Bi-level selection

Patrick Breheny

May 4

Introduction

- Our previous lecture introduced the idea of grouped variables and the idea of selecting important groups of variables, rather than individual variables
- However, there are often situations where we might be interested in selection at both the individual and group levels, or *bi-level selection*
- Our goal for today is to introduce two approaches for achieving bi-level selection, discuss some specific penalties, and apply the approach to two real data sets

Introduction (cont'd)

- For example, last time we analyzed a data set in which genetic differences (SNPs) were grouped by the gene that they belong to
- Grouping made sense here: if the gene is unimportant to the response, we don't want to select any SNPs from it
- However, selecting individual SNPs also makes sense: just because a gene is important to the response doesn't mean that every single SNP is important
- This could be thought of as a situation in which the grouping is "soft": if feature A is in a group with feature B that we know is important, this means that feature A is more likely to be important, but this is not definite

Sparse group lasso

• One simple way of achieving bi-level selection is to include both a lasso and group lasso penalty:

$$Q(\boldsymbol{\beta}|\mathbf{X}, \mathbf{y}) = L(\boldsymbol{\beta}|\mathbf{X}, \mathbf{y}) + \lambda_1 \sum_j \sum_k |\beta_{jk}| + \lambda_2 \sum_j ||\boldsymbol{\beta}_j||;$$

this penalty is known as the sparse group lasso (SGL)

• Similar to the elastic net, it is common to reparameterize this penalty using λ and α , with $\lambda_1 = \alpha \lambda$ and $\lambda_2 = (1 - \alpha)\lambda$ so that $\alpha = 1$ is equivalent to the lasso, $\alpha = 0$ is equivalent to the group lasso, and $\alpha = 0.5$ is a 50-50 mix

Derivative of the penalty

• To get some insight into how the penalty works, let's consider the partial derivative with respect to $|\beta_{jk}|$, which I will denote in today's lecture as Δ_{jk} :

$$\Delta_{jk} = \lambda_1 + \begin{cases} \lambda_2 rac{eta_{jk}}{\|oldsymbol{eta}_j\|} & ext{if } oldsymbol{eta}_j
eq \mathbf{0} \\ \lambda_2 & ext{if } oldsymbol{eta}_j = \mathbf{0} \end{cases}$$

- In other words, if all the other elements of group j are zero, β_{jk} receives the full penalty of $\lambda_1+\lambda_2$
- If, however, β_{jk} is located in a group with other important variables (i.e., with large coefficients), it receives a lesser penalty $\lambda_1 + \epsilon \lambda_2$, where $\epsilon \in [0, 1)$

Computing

- In terms of developing an algorithm to solve for $\hat{\beta}$, unfortunately there is no longer a closed-form solution at the individual or group level
- There would be, if we could assume $\frac{1}{n}\mathbf{X}_{j}^{T}\mathbf{X}_{j} = \mathbf{I}$ as we did with the group lasso
- Unfortunately, we can no longer apply the orthonormalization trick from the previous lecture if we were to compute the orthonormalized group $\widetilde{\mathbf{X}}$, its columns would no longer correspond to the original columns of \mathbf{X}
- To put it a different way, we could achieve bi-level selection on orthonormalized scale, but this would be lost once we transformed back to the original scale

Computing (cont'd)

- One option would be to use a local linear approximation to the penalty, where we would end up with expressions like the one we just derived
- A different approach (used by the SGL package, which we will be using today) is to employ an idea known as generalized gradient descent, in which one calculates a direction (gradient) along which we will update β_j, then applies a soft-thresholding operator along that gradient
- In a sense, this is like calculating an orthonormal approximation to $\frac{1}{n}\mathbf{X}_{j}^{T}\mathbf{X}_{j}$ and then using its closed form in the orthonormal case to carry out group-wise updates

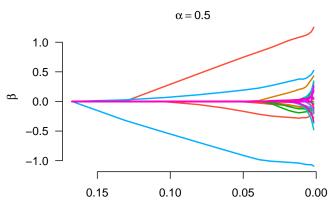
Other options; convexity

- The sparse group lasso adds the lasso and group lasso penalties
- In principle, one could imagine mixing other penalties (e.g., MCP + group lasso), but to my knowledge these have not been investigated
- One attractive feature of the SGL, however, is the fact that, since both lasso and group lasso are convex penalties, the resulting objective function is convex

Example

- To see an example of SGL in action, let's simulate some data with n = 50, $x_{ij}, \epsilon \stackrel{\text{iid}}{\sim} N(0, 1)$ and
 - Coefficients in 10 groups of three (p = 30, J = 10)
 - One group with $\beta_j = (1, -0.5, 0)$, another group with $\beta_j = (-1, 0.5, 0)$, and the other eight groups with $\beta_j = 0$
- We'll fit SGL models over $\alpha=0,0.1,0.2,\ldots,1$ and look at how the coefficient paths change

Example: paths



λ

10/22

General framework GEL

Hierarchical framework

- An alternative approach is to apply penalties in a hierarchical manner, as opposed to an additive one
- For example, suppose we have an outer penalty, p_O , applied at the group level, and an inner penalty, p_I , applied at the individual feature level; the objective function would be

$$Q(\boldsymbol{\beta}|\mathbf{X}, \mathbf{y}) = L(\boldsymbol{\beta}|\mathbf{X}, \mathbf{y}) + \sum_{j} p_O \Big\{ \sum_{k} p_I(|\beta_{jk}|) \Big\},\$$

where p_{O} and p_{I} would also depend on various tuning/regularization parameters

• For example, group lasso could be thought of in this framework, with $p_O(\theta) = \lambda_j |\theta|^{1/2}$ and $p_I(\beta) = \beta^2$

General framework

Derivative; insight

• Again, to gain insight into the nature of penalties of this type, let us consider the derivative with respect to (the absolute value of) an individual coefficient:

$$\Delta_{jk} = p'_O \Big(\sum_k p_I(|\beta_{jk}|) \Big) p'_I(|\beta_{jk}|)$$
$$= \lambda_O \lambda_I$$

• In other words, thinking of λ_I as the penalty experienced by a coefficient in the ungrouped case, this rate of penalization is multiplied by a term λ_O that depends on the size of the group that the coefficient belongs to

General framework

Remarks

- In the hierarchical framework, then, group and individual penalties interact in a multiplicative manner, as opposed to an additive manner in a penalties like SGL
- Note that, for this to make sense, the outer penalty p_O must be nonconvex i.e., its rate of penalization must be decreasing as the size of the group increases

General framework

Group exponential lasso

- As with additive penalties, one could imagine many possible combinations here; I will briefly discuss one called the *group* exponential lasso (GEL)
- Here, the inner penalty is the the lasso penalty, $p_I(\beta_j) = \|\beta_j\|_1$ and the outer penalty is the exponential penalty

$$p_O(\theta|\lambda,\tau) = \frac{\lambda^2}{\tau} \left\{ 1 - \exp\left(-\frac{\tau\theta}{\lambda}\right) \right\}$$

General framework

Derivative of the GEL penalty

For the GEL penalty,

$$\Delta_{jk} = \lambda \exp\left\{-\frac{\tau}{\lambda} \left\|\boldsymbol{\beta}_{j}\right\|_{1}\right\}$$

- Thus, for a coefficient in a group with $\beta_j = 0$, the penalty is λ , just as it is for the ordinary lasso
- When $\beta_j \neq 0$, however, $\Delta_{jk} < \lambda$, with the rate of penalization decreasing exponentially as $\|\beta_j\|_1$ increases
- Note that in this approach, the rate of penalization is the same for all features in a given group, so we could drop the subscript k

General framework GEL

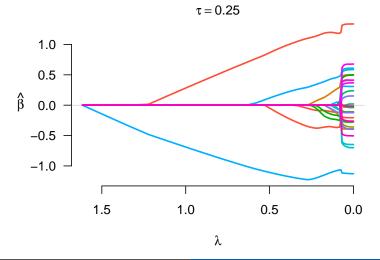
Computing

- Computing can be carried out in a relatively straightforward manner using the idea of local linear approximation that we discussed in earlier lectures
- To briefly address the ideas of convexity and convergence:
 - Because the penalty function is strictly nonconvex in $|{\cal A}|,$ the algorithm is guaranteed to converge by theory underlying MM algorithms
 - However, as with all iterative algorithms applied to nonconvex problems, we cannot guarantee convergence to a global minimum
- Here, τ is the parameter that controls the convexity of the objective function, with larger values of τ leading to increasingly nonconvex objectives

General framework

Example: paths

Same example as earlier:



Patrick Breheny High-Dimensional Data Analysis (BIOS 7600)

Macular degeneration

Macular degeneration case study

- To illustrate how SGL and GEL work, and how they compare to lasso/group lasso, we will revisit our example from last time involving the case/control study of macular degeneration
- Here, n = 800, p = 532, J = 30, and the outcome is binary; for the sake of simplicity I'll focus only on the "grouping by gene" analysis

Macular degeneration

R code

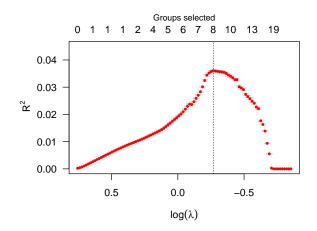
- An implementation of the SGL penalty is available from the R package SGL
- Its syntax is a little unconventional, and the package is not as well developed as some of the others (e.g., no plot function), but one can fit SGL models via:

note that SGL requires integer-indexing of genes

• The GEL penalty is available in grpreg; we have seen its syntax previously:

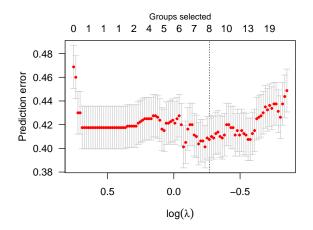
Macular degeneration

Results: GEL (R^{2}



Macular degeneration

Results: GEL (ME)



21/22

Macular degeneration

Remarks

- Here, GEL doesn't necessarily outperform either lasso or group lasso in terms of prediction, but does provide much more sparse solutions
- The maximum R^2 achieved by GEL is 0.036 (0.040 for group lasso and 0.037 for lasso in this example), and all methods achieve 40% misclassification error

	0	Number of variants (features) selected
Lasso	20	22
Group lasso	11	193
SGL	25	237
GEL	6	15