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Introduction

Our previous lecture introduced the idea of grouped variables
and the idea of selecting important groups of variables, rather
than individual variables

However, there are often situations where we might be
interested in selection at both the individual and group levels,
or bi-level selection

Our goal for today is to introduce two approaches for
achieving bi-level selection, discuss some specific penalties,
and apply the approach to two real data sets
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Introduction (cont’d)

For example, last time we analyzed a data set in which
genetic differences (SNPs) were grouped by the gene that
they belong to

Grouping made sense here: if the gene is unimportant to the
response, we don’t want to select any SNPs from it

However, selecting individual SNPs also makes sense: just
because a gene is important to the response doesn’t mean
that every single SNP is important

This could be thought of as a situation in which the grouping
is “soft”: if feature A is in a group with feature B that we
know is important, this means that feature A is more likely to
be important, but this is not definite
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Sparse group lasso

One simple way of achieving bi-level selection is to include
both a lasso and group lasso penalty:

Q(β|X,y) = L(β|X,y) + λ1
∑
j

∑
k

|βjk|+ λ2
∑
j

‖βj‖;

this penalty is known as the sparse group lasso (SGL)

Similar to the elastic net, it is common to reparameterize this
penalty using λ and α, with λ1 = αλ and λ2 = (1− α)λ so
that α = 1 is equivalent to the lasso, α = 0 is equivalent to
the group lasso, and α = 0.5 is a 50-50 mix
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Derivative of the penalty

To get some insight into how the penalty works, let’s consider
the partial derivative with respect to |βjk|, which I will denote
in today’s lecture as ∆jk:

∆jk = λ1 +

{
λ2

βjk
‖βj‖

if βj 6= 0

λ2 if βj = 0

In other words, if all the other elements of group j are zero,
βjk receives the full penalty of λ1 + λ2

If, however, βjk is located in a group with other important
variables (i.e., with large coefficients), it receives a lesser
penalty λ1 + ελ2, where ε ∈ [0, 1)
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Computing

In terms of developing an algorithm to solve for β̂,
unfortunately there is no longer a closed-form solution at the
individual or group level

There would be, if we could assume 1
nX

T
j Xj = I as we did

with the group lasso

Unfortunately, we can no longer apply the orthonormalization
trick from the previous lecture – if we were to compute the
orthonormalized group X̃, its columns would no longer
correspond to the original columns of X

To put it a different way, we could achieve bi-level selection
on orthonormalized scale, but this would be lost once we
transformed back to the original scale
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Computing (cont’d)

One option would be to use a local linear approximation to
the penalty, where we would end up with expressions like the
one we just derived

A different approach (used by the SGL package, which we will
be using today) is to employ an idea known as generalized
gradient descent, in which one calculates a direction
(gradient) along which we will update βj , then applies a
soft-thresholding operator along that gradient

In a sense, this is like calculating an orthonormal
approximation to 1

nX
T
j Xj and then using its closed form in

the orthonormal case to carry out group-wise updates
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Other options; convexity

The sparse group lasso adds the lasso and group lasso
penalties

In principle, one could imagine mixing other penalties (e.g.,
MCP + group lasso), but to my knowledge these have not
been investigated

One attractive feature of the SGL, however, is the fact that,
since both lasso and group lasso are convex penalties, the
resulting objective function is convex
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Example

To see an example of SGL in action, let’s simulate some data

with n = 50, xij , ε
iid∼ N(0, 1) and

Coefficients in 10 groups of three (p = 30, J = 10)
One group with βj = (1,−0.5, 0), another group with
βj = (−1, 0.5, 0), and the other eight groups with βj = 0

We’ll fit SGL models over α = 0, 0.1, 0.2, . . . , 1 and look at
how the coefficient paths change
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Example: paths
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General framework
GEL

Hierarchical framework

An alternative approach is to apply penalties in a hierarchical
manner, as opposed to an additive one

For example, suppose we have an outer penalty, pO, applied
at the group level, and an inner penalty, pI , applied at the
individual feature level; the objective function would be

Q(β|X,y) = L(β|X,y) +
∑
j

pO

{∑
k

pI(|βjk|)
}
,

where pO and pI would also depend on various
tuning/regularization parameters

For example, group lasso could be thought of in this
framework, with pO(θ) = λj |θ|1/2 and pI(β) = β2
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General framework
GEL

Derivative; insight

Again, to gain insight into the nature of penalties of this type,
let us consider the derivative with respect to (the absolute
value of) an individual coefficient:

∆jk = p′O

(∑
k

pI(|βjk|)
)
p′I(|βjk|)

= λOλI

In other words, thinking of λI as the penalty experienced by a
coefficient in the ungrouped case, this rate of penalization is
multiplied by a term λO that depends on the size of the group
that the coefficient belongs to
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Remarks

In the hierarchical framework, then, group and individual
penalties interact in a multiplicative manner, as opposed to an
additive manner in a penalties like SGL

Note that, for this to make sense, the outer penalty pO must
be nonconvex – i.e., its rate of penalization must be
decreasing as the size of the group increases
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General framework
GEL

Group exponential lasso

As with additive penalties, one could imagine many possible
combinations here; I will briefly discuss one called the group
exponential lasso (GEL)

Here, the inner penalty is the the lasso penalty,
pI(βj) = ‖βj‖1 and the outer penalty is the exponential
penalty

pO(θ|λ, τ) =
λ2

τ

{
1− exp

(
−τθ
λ

)}
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General framework
GEL

Derivative of the GEL penalty

For the GEL penalty,

∆jk = λ exp
{
−τ
λ

∥∥βj∥∥1}
Thus, for a coefficient in a group with βj = 0, the penalty is
λ, just as it is for the ordinary lasso

When βj 6= 0, however, ∆jk < λ, with the rate of
penalization decreasing exponentially as ‖βj‖1 increases

Note that in this approach, the rate of penalization is the
same for all features in a given group, so we could drop the
subscript k
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General framework
GEL

Computing

Computing can be carried out in a relatively straightforward
manner using the idea of local linear approximation that we
discussed in earlier lectures

To briefly address the ideas of convexity and convergence:

Because the penalty function is strictly nonconvex in |β|, the
algorithm is guaranteed to converge by theory underlying MM
algorithms
However, as with all iterative algorithms applied to nonconvex
problems, we cannot guarantee convergence to a global
minimum

Here, τ is the parameter that controls the convexity of the
objective function, with larger values of τ leading to
increasingly nonconvex objectives
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General framework
GEL

Example: paths

Same example as earlier:
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Macular degeneration case study

To illustrate how SGL and GEL work, and how they compare
to lasso/group lasso, we will revisit our example from last
time involving the case/control study of macular degeneration

Here, n = 800, p = 532, J = 30, and the outcome is binary;
for the sake of simplicity I’ll focus only on the “grouping by
gene” analysis
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R code

An implementation of the SGL penalty is available from the R

package SGL

Its syntax is a little unconventional, and the package is not as
well developed as some of the others (e.g., no plot function),
but one can fit SGL models via:

cvSGL(list(x=X, y=y), index=nGene,

type="logit", alpha=0.5)

note that SGL requires integer-indexing of genes

The GEL penalty is available in grpreg; we have seen its
syntax previously:

cv.grpreg(X, y, group=Gene, family="binomial",

penalty="gel")
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Results: GEL (R2
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Results: GEL (ME)
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Remarks

Here, GEL doesn’t necessarily outperform either lasso or group
lasso in terms of prediction, but does provide much more
sparse solutions

The maximum R2 achieved by GEL is 0.036 (0.040 for group
lasso and 0.037 for lasso in this example), and all methods
achieve 40% misclassification error

Number of genes Number of variants
(groups) selected (features) selected

Lasso 20 22
Group lasso 11 193
SGL 25 237
GEL 6 15
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