MSEs of η̂ by the MCP and SCAD,

respectively, at n = 100 (white) and n = 200 (grey). The MCP and SCAD result in similar

MSEs of η̂. The MSE values decrease as n increases for both MCP and SCAD.

Lastly, we consider inferences about treatment heterogeneity between groups based on

the asymptotic distribution of the resulting estimators established in Corollary 4.1. We

test the hypothesis H0 : α1 = α2, i.e., H0 : Lα = 0, where L =[1,−1]. According to the

asymptotic normality given in Corollary 4.1, we use the F-test statistic

F = (Lα̂(λ))T(σ̂2LΣ̂−1n LT)−1Lα̂(λ)/p

where

Σ̂n = (XŴ)TXŴ − ((XŴ)
T
Z)(ZTZ)−1(ZTXŴ),

and Ŵ is defined in the same way as W given in Section 4 by replacing the true groups with

the estimated groups, so that F asymptotically follows the F-distribution with degrees of

freedom (p, n− pK̂ − q− 1). The estimates α̂(λ) are obtained by the MCP and SCAD. The

sample mean and median of the p-values are less than 0.01 in all cases. Thus the existence

of treatment heterogeneity is further supported.
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Figure 4: Fusiongram for (β11, . . . , β1n), the first component in βi’s in Example 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2
MCP

λ

β 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

SCAD

λ

β 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
2

−
1

0
1

2

LASSO

λ

β 1

Example 2 (Multiple treatment variables). We simulated data from the heterogeneous

model with multiple treatment variables:

yi = zTi η + xT
i βi+εi, i = 1, . . . , n, (5.3)

where zi, εi and η are simulated in the same way as in Example 1. Let xi = (xi1, xi2, xi3)
T in

which xi1 is simulated from standard normal and (xi2, xi3)
T are from centered and standard-

ized binomial with probability 0.7 for one outcome. We randomly assign the responses to

two groups with equal probabilities, i.e., we let p(i ∈ G1) = p(i ∈ G2) = 1/2, so that βi = α1

for i ∈ G1 and βi = α2 for i ∈ G2, where α1 = (α11, α12, α13) and α2 = (α21, α22, α23). Let

α1j = α and α2j = −α for j = 1, 2, 3. We let α = 1, 2 for different signal-noise ratios. Let

n = 200.

Figure 4 displays the fusiongram for (β11, . . . , β1n), the elements of the first component

in βi’s for α = 2. We obtain similar patterns as those in Figure 1 for Example 1. Again, the

two concave penalties, MCP and SCAD, generate two subgroups for λ in a certain interval.

For the LASSO, the estimates merges to a single value quickly.

Table 3: The sample mean, median and standard deviation (s.d.) of K̂ and the percentage

(per) that K̂ equals to the true number of subgroups by MCP and SCAD based on 100

replications with α = 1, 2 in Example 2.

α = 1 α = 2

mean median s.d. per mean median s.d. per

MCP 2.700 3.000 0.717 0.440 2.180 2.000 0.411 0.830

SCAD 2.690 3.000 0.706 0.440 2.190 2.000 0.419 0.820

We next conduct the simulations by selecting λ via minimizing the modified BIC given
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in (5.1). Table 3 reports the mean, median and standard deviation (s.d.) of the estimated

number of groups K̂ and the percentage that K̂ equals to the true number of subgroups

by the MCP and SCAD methods based on 100 simulation realization. We observe that the

mean and median values of K̂ get closer to 2, which is the true number of subgroups, as

the α value becomes larger. Moreover, the percentage of correctly selecting the number of

subgroups increases as the α value becomes larger.

Lastly, we conduct inferences on heterogeneity of treatments between groups. We con-

duct the hypothesis testing H0 : α1j = α2j for j = 1, 2, 3, i.e., H0 : Lα = 0, where

L =[diag(1, 1, 1),03×3] − [03×3,diag(1, 1, 1)]. We use the F-test statistic as described in Ex-

ample 1. The estimates α̂(λ) are obtained by the MCP and SCAD methods. We obtain

that the sample mean and median of the p-values based on the 100 realizations are less than

0.01 for all cases. This further confirms the heterogeneous treatment effects by the inference

procedure.

Example 3 (No treatment heterogeneity). We generate data from a model with homo-

geneous treatment effects given by yi = zTi η + xiβ+εi, i = 1, . . . , n, where zi, xi, εi and

η are simulated in the same way as in Example 1. Set β = 2 and n = 200. We use our

proposed penalized estimation approach to fit the model assuming the possible existence of

treatment heterogeneity. The sample mean of the estimated number of groups K̂ is 1.49 and

1.48, respectively, for the MCP and SCAD methods, and the sample median is 1 for both

methods based on 100 replications.

Table 4: The empirical bias (Bias) for the estimates of β and η, and the average asymptotic

standard deviation (ASD) calculated according to Corrollary 4.1 and the empirical stan-

dard deviation (ESD) for the MCP and SCAD methods and oracle estimator (ORACLE) in

Example 3.

β η1 η2 η3 η4 η5

Bias −0.005 −0.002 0.007 0.003 0.002 0.001

MCP ASE 0.035 0.034 0.037 0.037 0.038 0.037

ESE 0.034 0.041 0.038 0.041 0.042 0.038

Bias −0.004 −0.001 0.007 0.003 0.002 0.001

SCAD ASE 0.035 0.034 0.037 0.037 0.037 0.037

ESE 0.034 0.040 0.037 0.041 0.042 0.038

Bias −0.004 −0.001 0.006 0.004 0.002 −0.001

ORACLE ASE 0.036 0.035 0.038 0.038 0.039 0.038

ESE 0.036 0.039 0.034 0.039 0.041 0.037
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To evaluate the asymptotic normality established in Corollary 4.1, Table 4 lists the

empirical bias (Bias) for the estimates of β and η, the average asymptotic standard deviation

(ASD) calculated according to Corollary 4.1, the empirical standard deviation (ESD) for the

MCP, SCAD as well as the oracle estimator (ORACLE). The bias, ASD and ESD for the

estimates of β by the MCP and SCAD are calculated based on the replications with the

estimated number of groups equal to one. For other cases, they are calculated based on the

100 replications. The biases are small relative to the standard errors. The ESD and ASD

are similar for both MCP and SCAD, and they are also close to the corresponding values

for the oracle estimator. These results indicate that the proposed method works well for the

homogeneous model.

6 Empirical example

We apply our method to the AIDS Clinical Trials Group Study 175 (ACTG175). ACTG175

was a randomized clinical trial to compare zidovudine with other three therapies including

zidovudine and didanosine, zidovudine and zalcitabine, and didanosine in adults infected

with the human immunodeficiency virus type I. We randomly select 300 patients from the

study to consist of our dataset. We use the log-transformed values of the CD4 counts

at 20±5 weeks as the responses yi (Tsiatis et al., 2007), and use binary variables for the

three therapies as the predictors xi = (xi1, xi2, xi3)
T. Moreover, we include 12 baseline

covariates in the model, which are age (years), weight (kg), Karnofsky score, CD4 counts at

baseline, CD8 counts at baseline, hemophilia (0 =no, 1 =yes), homosexual activity (0 =no,

1 =yes), history of intravenous drug use (0 =no, 1 =yes), race (0 =white, 1 =white), gender

(0 =female, 1 =male), antiretroviral history (0 =naive, 1 =experienced) and symptomatic

status (0 =asymptomatic, 1 =symptomatic).

To see possible heterogeneity in treatment effects, we first fit a linear regression model by

using yi as the response and the 12 baseline covariates as predictors and obtain the residuals,

so that the effects of the 12 baseline covariates are controlled. In Figure 5, it shows the kernel

density plot of the residuals for the patients treated with the therapy didanosine. We can

see that the distribution has multiple modes for these patients, which indicates possible

heterogeneous treatment effects.

Next, we use the data to fit the heterogeneous model yi = zTi η+xT
i βi+εi, i = 1, . . . , 300,

where zi = (1, zi2 . . . , zi13)
T with the first component for intercept and other components

being the 12 covariates described above. All of the predictors are centered and standardized

before applying the regularization methods. We then identify two heterogenous groups of

treatment effects by both MCP and SCAD methods. Figure 6 displays the fusiongram for

β1 = (β11, . . . , β1n), β2 = (β21, . . . , β2n), and β3 = (β31, . . . , β3n) by MCP. We obtain similar
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Figure 5: The kernel density plot of the residuals after controlling for the effects of the 12

baseline covariates for the patients treated with the therapy didanosine.

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

de
ns

ity

Figure 6: Fusiongram for β1 = (β11, . . . , β1n), β2 = (β21, . . . , β2n), and β3 = (β31, . . . , β3n).
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patterns by using SCAD. We see that the concave penalty generates two subgroups for λ in

a certain interval.

We further conduct statistical inference for testing equality of the coefficients for the two

identified groups by using the same method as described in Example 1 in Section 5, and

then obtain the p-values < 0.01 by the MCP and SCAD methods. Thus, the heterogeneity

of treatment effects is further confirmed by the inference procedure. Let α̂1 = (α̂11, α̂12, α̂13)

and α̂2 = (α̂21, α̂22, α̂23) be the estimated coefficients for xi in the two identified groups Ĝ1
and Ĝ2, respectively, so that β̂i = α̂1 for i ∈ Ĝ1 and β̂i = α̂2 for i ∈ Ĝ2.

In Table 5, we report the estimates (Est.), standard deviations (s.d.) and p-values (p-

value) of α1 and α2 by the MCP and SCAD methods, and those values of β = α1 by the

OLS method. We see that only the first treatment has statistically significant effect by the
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Table 5: The estimates (Est.), standard deviations (s.d.) and p-values (P-value) of α1 and

α2 by the MCP and SCAD methods, and those values of β = α1 by the OLS method.

α11 α12 α13 α21 α22 α23

MCP Est. 0.141 -0.011 -0.039 0.835 0.666 0.687

s.d. 0.055 0.055 0.055 0.394 0.268 0.251

p-value 0.010 0.841 0.478 0.034 0.013 0.006

SCAD Est. 0.142 -0.010 -0.037 0.805 0.614 0.636

s.d. 0.055 0.055 0.055 0.395 0.268 0.251

p-value 0.010 0.855 0.501 0.041 0.022 0.011

OLS Est. 0.212 0.035 0.036 — — —

s.d. 0.060 0.058 0.058 — — —

p-value < 0.001 0.550 0.532 — — —

OLS method. By the MCP and SCAD methods, the first treatment still has significant effect.

Moreover, the effects of the second and third treatments become significant for the second

group by the MCP and SCAD methods. In conclusion, we can see that the treatments have

heterogeneous effects on the two groups.

7 Discussion

The proposed heterogeneous model (2.2) looks similar to the linear mixed-effects model

for studying correlated data such as longitudinal/panel data and data with repeated mea-

surements. In the mixed-effects model, the βi’s are treated as random variables from a

distribution, so that likelihood-based methods can be derived with the main interest of esti-

mating the parameters {η, σ2}. In this paper, we aim to identify subgroups of treatment by

applying a penalty function to the L2 norms of the pairwise differences of βi’s. Our proposed

method provides an automatic approach to identifying the subgroups.

The method can be applied to a general class of regression problems by using the criterion

1

2

n∑
i=1

`(yi, z
T
i η + xTi βi) +

∑
1≤i<j≤n

p(‖βi − βj‖;λ),

where ` is a given loss function. For example, for generalized linear models such as logistic

regression, we take ` to be the negative log-likelihood function. For the Cox regression with

censored data, we take the empirical loss function to be the negative partial likelihood. For

these more complicated models, we can still use the basic idea of ADMM by approximating
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the loss function locally using a quadratic function. However, further work is needed to

study the theoretical properties.

In our theoretical results, we allow the number of the treatment variables and the con-

founding covariates, p and q, to diverge with the sample size n, but require them to be

smaller than n. For high-dimensional problems with p > n or q > n, a sparsity condition is

needed on the coefficient to ensure the identifiability of the model. Further studies are needed

to develop the computational algorithms and theoretical properties in the high-dimensional

setting.

Appendix

A.1 Proof of Proposition 3.1

In this section we show the results in Proposition 3.1. By the definition of δm+1, we have

L(ηm+1,βm+1, δm+1,υm)≤L(ηm+1,βm+1, δ,υm)

for any δ. Define

fm+1 = inf
Aβm+1−δ=0

{1

2

∥∥y − Zηm+1−Xβm+1
∥∥2 +

∑
i<j

pγ(|δij|, λ)}

= inf
Aβm+1−δ=0

L(ηm+1,βm+1, δ,υm).

Then

L(ηm+1,βm+1, δm+1,υm)≤fm+1.

Let t be an integer. Since υm+1 = υm + ϑ(Aβm+1−δm+1), then we have

υm+t−1 = υm + ϑ
∑t−1

i=1
(Aβm+i−δm+i),

and thus

L(ηm+t,βm+t, δm+t,υm+t−1)

=
1

2

∥∥y − Zηm+t−Xβm+t
∥∥2 + (υm+t−1)T(Aβm+t−δm+t)

+
ϑ

2
‖Aβm+t−δm+t‖2 +

∑
i<j

pγ(|δm+t
ij |, λ)

=
1

2

∥∥y − Zηm+t−Xβm+t
∥∥2 + (υm)T(Aβm+t−δm+t)

+ϑ
∑t−1

i=1
(Aβm+i−δm+i)T(Aβm+t−δm+t)

+
ϑ

2
‖Aβm+t−δm+t‖2 + pγ(|δm+t

ij |, λ)

≤ fm+t.
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Since the objective function L(η,β, δ,υ) is differentiable with respect to (η,β) and is convex

with respect to δ, by applying the results in Theorem 4.1 of (Tseng, 2001), the sequence

(ηm,βm, δm) has a limit point, denoted by (η∗,β∗,δ∗). Then we have

f ∗ = lim
m→∞

fm+1 = lim
m→∞

fm+t = inf
Aβ∗−δ=0

{1

2
‖y − Zη∗−Xβ∗‖2 +

∑
i<j

pγ(|δij|, λ)},

and for all t ≥ 0

lim
m→∞

L(µm+t,βm+t,ηm+t,υm+t−1)

=
1

2
‖y − Zη∗−Xβ∗‖2 +

∑
i<j

pγ(|δ∗ij|, λ) + lim
m→∞

(υm)T(Aβ∗−δ∗) + (t− 1

2
)ϑ‖Aβ∗−δ∗‖2

≤ f ∗.

Hence limm→∞ ‖rm‖2 = r∗=‖Aβ∗−δ∗‖2 = 0.

Since βm+1 minimizes L(ηm,β, δm,υm) by definition, we have that

L(ηm,β, δm,υm)/∂β = 0,

and moreover,

L(ηm,βm+1, δm,υm)/∂β

= XT(Zηm+Xβm+1−y) + ATυm + ϑAT(Aβm+1−δm)

= XT(Zηm+Xβm+1−y) + AT(υm + ϑ(Aβm+1−δm))

= XT(Zηm+Xβm+1−y) + AT(υm+1 − ϑ(Aβm+1−δm+1) + ϑ(Aβm+1−δm))

= XT(Zηm+Xβm+1−y) + ATυm+1 + ϑAT(δm+1 − δm).

Therefore,

sm+1 = ϑAT(δm+1 − δm) = −(XT(Zηm+Xβm+1−y) + ATυm+1).

Since ‖Aβ∗−δ∗‖2 = 0,

lim
m→∞

L(ηm,βm+1, δm,υm)/∂β

= lim
m→∞

XT(Zηm+Xβm+1−y) + ATυm+1

= XT(Zη∗ + Xβ∗ − y) + ATυ∗ = 0.

Therefore, limm→∞ sm+1 = 0.
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A.2 Proof of Theorem 4.1

In this section we show the results in Theorem 4.1. For every β ∈MG, it can be written as

β = Wα. Recall U = (Z,XW). We have(
η̂or

α̂or

)
= arg min

η∈Rq ,α∈RKp

1

2
‖y − Zη −Xβ‖ = arg min

η∈Rq ,α∈RKp

1

2
‖y − Zη −XWα‖2.

Thus (
η̂or

α̂or

)
= [(Z,XW)T(Z,XW)]−1(Z,XW)Ty = (UTU)−1UTy.

Then (
η̂or − η0

α̂or −α0

)
= (UTU)−1UTε.

Hence ∥∥∥∥∥
(
η̂or − η0

α̂or −α0

)∥∥∥∥∥ ≤ ∥∥[(UTU)−1
∥∥∥∥UTε

∥∥ . (A.1)

By Condition (C1), we have ∥∥[(UTU)−1
∥∥ ≤ C−11 |Gmin|−1 . (A.2)

Moreover

P (
∥∥UTε

∥∥
∞ > C

√
n log n) ≤ P (

∥∥ZTε
∥∥
∞ > C

√
n log n) + P (

∥∥∥(XW)Tε
∥∥∥
∞
> C

√
n log n),

for some constant 0 < C <∞. Since XW =
[
xT
i 1{i ∈ Gk}

]n,K
i=1,k=1

, we have∥∥∥(XW)Tε
∥∥∥
∞

= sup
j,k
|
∑n

i=1
xijεi1{i ∈ Gk}|

and by union bound, Condition (C1) that
∑n

i=1 x
2
ij1{i ∈ Gk } = |Gk| and Condition (C3),

P
(∥∥∥(XW)Tε

∥∥∥
∞
> C

√
n log n

)
≤

∑p,K

j=1,k=1
P
(
|
∑n

i=1
xijεi1{i ∈ Gk}| > C

√
n log n

)
≤

∑p,K

j=1,k=1
P
(
|
∑n

i=1
xijεi1{i ∈ Gk}| >

√
|Gk|C

√
log n

)
≤ 2Kp exp(−c1C2 log n) = 2Kpn−c1C

2

.

By union bound, Condition (C1) that ‖Zk‖ =
√
n, where Zk is the kth column of Z, and

Condition (C3),

P
(∥∥ZTε

∥∥
∞ > C

√
n log n

)
≤

∑q

k=1
P
(
|ZT

k ε| >
√
nC
√

log n
)

≤ 2q exp(−c1C2 log n) = 2qn−c1C
2

.
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It follows that

P (
∥∥UTε

∥∥
∞ > C

√
n log n) ≤ 2(Kp+ q)n−c1C

2

.

Since
∥∥UTε

∥∥ ≤ √q +Kp
∥∥UTε

∥∥
∞, then

P (
∥∥UTε

∥∥ > C
√
q +Kp

√
n log n) ≤ 2(Kp+ q)n−c1C

2

. (A.3)

Therefore, by (A.1), (A.2) and (A.3), we have with probability at least 1− 2(Kp+ q)n−c1C
2
,∥∥∥∥∥

(
η̂or − η0

α̂or −α0

)∥∥∥∥∥ ≤ CC−11

√
q +Kp |Gmin|−1

√
n log n.

The result (4.2) in Theorem 4.1 is proved by letting C = c
−1/2
1 . Moreover,∥∥∥β̂or − β0

∥∥∥2 =
∑K

k=1

∑
i∈Gk

∥∥α̂ork −α0
k

∥∥2 ≤ |Gmax|
∑K

k=1

∥∥α̂ork −α0
k

∥∥2
= |Gmax|

∥∥α̂or −α0
∥∥2 ≤ |Gmax|φ2

n,

and

sup
i

∥∥∥β̂ori − β0
i

∥∥∥ = sup
k

∥∥α̂ork −α0
k

∥∥ ≤ ‖α̂or −α0‖ ≤ φn.

Let U = (U1, . . . ,Un)T, and Ξn = UTU. Then

aT
n ((η̂or − η0)T, (α̂or −α0)T)T =

∑n

i=1
aT
nΞ−1n Uiεi.

Hence

E{aT
n ((η̂or − η0)T, (α̂or −α0)T)T} = 0,

and for any vector an ∈ IRq+Kp with ||an|| = 1, by Condition (C3), we have

var{aT
n ((η̂or − η0)T, (α̂or −α0)T)T}

= σ2
n(an) = σ2

[
aT
n (UTU)−1an

]
≥ σ2(C ′1)

−1n−1. (A.4)

Moreover, for any ε > 0,∑n

i=1
E[(aT

nΞ−1n Uiεi)
2 · 1{|aT

nΞ−1
n Uiεi|>εσn(an)}]

≤
∑n

i=1
{E(aT

nΞ−1n Uiεi)
4}1/2[P{|aT

nΞ−1n Uiεi| > εσn(an)}]1/2.

Since E(ε4i ) ≤ c for some constant c ∈ (0,∞) by Condition (C2), then

{E(aT
nΞ−1n Uiεi)

4}1/2 ≤ ||aT
nΞ−1n ||2||Ui||2{E(ε4i )}1/2

≤ c′||Ξ−1n ||2(q +Kp) ≤ c′C−21 |Gmin|−2 (q +Kp)
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for some constant c′ ∈ (0,∞), where the last inequality follows from Condition (C3). Simi-

larly, E(aT
nΞ−1n Uiεi)

2 ≤ c′′C−11 |Gmin|−2 (q +Kp) for some constant c′′ ∈ (0,∞). Thus,

P
{
|aT
nΞ−1n Uiεi| > εσn(an)

}
≤ E(aT

nΞ−1n Uiεi)
2/{ε2σ2

n(an)}
≤ c′′C−11 C ′1σ

−2ε−2 |Gmin|−2 (q +Kp)n.

Therefore, by the above results, we have

σ−2n (an)
∑n

i=1
E[(aT

nΞ−1n Uiεi)
2 · 1{|aT

nΞ−1
n Uiεi|>εσn(an)}]

≤ σ−2(C ′1)n
2c′C−21 |Gmin|−2 (q +Kp)c′′C−11 C ′1σ

−2ε−2 |Gmin|−2 (q +Kp)n

= O{n3 |Gmin|−4 (q +Kp)2} = o(1).

The last equality follows from the assumption that |Gmin| � (q + Kp)1/2n3/4. Then, the

result (4.4) follows from Lindeberg–Feller Central Limit Theorem.

A.3 Proof of Theorem 4.2

In this section we show the results in Theorem 4.2. Define

Ln(η,β) =
1

2
‖y − Zη −Xβ‖2, Pn(β) = λ

∑
i<j

ρ(‖βi − βj‖),

LGn(η,α) =
1

2
‖y − Zη −XWα‖2, P Gn (α) = λ

∑
k<k′

|Gk‖Gk′ |ρ(‖αk −αk′‖),

and let

Qn(η,β) = Ln(η,β) + Pn(β), QGn(η,α) = LGn(η,α) + P Gn (α).

Let T : MG → RKp be the mapping that T (β) is the Kp × 1 vector consisting of K

vectors with dimension p and its kth vector component equals to the common value of βi for

i ∈ Gk. Let T ∗ : Rnp → RKp be the mapping that T ∗(β) = {|Gk|−1
∑

i∈Gk β
T
i , k = 1, . . . , K}T.

Clearly, when β ∈MG, T (β) =T ∗(β).

By calculation, for every β ∈MG, we have Pn(β) = P Gn (T (β)) and for every α ∈ RK , we

have Pn(T−1(α)) = P Gn (α). Hence

Qn(η,β) = QGn(η,T (β)), QGn(η,α) = Qn(η,T−1(α)). (A.5)

Consider the neighborhood of (η0,β0):

Θ= {η ∈Rq,β∈RKp:
∥∥η − η0

∥∥ ≤ φn, sup
i

∥∥βi − β0
i

∥∥ ≤ φn}.
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By Theorem 4.1, there exists an event E1 in which∥∥η̂or − η0
∥∥ ≤ φn, sup

i

∥∥∥β̂ori − β0
i

∥∥∥ ≤ φn

and P (EC
1 ) ≤ 2(q + Kp)n−1. Hence (η̂or, β̂

or
) ∈ Θ in E1. For any β ∈Rnp, let β∗ =

T−1(T ∗(β)). We show that (η̂or, β̂
or

) is a strictly local minimizer of the objective function

(2.3) with probability approaching 1 through the following two steps.

(i). In the event E1, Qn(η,β∗) > Qn(η̂or,β̂
or

) for any (ηT,βT)T ∈ Θ and ((η)T, (β∗)T)T 6=
((η̂or)T, (β̂

or
)T)T.

(ii). There is an event E2 such that P (EC
2 ) ≤ 2n−1. In E1 ∩E2, there is a neighborhood

of ((η̂or)T, (β̂
or

)T)T, denoted by Θn such that Qn(η,β) ≥ Qn(η,β∗) for any ((η)T, (β∗)T)T ∈
Θn ∩Θ for sufficiently large n.

Therefore, by the results in (i) and (ii), we haveQn(η,β) > Qn(η̂or,β̂
or

) for any (ηT,βT)T ∈
Θn∩Θ and ((η)T, (β)T)T 6= ((η̂or)T, (β̂

or
)T)T in E1∩E2, so that ((η̂or)T, (β̂

or
)T)T is a strict

local minimizer ofQn(η,β) (2.3) over the event E1∩E2 with P (E1∩E2) ≥ 1−2(q+Kp+1)n−1

for sufficiently large n.

In the following we prove the result in (i). We first show P Gn (T ∗(β)) = Cn for any β ∈Θ,

where Cn is a constant which does not depend on β. Let T ∗(β) = α = (αT
1 , . . . ,α

T
K)T. It

suffices to show that ‖αk−αk′‖ > aλ for all k and k′. Then by Condition (C2), ρ(‖αk−αk′‖)
is a constant, and as a result P Gn (T ∗(β)) is a constant. Since

‖αk −αk′‖ ≥ ‖α0
k −α0

k′‖ − 2 sup
k
‖αk −α0

k ‖,

and

sup
k
‖αk −α0

k ‖2 = sup
k

∥∥∥|Gk|−1∑
i∈Gk

βi −α0
k

∥∥∥2 = sup
k

∥∥∥|Gk|−1∑
i∈Gk

(βi − β0
i )
∥∥∥2

= sup
k
|Gk|−2

∥∥∥∑
i∈Gk

(βi − β0
i )
∥∥∥2 ≤ sup

k
|Gk|−1

∑
i∈Gk

∥∥(βi − β0
i )
∥∥2

≤ sup
i

∥∥βi − β0
i

∥∥2 ≤ φ2
n, (A.6)

then for all k and k′

‖αk −αk′‖ ≥ ‖α0
k −α0

k′‖ − 2 sup
k
‖αk −α0

k ‖ ≥ bn − 2φn > aλ.

where the last inequality follows from the assumption that bn > aλ � φn. Therefore, we

have P Gn (T ∗(β)) = Cn, and hence QGn(η,T ∗(β)) = LGn(η,T ∗(β)) + Cn for all (ηT,βT)T ∈ Θ.

Since ((η̂or)T, (α̂or)T)T is the unique global minimizer of LGn(η,α), then LGn(η,T ∗(β)) >

LGn(η̂or,α̂or) for all (ηT, (T ∗(β))T)T 6= ((η̂or)T, (α̂or)T)T and henceQGn(η,T ∗(β)) > QGn(η̂or,α̂or)

for all T ∗(β) 6=α̂or. By (A.5), we have QGn(η̂or, α̂or) = Qn(η̂or,β̂
or

) and QGn(η,T ∗(β)) =
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Qn(η, T−1(T ∗(β))) = Qn(η, β∗). Therefore, Qn(η, β∗) > Qn(η̂or,β̂
or

) for all β∗ 6=β̂
or

, and

the result in (i) is proved.

Next we prove the result in (ii). For a posive sequence tn, let Θn = {βi: supi ‖βi−β̂
or

i ‖ ≤
tn}. For (ηT,βT)T ∈ Θn ∩Θ, by Taylor’s expansion, we have

Qn(η,β)−Qn(η,β∗) = Γ1 + Γ2,

where

Γ1 = −(y − Zη −Xβm)TX(β − β∗)

Γ2 =
n∑
i=1

∂Pn(βm)

∂βT
i

(βi − β∗i ).

and βm = αβ + (1− α)β∗ for some constant α ∈ (0, 1). Moreover,

Γ2 = λ
∑

{j>i}
ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T(βi − β∗i )

+λ
∑

{j<i}
ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T(βi − β∗i )

= λ
∑

{j>i}
ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T(βi − β∗i )

+λ
∑

{i<j}
ρ′(‖βmj − βmi ‖)‖βmj − βmi ‖−1(βmj − βmi )T(βj − β∗j)

= λ
∑

{j>i}
ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T{(βi − β∗i )− (βj − β∗j)}.(A.7)

When i, j ∈ Gk, β∗i = β∗j , and βmi − βmj = α(βi − βj). Thus,

Γ2 = λ
K∑
k=1

∑
{i,j∈Gk,i<j}

ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T(βi − βj)

+λ
∑
k<k′

∑
{i∈Gk,j′∈Gk′}

ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T{(βi − β∗i )− (βj − β∗j)}.

Moreover,

sup
i
‖β∗i−β0

i ‖2 = sup
k
‖αk −α0

k ‖2 ≤ φ2
n, (A.8)

where the last inequality follows from (A.6). Since βmi is between βi and β∗i ,

sup
i
‖βmi −β0

i ‖ ≤ α sup
i
‖βi−β0

i ‖+ (1− α) sup
i
‖β∗i−β0

i ‖ ≤ αφn + (1− α)φn = φn. (A.9)

Hence for k 6= k′, i ∈ Gk, j′ ∈ Gk′ ,

‖βmi − βmj ‖ ≥ min
i∈Gk,j′∈Gk′

‖β0
i − β0

j‖ − 2 max
i
‖βmi − β0

i ‖ ≥ bn − 2φn > aλ,
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and thus ρ′(‖βmi − βmj ‖) = 0. Therefore,

Γ2 = λ
K∑
k=1

∑
{i,j∈Gk,i<j}

ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T(βi − βj)

= λ

K∑
k=1

∑
{i,j∈Gk,i<j}

ρ′(‖βmi − βmj ‖)‖βi − βj‖,

where the last step follows from βmi −βmj = α(βi−βj). Furthermore, by the same reasoning

as (A.6), we have

sup
i
‖β∗i−β̂

or

i ‖ = sup
k
‖αk−α̂ork ‖2 ≤ sup

i
‖β−β̂

or

i ‖.

Then

sup
i
‖βmi − βmj ‖ ≤ 2 sup

i
‖βmi − β∗i ‖ ≤ 2 sup

i
‖βi − β∗i ‖

≤ 2(sup
i
‖βi − β̂

or

i ‖+ sup
i
‖β∗i − β̂

or

i ‖) ≤ 4 sup
i
‖βi − β̂

or

i ‖ ≤ 4tn.

Hence ρ′(‖βmi − βmj ‖) ≥ ρ′(4tn) by concavity of ρ(·). As a result,

Γ2 ≥
∑K

k=1

∑
{i,j∈Gk,i<j}

λρ′(4tn)‖βi − βj‖. (A.10)

Let

Q = (QT
1 , . . . ,Q

T
n )T = [(y − Zη −Xβm)TX]T.

Then

Γ1 = −QT(β − β∗) = −
∑K

k=1

∑
{i,j∈Gk}

QT
i (βi − βj)
|Gk|

= −
∑K

k=1

∑
{i,j∈Gk}

QT
i (βi − βj)

2|Gk|
−
∑K

k=1

∑
{i,j∈Gk}

QT
i (βi − βj)

2|Gk|

= −
∑K

k=1

∑
{i,j∈Gk}

(Qj −Qi)
T(βj − βi)

2|Gk|

= −
∑K

k=1

∑
{i,j∈Gk,i<j}

(Qj −Qi)
T(βj − βi)
|Gk|

. (A.11)

Moreover,

Qi = (yi − zTi η − xT
i β

m
i )xi = (εi + zT

i (η0 − η) + xT
i (β0

i − βmi ))xi,

and then

sup
i
‖Qi‖ ≤ sup

i

{
‖xi‖(‖ε‖∞ + ‖zi‖‖η0 − η‖+‖xi‖‖β0

i − βmi ‖)
}
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By Condition (C1) that supi ‖xi‖ ≤ C2
√
p and supi ‖zi‖ ≤ C3

√
q, (A.9) that supi ‖β0

i −
βmi ‖ ≤ φn and ‖η0 − η‖ ≤ φn, we have

sup
i
‖Qi‖ ≤ C2

√
p(‖ε‖∞ + C3

√
qφn + C2

√
pφn).

By Condition (C3)

P (‖ε‖∞ >

√
2c−11

√
log n) ≤

∑n

i=1
P (|εi| >

√
2c−11

√
log n) ≤ 2n−1.

Thus there is an event E2 such that P (EC
2 ) ≤ 2n−1, and over the event E2,

sup
i
‖Qi‖ ≤ C2

√
p(

√
2c−11

√
log n+ C3

√
qφn + C2

√
pφn).

Then

|
(Qj −Qi)

T(βj − βi)
|Gk|

|

≤ |Gmin|−1‖Qj −Qi‖‖βi − βj‖ ≤ |Gmin|−12 sup
i
‖Qi‖‖βi − βj‖

≤ 2C2|Gmin|−1
√
p(

√
2c−11

√
log n+ C3

√
qφn + C2

√
pφn)‖βi − βj‖. (A.12)

Therefore, by (A.10), (A.11) and (A.12), we have

Qn(η,β)−Qn(η,β∗)

≥
K∑
k=1

∑
{i,j∈Gk,i<j}

{λρ′(4tn)− 2C2|Gmin|−1
√
p(

√
2c−11

√
log n+ C3

√
qφn + C2

√
pφn)}‖βi − βj‖.

Let tn = o(1), then ρ′(4tn) → 1. Since λ � φn, p = o(n), and |Gmin|−1p = o(1), then

λ � |Gmin|−1
√
p
√

log n, λ � |Gmin|−1
√
pq and λ � |Gmin|−1pφn. Therefore, Qn(η,β) −

Qn(η,β∗) ≥ 0 for sufficiently large n, so that the result in (ii) is proved.

A.4 Proof of Theorem 4.3

In this section we show the results in Theorem 4.3. The proofs of (4.6) and (4.7) follow the

same arguments as the proof of Theorem 4.1 by letting X̃ = x and |Gmin| = n, and thus

they are omitted. Next, we will show (4.8). It follows similar procedures as the proof of

Theorem 4.2 with the details given below. Define M = {β ∈ IRnp : β1 = · · · = βn}. For

each β ∈ M, we have βi = α for all i. Let T : M → Rp be the mapping that T (β) is

the p × 1 vector equal to the common vector α. Let T ∗ : Rnp → Rp be the mapping that

T ∗(β) = {n−1
∑n

i=1 βi. Clearly, when β ∈M, T (β) =T ∗(β). Consider the neighborhood of

(η0,β0):

Θ= {η∈Rq,β∈Rp:
∥∥η − η0

∥∥ ≤ φn, sup
i

∥∥βi − β0
i

∥∥ ≤ φn},
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where φn = c
−1/2
1 C−11

√
q + p

√
n−1 log n. By the result in (4.6), there exists an event E1 such

that on the event E1, ∥∥η̂or − η0
∥∥ ≤ φn, sup

i

∥∥∥β̂ori − β0
i

∥∥∥ ≤ φn,

and P (EC
1 ) ≤ 2(q + p)n−1. Hence (η̂or, β̂

or
) ∈ Θ on the event E1. For any β∈Rnp, let

β∗ = T−1(T ∗(β)). We show that (η̂or, β̂
or

) is a strictly local minimizer of the objective

function (2.3) with probability approaching 1 through the following two steps.

(i). On the event E1, Qn(η,β∗) > Qn(η̂or,β̂
or

) for any (ηT,βT)T ∈ Θ and ((η)T, (β∗)T)T 6=
((η̂or)T, (β̂

or
)T)T.

(ii). There is an event E2 such that P (EC
2 ) ≤ 2n−1. On E1∩E2, there is a neighborhood

of ((η̂or)T, (β̂
or

)T)T, denoted by Θn such that Qn(η,β) ≥ Qn(η,β∗) for any ((η)T, (β∗)T)T ∈
Θn ∩Θ for sufficiently large n.

Therefore, by the results in (i) and (ii), we haveQn(η,β) > Qn(η̂or,β̂
or

) for any (ηT,βT)T ∈
Θn∩Θ and ((η)T, (β)T)T 6= ((η̂or)T, (β̂

or
)T)T in E1∩E2, so that ((η̂or)T, (β̂

or
)T)T is a strict

local minimizer of Qn(η,β) (2.3) on the event E1∩E2 with P (E1∩E2) ≥ 1−2(q+p+1)n−1

for sufficiently large n.

By the definition of ((η̂or)T, (β̂
or

)T)T, we have 1
2
‖y−Zη−Xβ∗‖2 > 1

2
‖y−Zη̂or−Xβ̂

or
‖2

for any ((η)T, (β)T)T ∈ Θ and ((η)T, (β∗)T)T 6= ((η̂or)T, (β̂
or

)T)T. Moreover, since pγ(‖β̂
or

i −
β̂
or

j ‖, λ) = pγ(‖β∗i − β∗j‖, λ) = 0 for 1 ≤ i, j ≤ n, we have Qn(η,β∗) = 1
2
‖y − Zη −Xβ∗‖2

and Qn(η̂or,β̂
or

) = 1
2
‖y − Zη̂or −Xβ̂

or
‖2. Therefore, Qn(η,β∗) > Qn(η̂or,β̂

or
).

Next we prove the result in (ii). For a positive sequence tn, let Θn = {βi: supi ‖βi−β̂
or

i ‖ ≤
tn}. For (ηT,βT)T ∈ Θn ∩Θ, by Taylor’s expansion, we have

Qn(η,β)−Qn(η,β∗) = Γ1 + Γ2,

where

Γ1 = −(y − Zη −Xβm)TX(β − β∗)

Γ2 =
n∑
i=1

∂Pn(βm)

∂βT
i

(βi − β∗i ).

Pn(β) = λ
∑

i<j ρ(‖βi − βj‖), and βm = aβ + (1 − a)β∗ for some constant a ∈ (0, 1).

Moreover, by (A.7),

Γ2 = λ
∑

{j>i}
ρ′(‖βmi − βmj ‖)‖βmi − βmj ‖−1(βmi − βmj )T{(βi − β∗i )− (βj − β∗j)}

= λ
∑

{j>i}
ρ′(‖βmi − βmj ‖)‖βi − βj‖,

where the second equality holds due to the fact that β∗i = β∗j and βmi − βmj = a(βi − βj).
Let T ∗(β) = α. Then, following the same argument as (A.8), we have

sup
i
‖β∗i−β0

i ‖2 = ‖α−α0‖2 ≤ sup
i
‖βi−β0

i ‖2.
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Then

sup
i
‖βmi − βmj ‖ ≤ 2 sup

i
‖βmi − β∗i ‖ ≤ 2 sup

i
‖βi − β∗i ‖

≤ 2(sup
i
‖βi − β̂

or

i ‖+ sup
i
‖β∗i − β̂

or

i ‖) ≤ 4 sup
i
‖βi − β̂

or

i ‖ ≤ 4tn.

Hence ρ′(‖βmi − βmj ‖) ≥ ρ′(4tn) by concavity of ρ(·). As a result,

Γ2 ≥
∑

{i<j}
λρ′(4tn)‖βi − βj‖. (A.13)

Let

Q = (QT
1 , . . . ,Q

T
n )T = [(y − Zη −Xβm)TX]T.

By the same reasoning as the proof for (A.11), we have

Γ1 = −QT(β − β∗) = −n−1
∑

{i<j}
(Qj −Qi)

T(βj − βi). (A.14)

By the same argument as the proof for (A.12), we have that there is an event E2 such that

P (EC
2 ) ≤ 2n−1, and on the event E2,

n−1|(Qj −Qi)
T(βj − βi)|

≤ 2C2n
−1√p(

√
2c−11

√
log n+ C3

√
qφn + C2

√
pφn)‖βi − βj‖. (A.15)

Therefore, by (A.13), (A.14) and (A.15), we have

Qn(η,β)−Qn(η,β∗)

≥
∑

{i<j}
{λρ′(4tn)− 2C2n

−1√p(
√

2c−11

√
log n+ C3

√
qφn + C2

√
pφn)}‖βi − βj‖.

Let tn = o(1), then ρ′(4tn) → 1. Since λ � φn, p = o(n), and n−1p = o(1), then λ �
n−1
√
p
√

log n, λ � n−1
√
pq and λ � n−1pφn. Therefore, Qn(η,β) − Qn(η,β∗) ≥ 0 for

sufficiently large n, so that the result in (ii) is proved.
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