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Summary: We propose a semi-penalized inference approach with direct false discovery rate control for variable

selection and confidence interval construction in high-dimensional linear regression. With this approach, we first

calculate semi-penalized estimators of the regression coefficients, which are shown to be asymptotically normal under

a sparsity condition and other appropriate conditions. We then carry out selection by controlling the false discovery

rate based on the distributions of these estimators. The approach provides an explicit assessment of the selection

error and naturally leads to confidence intervals for the selected coefficients with a proper confidence statement. We

conduct simulation studies to evaluate its finite sample performance and illustrate its application on a breast cancer

gene expression data set. Our simulation studies and data example demonstrate that SPIDR is a useful method for

high-dimensional statistical inference in practice.
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1. Introduction

Consider the linear regression model

y =

p∑
j=1

xjβj + ε, (1)

where y = (y1, . . . , yn)′ is a vector of response variables, xj = (x1j, . . . , xnj)
′ is the jth vector

of predictors, βj is the jth regression coefficient and ε = (ε1, . . . , εn)′ is a vector of error terms.

Here p is the number of predictors and n is the sample size. Let S = {j : |βj| > 0, 1 6 j 6 p}

be the support of β. We are interested in the high-dimensional case where p � n and the

model is sparse in the sense that the cardinality of S is small relative to n. We propose a

approach that formulates variable selection as a statistical inference problem based on semi-

penalized inference with direct false discovery rate control. For brevity, we call the proposed

method SPIDR.

There is now a substantial body of literature on penalized methods for variable selection.

Several important penalty functions have been introduced. Examples include the least ab-

solute shrinkage and selection operator (Lasso) or the `1 penalty (Tibshirani, 1996), the

smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2000), and the minimum

concave penalty (MCP) (Zhang, 2010). A common feature of these penalties is that they are

capable of producing exact zero solutions, which automatically leads to variable selection.

But they do not provide an error assessment of the selection results.

A different front in the area of high-dimensional statistics concerns the problem of large

scale hypothesis testing. Since Benjamini and Hochberg (1995) introduced false discovery

rate (FDR) for error assessment in multiple comparisons, it has become a widely used error

measure in scientific investigations involving a large number of hypotheses, such as genomic

studies with data from array-based technology (Storey and Tibshirani, 2003). Meinshausen

and Bühlmann (2010) introduced stability selection that uses resampling to evaluate the

probability of each variable being selected. It provided an upper bound for the expected
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number of falsely selected variables under an exchangeability condition on the predictors.

Meinshausen, Meier and Bühlmann (2009) used sample splitting to obtain the p-values for

the regression coefficients. However, these works are based on fully penalized estimators, but

did not consider estimators with approximately normal distributions or directly calculate an

error assessment of the selection results.

In this paper, we first propose a semi-penalized approach for estimating the regression

coefficients. With this approach, we estimate the coefficients one at a time, and when we

are estimating a given coefficient, we do not put penalty on it, but only penalize the other

coefficients. The penalty is used to deal with the high dimensionality of the model, but not

for variable selection. We formulate the problem of variable selection in the framework of

large scale hypothesis testing based on semi-penalized estimators. This enables us to utilize

the methods for multiple comparisons to assess the selection error. There are two aspects

of SPIDR that are different from the existing penalized methods. First, SPIDR uses semi-

penalized approach for estimating the regression coefficients. Second, the selection is done by

controlling FDR calculated based on the distributions of the semi-penalized estimators. To

study the theoretical properties of the SPIDR estimator, we introduce the concept of an ideal

estimator, which is the estimator of a given coefficient (whether it is nonzero or zero) under

the assumption that the support of the other coefficients is known. We use it as the gold

standard in our theoretical analysis and show that the SPIDR estimator is ideal with high

probability under a sparsity and other appropriate conditions. This implies that the SPIDR

estimator is asymptotically normal. We also consider the factors that affect SPIDR selection,

including the signal strength and the residual pairwise correlations among predictors.

Below, we first describe the SPIDR estimator. We then use a threshold rule for variable

selection based on the SPIDR z-statistics and apply the approach for direct FDR control

(Storey, 2002) to determine the selection rule. The details are given in Section 2, where we
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also point out that SPIDR naturally leads to confidence intervals for the selected coefficients

with a proper confidence statement. In Section 3 we show that the SPIDR estimator equals

an ideal estimator with high probability. We also discuss the grouping effect of SPIDR and

consider factors contributing to it. In Section 4 we conduct simulation studies to evaluate the

finite sample performance of SPIDR and demonstrate its application on a breast cancer gene

expression data set. Section 5 includes some concluding remarks. Proofs of the theoretical

results are given in the Appendix.

2. Method

2.1 Semi-penalized estimation

Let β−j = (βk, k 6= j, 1 6 k 6 p)′ be the vector of regression coefficients excluding βj, and let

X−j = (xk, k 6= j, 1 6 k 6 p) be the design matrix excluding xj. Consider the semi-penalized

criteria

Lj(β;λ) =
1

2n
‖y − xjβj −X−jβ−j‖2 +

∑
k 6=j

ρ(βk;λ), 1 6 j 6 p, (2)

where ρ is a penalty function with a tuning parameter λ > 0. We focus on one coefficient,

βj, at a time and does not penalized it. The penalty is used for the purpose of regularizing

the high-dimensional β−j. We use the MCP (Zhang, 2010),

ρ(t;λ) = λ

∫ |t|
0

(
1− x

γλ

)
+
dx, (3)

where γ is a given parameter that controls the concavity of ρ. Here a+ ≡ a1{a > 0} is the

positive part of a ∈ IR. The Lasso and the hard threshold penalties can be considered two

extremes of the MCP with γ → ∞ and γ → 1, respectively. We note that other penalized

functions such as SCAD (Fan and Li, 2001) can also be used.

For a fixed λ, let

β̂(j)(λ) = (β̂j(λ), β̂−j(λ)) = argmin
βj ,β−j

Lj(β;λ), 1 6 j 6 p. (4)
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Let Qj = I − xj(x′jxj)−1x′j. It can be easily verified that

β̂−j(λ) = argmin
β−j

1

2n
‖Qj(y −X−jβ−j‖2 +

∑
k 6=j

ρ(βk;λ), (5)

and

β̂j(λ) = argmin
βj

‖y −X−jβ̂−j − xjβj‖2 = (x′jxj)
−1x′j(y −X−jβ̂−j(λ)). (6)

Let Ŝj = {k : |β̂k(λ)| > 0, k 6= j} be the set of nonzero elements in β̂−j . We can write

β̂j(λ) = (x′jxj)
−1x′j(y −XŜj

β̂Ŝj
(λ)). (7)

Here and in the sequel we use the notation XA = (xj : j ∈ A) and βA = (βj : j ∈ A)′ for any

A ⊂ {1, . . . , p}. Take all the β̂j(λ)’s as a whole and denote it by β̂(λ) = (β̂1(λ), . . . , β̂p(λ))′.

For simplicity, we refer to β̂(λ) as a SPIDR estimator.

In comparison, the fully penalized criterion is

L(b;λ) =
1

2n
‖y −

p∑
j=1

xjbj‖2 +

p∑
j=1

ρ(bj;λ). (8)

For a given λ, the solution to (8) is b̂(λ) = argminb L(b;λ). Usually, a λ = λ̂ is chosen based

a data-driven procedure such as cross validation. Then b̂(λ̂) is the penalized estimator of β.

Since b̂(λ̂) can take exact zero value, the set Ŝ∗ = {j : |b̂j(λ̂)| > 0, 1 6 j 6 p} is taken as an

estimator of S based on the fully penalized criterion (8).

There is also an interesting connection between SPIDR and independence screening (Fan

and Lv, 2008). Indeed, when λ = ∞ in (2), the SPIDR estimators β̂1, . . . , β̂p become the

univariate least squares estimators of the regression coefficients.

[Figure 1 about here.]

We use an example to illustrate the basic properties of the solution paths β̂(j)(λ) and

see how they differ from the fully penalized solution b̂(λ). Consider (1) with (β1, . . . , β6) =

(3, 2, 1,−0.5,−1.0,−1.5), βj = 0, 7 6 j 6 p and error distribution N(0, 2.52). We set n =
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100, p = 1000. The predictors are generated as follows:

xij = zij + aui1, j = 1, . . . , 4, xij = zij + aui2, j = 5, . . . , 8,

xij = zij + ui1, j = 9, . . . , 17, xij = zij + ui2, j = 18, . . . , 26, xij = zij, j = 27, . . . , p,

where {zij, 1 6 i 6 n, 1 6 j 6 p} and {uij : 1 6 i 6 n, j = 1, 2} are independently

generated random numbers from N(0, 1). We consider two values of a, a =
√

1/3 and a = 1.

The strength of the correlation between the predictors are determined by a. The maximum

correlation is r = a2/(1 + a2). So for a =
√

1/3, r = 0.25 and for a = 1, r = 0.5.

The solution paths for r = 0.25 are shown in the top panel of Figure 1, where (a1) and

(a2) show the Lasso and MCP paths, respectively; (a2)-(a5) show the SPIDR solution paths

β̂(1), β̂(2) and β̂(3). The solid, dashed and dotted lines represent β̂1, β̂2 and β̂3, corresponding

to β1 = 3, β2 = 2 and β3 = 1, respectively. The bottom panel in Figure 1 shows the results

for r = 0.5. The vertical lines are at the value of λ chosen based on 5-fold cross validation.

In (a1), log(λ̂) = −0.47, in (a2)-(a5), log(λ̂) = −0.34. In (b1), log(λ̂) = −0.99, in (b2)-(b5),

log(λ̂) = −0.27.

This example illustrates two important features of the SPIDR estimator. First, the SPIDR

estimator is more stable with respect to the change in the penalty parameter. This intuitively

makes sense since β̂j is not subject to penalization. Second, the SPIDR solution paths appear

to be less severely impacted by the correlation among predictors comparing with Lasso and

MCP. Indeed, it can be seen in Figure 1 (a1) and (b1) as correlation increases from 0.25 to

0.5, it becomes more difficult for Lasso and MCP to correctly select variables with smaller

coefficients, but SPIDR is still able to identify such variables.

2.2 Selection with direct false discovery rate control

In this subsection, we first give a heuristic argument for the distributional property of β̂.

We then use this property to define a selection rule based on directly controlling false
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discovery rate. We also discuss the confidence intervals of the selected coefficients that can

be considered dual to the selection results.

For A ⊂ {1, . . . , p}, denote the projection matrix onto the column space of XA by PA =

XA(X ′AXA)−X ′A. Let QŜj
= I − PŜj

and let ΣŜj
= X ′

Ŝj
XŜj

/n. Suppose the value of the

penalty parameter λ is chosen using cross validation. Let β̂j = β̂j(λ). A useful alternative

expression of (7) for β̂j is

β̂j = (x′jQŜj
xj)
−1x′jQŜj

y + (x′jQŜj
xj)
−1x′jXŜj

Σ−1
Ŝj
ρ̇(β̂Ŝj

;λ), (9)

where ρ̇(β̂Ŝj
;λ) ≡ (ρ̇(β̂j;λ) : j ∈ Ŝj)′. We verify (9) in the Appendix. The second term on

right-hand side represents the bias introduced by correlation between xj and XŜj
and the

penalization. If the correlation is small, then the bias is negligible. In general, if the nonzero

coefficients are bigger than γλ and the estimator β̂Ŝj
is consistent so that β̂j > γλ for all j ∈

Ŝj with high probability, then since the derivative of MCP ρ̇(t;λ) = λ{1− |t|/(γλ)}+sgn(t),

ρ̇(β̂Ŝj
;λ) = 0 with high probability. In addition, if the estimator based on (4) is selection

consistent in the sense that Ŝj equals Sj ≡ {k : βk 6= 0, k 6= j} with high probability, then

β̂j ≈ (x′jQSj
xj)
−1x′jQSj

y, 1 6 j 6 p. (10)

In Section 3 we provide sufficient conditions under which the approximations in (10) hold

simultaneously for all 1 6 j 6 p with high probability. Under model (1), y = xjβj +

XSj
βSj

+ ε, so we have β̂j ≈ βj + (x′jQSj
xj)
−1x′jQSj

ε. It follows that β̂j is consistent and

asymptotically normal. Its variance can be consistently estimated by

σ̂2
j = σ̂2(x′jQŜj

xj)
−1, (11)

where σ̂2 is a consistent estimator of σ2. We describe an approach for obtaining such an

estimator in Section 4. The covariance between β̂j and β̂k can be consistently estimated by

Ĉov(β̂j, β̂k) = σ̂2
x′jQŜj

QŜk
xk

(x′jQŜj
xj)(x′kQŜk

xk)
. (12)

Thus β̂ = (β̂1, . . . , β̂p)
′ has an asymptotic multivariate normal distribution with mean
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(β1, . . . , βp)
′ and covariance matrix specified by (11) and (12). This enables us to formulate

the problem of variable selection into the framework of large scale hypothesis test.

We consider the z-statistics zj = β̂j/σ̂j, 1 6 j 6 p. We can think of variable selection

as testing p hypotheses H0j : βj = 0, 1 6 j 6 p. For a given t > 0, we reject H0j if

|zj| > t, or equivalently, we select the jth variable if |zj| > t. Therefore, the problem

of variable selection becomes that of determining a threshold value according to a proper

control of error. Let R(t) =
∑p

j=1 1{|zj| > t} be the number of variables with |zj| > t, and

let V (t) =
∑p

j=1 1{|zj| > t, βj = 0} be the number of falsely selected variables. We can also

write V (t) =
∑

j∈Sc 1{|zj| > t}, where Sc is the complement of S in {1, . . . , p}.

The false discovery proportion, or the proportion of the null variables among the selected

ones for a given t is

Fdp(t) =


V (t)
R(t)

if R(t) > 0,

0 if R(t) = 0.

(13)

The FDR is defined to be Q(t) = E(Fdp(t)) (Benjamini and Hochberg, 1995). We seek

a selection rule R(t) by controlling Q(t). However, since Q(t) is an unknown population

quantity, we need to estimate it in order to determine the threshold value. We can not directly

use Fdp(t) as an estimator of Q(t), since V is unobservable. An approximation to V (t) is by

its expectation, EV (t) ≈ 2|Sc|Φ(−|t|), where Φ is the standard normal distribution function.

In sparse models with |Sc|/p ≈ 1, we further approximate V (t) by V̂ (t) = 2pΦ(−|t|). This

results in a first estimate of the FDR

Q̂0(t) =


V̂ (t)
R(t)

if R(t) > 0,

0 if R(t) = 0.

(14)

For independent test statistics, Q̂0 is a good estimator of Q. However, for correlated

statistics, Efron (2007) demonstrated that Q̂0 can give grossly misleading estimate of FDR
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and proposed an improved estimator. For two-sided tests, this estimator is

Q̂(t) = Q̂0(t)

[
1 + 2A

tφ(t)√
2Φ(−t)

]
, (15)

where Q̂0(t) is given in (14), φ is the probability density function of N(0, 1). Here A is a

dispersion variable accounting for the correlation of the statistics ẑj, which can be estimated

based on the their observed values. Methods for estimating A are given in Efron (2007).

For 0 < q < 1, let t̂q be the value satisfying Q̂(t̂q) = q, which is an estimator of t̃q. The set

of the indices of the selected variables is

Ŝq = {j : |zj| > t̂q}. (16)

By construction, the FDR of Ŝq is approximately controlled at the level q.

[Figure 2 about here.]

As an illustration of SPIDR selection, Figure 2 shows the z-statistics and p-values based

on simulated data from the two models described in Examples 1 and 2 in Section 4. For

comparison, we also include the selection results from the Lasso and MCP. In these two

examples, there are 18 predictors with nonzero coefficients among a total of p = 1000

variables. Here the indices of the nonzero coefficients are randomly selected from 1 to p. The

top panel in Figure 2 shows the results from a model with the largest pairwise correlation

r = 0.5, where (a1) and (a2) show the Lasso and MCP selection results, the black dots

represent predictors with nonzero coefficients; (a3) shows the SPIDR z-statistics, the two

horizontal lines are drawn at the threshold values ±t̂q with t̂q = 3.48 and q = 0.15; and

(a4) shows the negative log10 of the p values based on the z statistics, the horizontal line is

drawn at − log10(2Φ(−t̂q)) = 3.30. Plots (b1)-(b4) in the bottom panel show the results from

Example 2 with t̂q = 3.75 in (b3), − log10(2Φ(−t̂q)) = 3.75 in (b4) and the largest pairwise

correlation r = 0.8.

By examining Figure 2, we see that SPIDR has better selection performance than Lasso

and MCP for these two data sets. For r = 0.5, it has a smaller FDR and misses fewer non-null
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predictors. For r = 0.8, Lasso has zero FDR, but it misses 12 of the 18 non-null predictors.

MCP has a higher FDR than SPIDR and misses 9 non-null predictors. It is interesting to

note that the performance of SPIDR remains essentially unchanged as correlation increases

from 0.5 to 0.8.

2.3 Confidence intervals of selected coefficients

The selection rule (16) directly leads to confidence intervals for the coefficients of the selected

variables. The 1− q level FDR-adjusted confidence intervals of the selected coefficients are

β̂j ± t̂qσ̂j, j ∈ Ŝ. (17)

The interpretation is that the expected proportion of the these intervals that do not cover

their respective parameters is q (Benjamini and Yekutieli, 2005).

3. Statistical properties

3.1 Ideal estimator

Let Sj = {k : βk 6= 0, k 6= j, 1 6 k 6 p} and let Scj be the complement of Sj in {1, . . . , p}.

We define the ideal estimator by

(β̃j, β̃−j) = argmin
βj ,β−j

{‖y − xjβj −X−jβ−j‖2 : βSc
j

= 0}, 1 6 j 6 p. (18)

In particular, β̃j is an ideal estimator of βj. We note that (18) is a counterpart of (2) without

penalization assuming that the support of β−j is known. It can be verified that an explicit

expression of the ideal estimator β̃j is

β̃j = βj + (x′jQSj
xj)
−1x′jQSj

ε, (j = 1, . . . , p). (19)

This expression of β̃j is parallel to (9).

By (19), (β̃1, . . . , β̃p) has a multivariate normal distribution with mean vector β and

Var(β̃j) = σ2(x′jQSj
xj)
−1 and Cov(β̃j, β̃k) = σ2

x′jQSj
QSk

xk

(x′jQSj
xj)(x′kQSk

xk)
.

We first state a result when the penalized criterion (8) is convex. This necessarily requires
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p < n, but allows p→∞ as n→∞. Let cmin = min{cj : 1 6 j 6 p}, where cj is the smallest

eigenvalue of X ′−jQjX−j/n. Let wo = max{wojk : k ∈ Sj, 1 6 j 6 p}, where (wojk, k ∈ Sj)

are the diagonal elements of (X ′Sj
QjXSj

/n)−1. Denote the smallest nonzero coefficient by

β∗ = min{|βoj | : βoj 6= 0, 1 6 j 6 p}. Denote the cardinality of S by |S|.

Theorem 1: Suppose that ε1, . . . , εn are independent and identically distributed as N(0, σ2).

Also, suppose that (a) γ > 1/cmin; (b) for a small ε > 0, β∗ > γλ+ σ
√

(2/n)wo log(p|S|/ε);

and (c) λ > σ
√

4 log pmaxj6p ‖xj‖/n. Then,

P{∪pj=1(Ŝj 6= Sj)} 6 3ε and P{∪pj=1(β̂j(λ) 6= β̃j)} 6 3ε.

This theorem shows that in the convex case, the SPIDR estimator equals the ideal estimator

with high probability. As a consequence, it is asymptotically normal. The conditions are mild.

The normality assumption on the errors is mainly used for bounding the tail probabilities

of the error distribution. This assumption can be relaxed. Condition (a) guarantees that the

SPIDR criteria in (2) are strictly convex to ensure unique solution. Condition (b) requires

that the nonzero coefficients not be too small so that it is possible to separate them from

zero in the presence of random noise. Condition (c) requires the penalty to be proportionally

greater than the noise level to prevent false selection of null variables. For standardized

predictors with ‖xj‖2 = n, this condition simplifies to λ > σ
√

(4/n) log p. Conditions (b)

and (c) are related, a bigger λ requires a bigger β∗.

We now consider the high-dimensional cases where p � n and the criteria (2) are non-

convex. We require the sparse Riesz condition (SRC) (Zhang and Huang, 2008) on the the

matrices QjX. Specifically, we assume there exist constants 0 < c∗ 6 c∗ < ∞ and integer

d∗ > |S|(K∗ + 1) with K∗ = c∗/c∗ − 1/2 such that

0 < c∗ 6 ‖QjXAj
u‖2/n 6 c∗ <∞, ‖u‖2 = 1, (20)

for every Aj ⊂ {1, . . . , p} \ {j} with |Aj ∪ Sj| 6 d∗, for all 1 6 j 6 p.
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Theorem 2: Suppose that ε1, . . . , εn are independent and identically distributed as N(0, σ2).

Also, suppose that (a) the SRC (20) holds with γ > c−1∗
√

4 + c∗/c∗; (b) for a small ε > 0,

β∗ > γ2
√
c∗λ+ σ

√
(2/n)wo log(p|S|/ε); (c) λ > σ

√
(4 log(p/ε) maxj6p ‖xj‖/n. Then

P{∪pj=1(Ŝj(λ̂) 6= Sj)} 6 3ε, and P{∪pj=1(β̂j(λ̂) 6= β̃j)} 6 3ε.

Therefore, P{∪pj=1(Ŝj(λ̂) 6= Sj)} → 0 and P{∪pj=1(β̂j(λ̂) 6= β̃j)} → 0 as ε→ 0.

The SRC (20) ensures that the model is identifiable in a lower-dimensional space that

contains the underlying model. When p > n, the smallest eigenvalue of X ′jQjXj/n is always

zero. But the requirement c∗ > 0 only concerns d∗ × d∗ diagonal submatrices of X ′jQjXj/n.

By examining the conditions (b) and (c), for standardized predictors with ‖xj‖ =
√
n,

we can have log(p|S|/ε) = o(n) or p = ε exp(o(n))/|S|. Thus for sparse models with |S|

small relative to n, Theorem 2 shows that the asymptotic idealness property of the SPIDR

estimators continues to hold in high-dimensional settings under the SRC and other suitable

conditions.

Theorems 1 and 2 are stated for fixed predictors. For random predictors, the conditions

involving the predictors such as the SRC (20) need to hold with high probability.

3.2 Impact of correlation

The correlation structure of the predictors has a big impact on the selection results in

penalized regression. In SPIDR, selection is based on the z-statistics zj, 1 6 j 6 p. Variables

with similar z-statistic values will be selected or dropped together. So we consider the

difference between zj and zk for j 6= k. Based on the asymptotic idealness property of

SPIDR stated in Theorems 1 and 2, we can look at the ideal estimator from a large sample

standpoint.

We first consider the notion of signal strength for measuring the importance of a predictor.

Let mj = (x′jQSj
xj)

1/2. The ideal estimator of βj can be written as β̃j = m−1j x
′
jQSj

y. The
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corresponding z-score is z̃j = mj(β̃j/σ). We define the signal strength of the jth predictor

by ψj = Ez̃j = mj(βj/σ). The interpretation of ψj is clear, it depends on the ratio of the

jth coefficient over the error standard deviation and the length of QSj
xj = xj − PSj

xj, the

vector of residuals of xj regressing on the variables in Sj. We refer to βj/σ as the base signal

and mj as the signal multiplier.

In the extreme case where the signal multiplier mj is zero, that is, xj is perfectly correlated

with the variables in Sj, the signal strength of xj is zero, no matter how large the base signal

is. On the other hand, for a variable with a small to moderate base signal βj/σ, its signal

strength can still be relatively large if the signal multiplier is large.

We examine the effect of correlation by considering the mean squared difference E(z̃j−z̃k)2.

It can be easily verified that

E(z̃j − z̃k)2 = (ψj − ψk)2 + 2(1− Cov(z̃j, z̃k)), (21)

where

Cov(z̃j, z̃k) = Corr(β̃j, β̃k) =
x′jQSj

QSk
xk

(x′jQSj
xj)1/2(x′kQSk

xk)1/2
.

So grouping is determined by the difference in signal strengthes and the predictor residual

correlation between QSj
xj and QSk

xk. It is not related to the usual pairwise correlations.

Signal strength is a main factor in determining SPIDR selection. The pairwise correlations

among predictors do not have an impact as big as in penalized selection. So two key quantities

that affect SPIDR selection: the signal strength and pairwise predictor residual correlation.

The difficulty that Lasso has in the presence of high pairwise correlations had been pointed

out by Zou and Hastie (2006). This is one of the main motivations for them to introduce the

elastic net, which has a grouping effect by selecting or dropping strongly correlated predictors

together. As discussed above, the grouping effect of SPIDR is different from that of elastic

net. It depends on the signal strengths of the variables and residual correlations between

predictors, but not the usual pairwise correlations.
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4. Numerical studies

4.1 Implementation

To implement the proposed method, we need to determine the penalty parameter λ and

estimate the error variance σ2. The former is needed for estimating the regression coefficients

and the latter is required for computing the z-statistics based on the estimated regression

coefficients.

We employ 5-fold cross validation for choosing λ = λ̂ based on the fully penalized criterion

(8) using the MCP (3) with γ = 6. This requires computing the solution path b̂(λ) =

argminb L(b;λ) for λ in a properly specified interval. The R package ncvreg is used in the

computation. This package implements a coordinate descent algorithm for penalized methods

including the Lasso and MCP, and is available at cran.r-project.org/web/packages/

ncvreg (Breheny and Huang, 2009). This λ̂ is then used in calculating β̂j = β̂j(λ̂), 1 6 j 6 p

in (2). In this way, it is only necessary to calculate β̂j at λ̂. Conceptually, it is possible to

choose a different λ for each β̂j. However, this will substantially increase the computational

cost, since it will involve calculating the whole solution path for each of the p minimization

problems in (2). Also, since β̂j is not very sensitive to λ, choosing a λ̂ based on (8) is

reasonable.

For estimating σ2, we use the following procedure. Let b̂(λ̂) be the MCP estimator with λ̂

determined based on 5-fold cross validation. Let Ŝ be the set of the predictors with nonzero

coefficients in b̂. We randomly partition the dataset into two subsets D1 and D2 with equal

sample sizes n1 = n2 = n/2. We use the first part to fit a model with variables in Ŝ and

calculate the least squares estimate b̂(1) = argminβ

∑
i∈D1

(yi −
∑

j∈Ŝ xijbj)
2. Let

σ̂2 =
1

n2 + |Ŝ|

∑
i∈D2

(yi −
∑
j∈Ŝ

xij b̂
(1)
j )2. (22)

We show in the Appendix that this is a consistent estimator of σ2. To smooth out the
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variations of the random partition, we repeat this process 10 times and take the average of

the resulting σ̂2’s as the estimate of σ2.

This procedure bears some resemblance to the cross-refitted method for variance estimation

in Fan et al. (2012). But there are also important differences. Here we use the full dataset

to select variables and then use a properly scaled prediction error for variance estimation.

One reason for using the full dataset as opposed to using a subset is to achieve better

selection results. Another reason is to take advantage of the fact that in choosing the penalty

parameter λ̂ based on (8) for calculating the SPIDR estimators based on (2), we have already

computed the full penalized estimator. Thus the procedure described above does not incur

any significant extra computational burden.

4.2 Simulation studies

We focus on the selection results of the SPIDR method in three models described below.

Specifically, we look at the empirical FDR and FMR (false miss rate). For a given threshold

value t > 0, let U(t) =
∑

j∈S 1{|zj| > t} be the number of selected variables in S. The false

miss proportion is defined to be

Fmp(t) =
|S| − U(t)

|S|
.

Then the FMR at t is E(Fmp(t)). As a comparison, we also look at the empirical FDR and

FMR of the selection results based on the Lasso and MCP.

Example 1. We consider model (1) with p = 1000. The errors are independent and

identically distributed as N(0, σ2) with σ = 3. The first q = 18 coefficients are nonzero

with values

(β1, . . . , β18) = (1, 1, 1, .8, .8, .8, .6, .6, .6,−.6,−.6,−.6,−.8,−.8,−.8,−1,−1,−1).

The sample size n = q2/2 = 162. The remaining coefficients are zero. The predictors are

generated as follows. Let {zij, 1 6 i 6 n, 1 6 j 6 p} and {uij : 1 6 i 6 n, 1 6 j 6 2}

be independently generated random numbers from N(0, 1). Let A1 = {1, . . . , 9} and A2 =
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{10, . . . , 18} be the sets of predictors with nonzero coefficients. Let A3, A4 and A5 be different

sets of 50 indices randomly chosen from {19, . . . , p}.

xij = zij + a1ui1, j ∈ A1, xij = zij + a1ui2, j ∈ A2,

xij = zij + a2ui1, j ∈ A3, xij = zij + a2ui2, j ∈ A4,

xij = zij + a3ui1 − a3ui2, j ∈ A5, xij = zij, j 6∈ ∪5k=1Ak,

where a1 = 1, a2 = 0.5 and a3 = 0.1. In this model, there is correlation among predictors with

nonzero coefficients as well as between such predictors and predictors with zero coefficients.

For example, the correlation of the predictors in A1 is r11 = a21/(1 + a21) = 0.5 and the

correlation between the predictors in A1 and A3 is r13 = a1a2/(
√

1 + a21
√

1 + a22) = 0.32.

Example 2. The generating model is the same as that in Example 1, except a1 = 2. Now

there is stronger correlation among the predictors. For example, the correlation between the

predictors in A1 is r11 = 0.8 and the correlation between the predictors in A1 and A3 is

r13 = 0.40.

Example 3. The generating model is the same as that in Example 1, except now the

predictors are generated from a multivariate normal distribution N(0,Σ), where the (j, k)th

element of the covariance matrix Σ is σjk = 0.5|j−k|, 1 6 j, k 6 p.

[Figure 3 about here.]

Figure 3 shows the empirical FDR’s and FMR’s from 100 replications. For the SPIDR, the

nominal FDR is set at q = 0.15. The top panel in Figure 3 shows the empirical false discovery

rates for (a1) Example 1, (a2) Example 2 and (a3) Example 3, and the plots (b1)-(b3) in

the bottom panel show the empirical false miss rates for these studies. Since it is difficult to

assess the absolute performance of the SPIDR, we also include the selection results from the

Lasso and MCP for comparison. The Lasso and MCP results are obtained at the penalty

parameter value determined by 5-fold cross validation. In the plots, the results for Lasso,
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MCP and SPIDR are represented by the plus “+”, cross “x” and open circle “◦” signs,

respectively.

Numerical summaries of Figure 3 are given in Table 1. As can be seen in the plots, there is

a fair amount of variations in the false discovery rates. However, the average false discovery

rate for SPIDR are close to the nominal level, as shown in Table 1. Overall, the SPIDR

has smaller FDR and FMR than the Lasso and MCP in the three examples considered. In

particular, in Example 2, where the correlation is high, the SPIDR has considerably smaller

FDR and FMR than the Lasso and MCP.

[Table 1 about here.]

In Example 1, SPIDR has slightly higher PCS and slightly lower PFS than MCP. Both

SPIDR and MCP perform better than Lasso in terms of PCS. In Example 2, SPIDR has

considerably higher PCS and lower PFS than Lasso and MCP. In Example 3, SPIDR has

higher PCS and lower PFS than Lasso and MCP, although for two predictors with smaller

coefficients, all the methods have relatively low PCS.

In summary, the SPIDR has good performance in the examples considered here. It can

achieve the nominal FDR control on average and tends to have smaller FMR than the Lasso

and MCP. Especially, for the model in Example 2, which is a difficult case for the Lasso

and MCP because of the high correlations among the predictors, the SPIDR still performs

reasonably well.

4.3 Breast cancer gene expression data

We use the breast cancer data from The Cancer Genome Atlas (2012) project to illustrate the

proposed method. In this dataset, tumour samples were assayed on several platforms. Here we

focus on the gene expression data obtained using Agilent mRNA expression microarrays. In

this dataset, expression measurements of 17814 genes, including BRCA1, from 536 patients

are available at http://cancergenome.nih.gov/. BRCA1 is the first gene identified that
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increases the risk of early onset breast cancer. Because BRCA1 is likely to interact with

many other genes, including tumor suppressors and regulators of the cell division cycle, it is

of interest to find genes with expression levels related to that of BRCA1. These genes may

be functionally related to BRCA1 and are useful candidates for further studies.

We only include genes with sufficient expression levels and variations across the subjects in

the analysis. So we first do an initial screen according to the following requirements: (a) the

coefficient of variation is greater than 1; (b) the standard deviation is greater than 0.6; (c)

the marginal correlation coefficient with BRCA1 is greater than 0.1. A total of 1685 genes

passed these screening steps. These are the genes included in the model.

We start by looking at the Lasso and MCP solution paths together with 5-fold cross

validation results, which are shown in Figure 4. The vertical lines are drawn at the values

λ̂ of the penalty parameter that achieve the smallest cross validation errors for Lasso and

MCP, respectively. For the Lasso, log(λ̂) = −2.96, for the MCP, log(λ̂) = −3.15. The gray

lines in Figure 4 (b) and (d) represent the standard deviations of the cross validation errors

calculated based on 5-fold calculations. These plots show that for either Lasso or MCP, there

is a unique point on the solution path that minimizes the cross validation error, which leads

to a well-defined model.

[Figure 4 about here.]

The Lasso and MCP estimates at the cross-validated λ̂ are shown in Figure 5 (a1) and (a2),

the plus “+” and cross “x” signs represent genes selected by Lasso (24 genes) and MCP (48

genes). Figure 5 (a3) shows the SPIDR estimates, the circles “◦” represent the selected genes

(63 genes) with q = 0.10. The SPIDR z-statistics are shown in (a4), the cut-off values for

selection corresponding to FDR level q = 0.10 are t̂0.10 = ±3.95, which are indicated by two

horizontal lines. Figure 5 (b1)-(b4) are parallel to (a1)-(a4), but now the overlaps between

the methods are indicated. Figure 5 (b1) shows the overlap between the Lasso and SPIDR,



18 Biometrics, 000 0000

the circles represent the genes that are also selected by SPIDR. Similarly, (b2) shows the

overlap between the MCP and SPIDR. In (b3) and (b4), all the selected genes based on the

three methods are indicated. As can be seen in (b4), genes with relatively large estimated

coefficients based on Lasso or MCP are also selected by SPIDR, whereas those with small

estimated coefficients tend to be deemed nonsignificant by SPIDR. There are large overlaps

between the three methods. For example, 13 genes are selected by both Lasso and SPIDR,

these same 13 genes are selected by all the three methods, and there are 24 genes selected by

both MCP and SPIDR. One of the genes selected by all the three methods is CCDC56, it has

the largest Lasso and MCP estimates and is also most significant based on SPIDR. This gene

maps to human chromosome 17q21 and encodes the CCDC56 (coiled-coil domain containing

56) protein with 106 amino acid single-pass membranes. BRCA1 is located at 17q21-q24 and

is in the neighborhood of CCDC56. Interestingly, another key tumour suppressor gene p53

also maps to chromosome 17.

[Figure 5 about here.]

On the other hand, there are genes not selected by the Lasso or MCP but selected by

SPIDR. An interesting one is gene UHRF1, which plays a major role in the G1/S transition

and functions in the p53-dependent DNA damage checkpoint. Multiple transcript variants

encoding different isoforms have been found for this gene (www.ncbi.nlm.nih.gov). UHRF1

is a putative oncogenic factor over-expressed in several cancers, including the bladder and

lung cancers. It has been reported that UHRF1 is responsible for the repression of BRCA1

gene in sporadic breast cancer through DNA methylation (Alhosin et al., 2011). Another

interesting finding based on SPIDR is a gene called SRPK1. This gene is upregulated in

breast cancer and its expression level is proportional to the tumor grade. Targeted SRPK1

treatment appears to be a promising way to enhance the effectiveness of chemotherapeutics

drugs (Hayes et al. (2006, 2007)). Other interesting findings include several genes (CDC6,
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CDC20, CDC25C and CDCA2) that play key roles in the regulation of cell division and

interact with several proteins at multiple points in the cell cycle (www.ncbi.nlm.nih.gov).

In this example we focus on illustrating the application of SPIDR. So we mainly highlight a

few genes from the SPIDR analysis to confirm that it does reveal additional information from

the data. A detailed description of the available biological functions of the selected genes

is not included there, but can found from public database such as the website of National

Center for Biotechnology Information (www.ncbi.nlm.nih.gov).

In Figure 6, plot (a) shows the histogram of the SPIDR z-statistics, the dashed curve

represents the standard normal density function. The distribution of the SPIDR z-statistics

has much heavier tail than the standard normal distribution and is slightly skewed to the

right. This is due to the fact that some of the z-statistics are not from the null hypothesis.

This can also be caused by correlation among z-statistics even if their marginal distributions

are N(0, 1). Such phenomenon has also been observed by Efron (2007) in the context of

detecting differentially expressed genes using microarray data. This can also be clearly seen

in the normal Q-Q plot (b). Plot (c) shows the negative log10 p-values for the SPIDR z-

statistics. The cutoff for the negative log10 p-values for significance corresponding to FDR

q = 0.1 is 4.10, which is represented by the horizontal line in the plot. For comparison, the

p-values of the variables selected by Lasso and MCP are also indicated in the plot by plus

“+” and cross “x” signs, respectively. Plot (d) shows the SPIDR confidence intervals for the

selected coefficients.

[Figure 6 about here.]

Figure 6 provides a panel of useful summaries of the SPIDR analysis that can be used

for statistical inference, including the distribution of z-statistics, the comparison with the

normal distribution via Q-Q plot, the p-values and an indication of statistical significance

according to a desired FDR control level, and the interval estimates of the selected effect
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sizes. These can be easily explained to the scientific investigators. It is best to use Figure 6

in combination with plots such as Figures 4 and 5 to give a clear view of the selection results

along with tuning.

5. Discussion

SPIDR is built on two separate developments in high-dimensional statistics, penalized es-

timation and direct FDR control. It makes the connection between these two ideas and

combines them for variable selection with an assessment of selection error. To study the

theoretical property of the proposed SPIDR estimator, we introduced the concept of an

ideal estimator and provided sufficient conditions under which the SPIDR estimator is ideal

with high probability.

The proposed method can be extended in several directions. First, it can be applied to

other regression models, including the generalized linear and Cox models. In these models,

instead of using the quadratic loss in (2), we can use the negative log-likelihood or partial log-

likelihood as the loss functions. Of course, detailed analysis of the theoretical properties of

SPIDR in these models requires further work. Second, it is possible to consider the coefficients

in groups and carry out the estimation one group at a time. In particular, SPIDR can

be naturally extended to group selection problems with various types of group penalties,

including the group Lasso and concave group penalties. However, in group selection, the

definition of FDR needs to be modified accordingly. Third, the idea of SPIDR can be applied

to semiparametric and nonparametric regression models such as the partially linear and

generalized additive models.

The estimation of FDR with correlated statistics is a challenging problem. In addition to

the difficulty caused by correlation, false discovery proportion is inherently variable in sparse

models when the number of findings is relatively small. A small change in either the number of

findings or the number of falsely selected variables can cause a big change in the proportion.
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We used the method of Efron (2007), which is easy to implement and computationally

efficient. Our simulation studies indicate that it can yield unbiased estimates, although the

variability is relatively high. It would be interesting to develop methods tailored to the

covariance structure given in (11) and (12).

We used the R package ncvreg to compute the SPIDR solutions. However, SPIDR appears

especially suitable to be implemented in parallel, which should speed up the computation

considerably. Thus it would be interesting to develop a more efficient implementation. In

applications we recommend applying SPIDR in combination with penalized selection, as

illustrated in the breast cancer data example in Section 4. In particular, it is helpful to

present figures similar to Figures 4 to 6 to summarize the analysis results from both penalized

selection and SPIDR. Our simulation studies and data example suggest that SPIDR is a

useful addition to the existing methods for high-dimensional statistical inference in practice.
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Appendix

Technical details

Verification of (9). The solution to (2) satisfies

XT

Ŝj
(y − xjβ̂j −XŜj

β̂Ŝj
) = nρ̇(β̂Ŝj

;λ),

xT

j (y − xjβ̂j −XŜj
β̂Ŝj

) = 0.

The first equation gives β̂Ŝj
= (XT

Ŝj
XŜj

)−1XT

Ŝj
(y − xjβ̂i) − n(XT

Ŝj
XŜj

)−1ρ̇(β̂Ŝj
;λ). Thus

XŜj
β̂Ŝj

= PŜj
(y−xjβ̂j)−XŜj

Σ−1
Ŝj
ρ̇(β̂Ŝj

;λ). Substituting this expression into the second equa-

tion gives xT
j {QŜj

(y−xjβ̂j)+XŜj
Σ−1
Ŝj
ρ̇(β̂Ŝj

;λ)} = 0. It follows that β̂j = (xT
jQŜj

xj)
−1xT

j (QŜj
y+

XŜj
Σ−1
Ŝj
ρ̇(β̂Ŝj

;λ). This verifies (9).

Consistency of σ̂2 in (22). Let (y(1), X
(1)

Ŝ
) and (y(2), X

(2)

Ŝ
) represent the data in the

partitions D1 and D2 with predictors in Ŝ, where Ŝ is the set of variables selected based

on the full dataset. For simplicity, we set n1 = n2 = n/2. Then the least squares estimator

based on (y(1), X
(1)

Ŝ
) is b̂(1) = (X

(1)′
Ŝ
X

(1)

Ŝ
)−1X

(1)′
Ŝ
y(1). Under the conditions of Theorem 2,

Ŝ = S with probability tending to 1 (Zhang ,2010). Thus we can replace Ŝ by S in showing
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the consistency here. Therefore, since y(1) = X
(1)
S βS + ε(1), we have

b̂(1) = βS + (X
(1)′
S X

(1)
S )−1X

(1)′
S ε(1). (A.1)

It follows that

E‖y(2) −X(2)
S b̂(1)‖2 = E‖ε(2) −X(2)

S (b̂(1) − βS)‖2 = n2σ
2 + E‖X(2)

S (b̂(1) − βS)‖2.

Here the cross product term vanishes because of the independence between ε(2) and {X(2), b̂(1)}.

By (A.1), the independence between X
(1)
S and X

(2)
S and after some algebra,

|S|−1E‖X(2)
S (b̂(1) − βS)‖2 = σ2trace{(X(1)′

S X
(1)
S /(n1|S|))−1(X(2)′

S X
(2)
S /(n2|S|)} → σ2.

Combining the above two equations we obtain

(n2 + |S|)−1E‖y(2) −X(2)
S b̂(1)‖2 → σ2.

This proves the consistency of σ̂2.

Proof of Theorem 1. Let Bj = {β̂−j(λ) 6= β̃−j or sgn(β̂−j(λ)) 6= sgn(β−j)}. By the

definition of β̃−j, we have

β̃−j = argmin
β−j

{ 1

2n
‖Qj(y −X−jβ−j‖2,βoSc

j
= 0}. (A.2)

Thus x′kQj(y −X−jβ̃−j) = 0 for k ∈ Sj. Also, ρ̇(β̂−j,k;λ) = 0 if |β̂−j,k| > γλ, where β̂−j,k is

the kth element of β̂j. Therefore, β̃−j is a solution to (4) and sgn(β̂−j) = sgn(β−j) in the

intersection of

Ωj1(λ) =

{
max
k 6∈Sj

|x′kQj(y −X−jβ̃−j)|/n < λ1

}
and Ωj2(λ) =

{
min
k∈Sj

sgn(βk)β̃−j,k > γλ

}
.

(A.3)

Thus P{Bj} 6 1− P{Ωj1(λ)}+ 1− P{Ωj2(λ)}. Following the proof of Theorem 4 of Zhang

(2010), we have P{Bj} 6 3ε/p. Since {Ŝj 6= Sj} ⊆ Bj,

P{∪pj=1(Ŝj 6= Sj)} 6
p∑
j=1

P{Bj} 6 3ε.

Similarly,

P{∪pj=1(β̂j(λ) 6= β̂oj )} 6
p∑
j=2

P{Bj} 6 3ε.



Semi-Penalized Inference with False Discovery Rate Control 25

This completes the proof.

Proof of Theorem 2. For m > 1 and B ⊂ {1, . . . , p} \ {j}, let

ςj(v;m,B) = max

{
‖(PA − PB)v‖

(mn)1/2
: B ⊆ A ⊆ {1, . . . , p} \ {j}, |A| = m+ |B|

}
,

for v ∈ IRn, where PA is the orthogonal project matrix from IRn to the linear span of

{Qjxk : k ∈ A}. Let Ω3j(λ) = {ςj(ε;m∗, Sj) 6 λ}. Following the proof of Theorem 5 of

Zhang (2011), we have

P{β̂j 6= β̃j or sgn(β̂j) 6= sgn(βj)} 6
3∑

k=1

(1− P{Ωjk(λ)}),

where Ωjk, k = 1, 2 are defined in (A.3). This inequality and Theorem 5(ii) of Zhang (2011)

imply P{Ŝj 6= Sj} 6 3ε/p. Therefore, P{∪pj=1(Ŝj(λ) 6= Sj)} 6 3ε. Similarly, we have

P{∪pj=1(β̂j(λ) 6= β̃j)} 6 3ε. This completes the proof.
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Figure 1. Lasso, MCP and SPIDR solution paths. The results for r = 0.25 are shown
in the top panel (a1)-(a5), where (a1) and (a2) show the Lasso and MCP solution paths;
(a3)-(a5) show the semi-MCP solution paths of β̂(1), β̂(2) and β̂(3). The solid, dashed and

dotted lines represent the paths of β̂1, β̂2 and β̂3, corresponding to β1 = 3, β2 = 2 and
β3 = 1, respectively. The bottom panel (b1)-(b5) in Figure 1 shows the results for r = 0.5.
The vertical lines are at the value of λ chosen based on 5-fold cross validation.
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Figure 2. Selection results with q = 0.15 from the models in Examples 1 and 2. The top
panel (a1)-(a4) shows the results from Example 1 with correlation r = 0.5. (a1) and (a2): the
Lasso MCP selection results, the black dots represent predictors with nonzero coefficients;
(a3): the z statistics based on the SPIDR, the two horizontal lines are drawn at ±t̂q. The
bottom panel (b1)-(b4) shows the results from Example 2 with correlation r = 0.8.
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●

●

●
●●

●

●●

●

●

●●●

●
●
●

●

●●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●●●●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
D

R

(a2) Example 2: FDR
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(a3) Example 3: FDR
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Figure 3. Top panel: False discovery rates from 100 replications for (a1) Example 1, (a2)
Example 2 and (a3) Example 3. Bottom panel: False missing rates from 100 replications
for (b1) Example 1, (b2) Example 2 and (b3) Example 3. The results for Lasso, MCP and
SPIDR are represented by the plus “+”, cross “x” and open circle “◦” signs, respectively.
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Figure 4. Breast cancer data. (a) Lasso solution paths; (b) Lasso cross validation results;
(c) MCP solution paths; (d) MCP cross validation results.
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(b3) SPIDR, Lasso and MCP
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Figure 5. Breast cancer data. Lasso, MCP and SPIDR are represented by plus “+”, cross
“x”, and circle “◦”, respectively. Top panel, (a1): Lasso estimates; (a2) MCP estimates; (a3)
SPIDR estimates; (a4) SPIDR z-statistics. Bottom panel, (b1): Lasso and SPIDR overlap;
(b2) MCP and SPIDR overlap; (b3) SPIDR estimates with Lasso and MCP selection results
indicated; (b4) SPIDR z-statistics with Lasso and MCP selection results indicated.
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Figure 6. Breast cancer data. (a) Histogram of SPIDR z-statistics, the dashed curve
represents the density function of N(0, 1); (b) Normal Q-Q plot for the SPIDR estimates;
(c) SPIDR p-values; (d) SPIDR confidence intervals for the selected coefficients.
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Table 1
Simulation study. NVS, number of variables selected; FDR, false discovery rate; FMR, false miss rate, averaged over

100 replications with standard deviations in parentheses, for Examples 1 to 3.

Method NVS FDR FMR

Example 1
SPIDR 20.52 (2.78) 0.14 (0.09) 0.03 (0.04)
MCP 20.66 (2.83) 0.21 (0.10) 0.11 (0.07)
Lasso 19.97 (5.92) 0.45 (0.15) 0.43 (0.07)

Example 2
SPIDR 20.90 (3.54) 0.15 (0.11) 0.03 (0.05)
MCP 21.53 (5.76) 0.67 (0.10) 0.63 (0.06)
Lasso 13.22 (4.08) 0.50 (0.17) 0.66 (0.04)

Example 3
SPIDR 17.75 (2.44) 0.10 (0.08) 0.12 (0.06)
MCP 22.05 (5.42) 0.32 (0.14) 0.20 (0.07)
Lasso 19.63 (6.19) 0.43 (0.16) 0.42 (0.07)


