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Introduction

@ Our previous lecture introduced the idea of grouped variables
and the idea of selecting important groups of variables, rather
than individual variables

@ However, there are often situations where we might be
interested in selection at both the individual and group levels,
or bi-level selection

@ Our goal for today is to introduce two approaches for
achieving bi-level selection, discuss some specific penalties,
and apply the approach to two real data sets
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For example, last time we analyzed a data set in which
genetic differences (SNPs) were grouped by the gene that
they belong to

Grouping made sense here: if the gene is unimportant to the
response, we don't want to select any SNPs from it

However, selecting individual SNPs also makes sense: just
because a gene is important to the response doesn't mean
that every single SNP is important

This could be thought of as a situation in which the grouping
is “soft”: if feature A is in a group with feature B that we
know is important, this means that feature A is more likely to
be important, but this is not definite
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Sparse group lasso

@ One simple way of achieving bi-level selection is to include
both a lasso and group lasso penalty:

QBIX,y) = L(BIX,y) + A Y > Bl + 2 > _1185ll:
Jj ok J

this penalty is known as the sparse group lasso (SGL)

@ Similar to the elastic net, it is common to reparameterize this
penalty using A and «, with A\; = @ and A2 = (1 — a)\ so
that o = 1 is equivalent to the lasso, & = 0 is equivalent to
the group lasso, and o = 0.5 is a 50-50 mix
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Derivative of the penalty

@ To get some insight into how the penalty works, let's consider
the partial derivative with respect to |3;i|, which | will denote
in today’s lecture as A jy:

A if 3; #0
Ajp = A + 218, ”B ” _ b7

@ In other words, if all the other elements of group j are zero,
Bji, receives the full penalty of A\; + Ao

e If, however, 3j; is located in a group with other important
variables (i.e., with large coefficients), it receives a lesser
penalty A1 + €)g, where € € [0, 1)
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In terms of developing an algorithm to solve for B
unfortunately there is no longer a closed-form solution at the
individual or group level

There would be, if we could assume %XJTX]- =TI as we did
with the group lasso

Unfortunately, we can no longer apply the orthonormalization
trick from the previous lecture — if we were to compute the
orthonormalized group X, its columns would no longer
correspond to the original columns of X

To put it a different way, we could achieve bi-level selection
on orthonormalized scale, but this would be lost once we
transformed back to the original scale
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Computing (cont'd)

@ One option would be to use a local linear approximation to
the penalty, where we would end up with expressions like the
one we just derived

e A different approach (used by the SGL package, which we will
be using today) is to employ an idea known as generalized
gradient descent, in which one calculates a direction
(gradient) along which we will update 3;, then applies a
soft-thresholding operator along that gradient

@ In a sense, this is like calculating an orthonormal
approximation to %X?X] and then using its closed form in
the orthonormal case to carry out group-wise updates
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Other options; convexity

@ The sparse group lasso adds the lasso and group lasso
penalties

@ In principle, one could imagine mixing other penalties (e.g.,
MCP + group lasso), but to my knowledge these have not
been investigated

@ One attractive feature of the SGL, however, is the fact that,
since both lasso and group lasso are convex penalties, the
resulting objective function is convex
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Example

@ To see an example of SGL in action, let’s simulate some data
with n = 50, z;j, € 'r'\cj N(0,1) and
o Coefficients in 10 groups of three (p = 30, J = 10)
o One group with 8; = (1,-0.5,0), another group with
B; = (—1,0.5,0), and the other eight groups with 3, = 0
o We'll fit SGL models over & = 0,0.1,0.2,...,1 and look at
how the coefficient paths change
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Example: paths
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Hierarchical framework

@ An alternative approach is to apply penalties in a hierarchical
manner, as opposed to an additive one

@ For example, suppose we have an outer penalty, po, applied
at the group level, and an inner penalty, p;, applied at the
individual feature level; the objective function would be

QBIX.y) = LIBIX.¥) + Y po{ D pi(I8ul) }-
j k

where po and pr would also depend on various
tuning/regularization parameters

@ For example, group lasso could be thought of in this
framework, with po(6) = A; 16]*/2 and p;(3) = B
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General framework
GEL

Derivative; insight

@ Again, to gain insight into the nature of penalties of this type,
let us consider the derivative with respect to (the absolute
value of) an individual coefficient:

A = vlo (D pr(185eD) ) r(18u)
k
= AoA1

@ In other words, thinking of A; as the penalty experienced by a
coefficient in the ungrouped case, this rate of penalization is
multiplied by a term Ao that depends on the size of the group
that the coefficient belongs to
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Ipenalties General framework

Case studies

Remarks

@ In the hierarchical framework, then, group and individual
penalties interact in a multiplicative manner, as opposed to an
additive manner in a penalties like SGL

@ Note that, for this to make sense, the outer penalty po must
be nonconvex — i.e., its rate of penalization must be
decreasing as the size of the group increases
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Group exponential lasso

@ As with additive penalties, one could imagine many possible
combinations here; | will briefly discuss one called the group
exponential lasso (GEL)

@ Here, the inner penalty is the the lasso penalty,
pI(:@j) = ”ﬁj||1 and the outer penalty is the exponential

penalty
A2 70
= — 1 —_— [ —
po(bIA,7) = — { exp ( 3 )}
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General framework

GEL

Derivative of the GEL penalty

e For the GEL penalty,
-
Ajk = Aexp {_X HﬁjHl}

@ Thus, for a coefficient in a group with 3; = 0, the penalty is
A, just as it is for the ordinary lasso

o When 3; # 0, however, Aj; < A, with the rate of
penalization decreasing exponentially as ||3,(|1 increases

@ Note that in this approach, the rate of penalization is the
same for all features in a given group, so we could drop the
subscript k£
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General framework

Computing

@ Computing can be carried out in a relatively straightforward
manner using the idea of local linear approximation that we
discussed in earlier lectures

@ To briefly address the ideas of convexity and convergence:

o Because the penalty function is strictly nonconvex in |3, the
algorithm is guaranteed to converge by theory underlying MM
algorithms

e However, as with all iterative algorithms applied to nonconvex
problems, we cannot guarantee convergence to a global
minimum

@ Here, 7 is the parameter that controls the convexity of the
objective function, with larger values of 7 leading to
increasingly nonconvex objectives
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Example: paths

Same example as earlier:
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Macular degeneration

Macular degeneration case study

@ To illustrate how SGL and GEL work, and how they compare
to lasso/group lasso, we will revisit our example from last
time involving the case/control study of macular degeneration

@ Here, n =800, p = 532, J = 30, and the outcome is binary;
for the sake of simplicity I'll focus only on the “grouping by
gene” analysis
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Additive penalties
Hierarchical penalties Macular degeneration
Case studies

@ An implementation of the SGL penalty is available from the R
package SGL

@ Its syntax is a little unconventional, and the package is not as
well developed as some of the others (e.g., no plot function),
but one can fit SGL models via:

cvSGL(list (x=X, y=y), index=nGene,
type="logit", alpha=0.5)

note that SGL requires integer-indexing of genes
@ The GEL penalty is available in grpreg; we have seen its
syntax previously:

cv.grpreg(X, y, group=Gene, family="binomial",
penalty="gel")
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Macular degeneration
Case studies

Results: GEL (R?
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Macular degeneration
Case

Results: GEL (ME)
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Macular degeneration

Remarks

@ Here, GEL doesn't necessarily outperform either lasso or group
lasso in terms of prediction, but does provide much more
sparse solutions

e The maximum R? achieved by GEL is 0.036 (0.040 for group
lasso and 0.037 for lasso in this example), and all methods
achieve 40% misclassification error

Number of genes Number of variants
(groups) selected  (features) selected

Lasso 20 22
Group lasso 11 193
SGL 25 237
GEL 6 15
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