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Motivation: Precision medicine

Most medical treatments have been designed for the �average

patient.� As a result of this �one-size-�ts-all� approach,

treatments can be very successful for some patients but not for

others.

Precision medicine is an approach to disease treatment and

prevention that seeks to maximize e�ectiveness by taking into

account individual variability in genes, environment, and

lifestyle.

However, it does not mean the creation of drugs or medical

devices that are unique to a patient, but rather the ability to

classify individuals into subpopulations that di�er in their

susceptibility to a particular disease, in the genetic factors of a

diseases, or in their response to a speci�c treatment.



Motivation: subgroup analysis

Subgroup analysis: subgrouping (clustering) with respect to

how a clinical outcome is related to individual characteristics,

including possibly unobserved ones.

Estimation of subgroup speci�c treatment e�ects: subgrouping

(clustering) with respect to heterogeneous treatment e�ects.

Estimation of treatment assignment rules: this may need to

take into account heterogeneity in the target patient

population.



A simulated example

Example 1. Consider a regression model with heterogeneous

treatment e�ects :

yi = zTi η + xiβi+εi, i = 1, . . . , n, (1)

where zi ∈ IR5. We randomly assign the treatment coe�cients to

two groups with equal probabilities, so that

βi = 2 for i ∈ G1 and βi = −2 for i ∈ G2.

Consider the two approaches:

Least squares regression without taking into account

heterogeneity.

The proposed method.



Example

Figure 1 : Simulated example, the two solid black lines represent y = 2x
and y = −2x
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Some existing approaches

Mixture model analysis (Gaussian mixture model): used widely

for data clustering and classi�cation (Ban�eld and Raftery

(1993); Hastie and Tibshirani (1996); McNicholas (2010); Wei

and Kosorok (2013), Shen and He (2015)).

This approach requires specifying the number of subgroups in

the population and a parametric model assumption.

Methods of estimating homogeneity e�ects of covariates

(Tibshirani et al. (2005); Bondell and Reich (2008); Shen and

Huang (2010); Ke, Fan and Wu (2013), among others). These

works consider grouping covariates, not observations.



Model and approach

We consider the model

yi = zTi η + xTi βi + εi, i = 1, . . . , n. (2)

Heterogeneous treatment e�ects: let G = (G1, . . . ,GK) be a

partition of {1, . . . , n}. Assume βi = αk for all i ∈ Gk, where αk is

the common value for the βi's from group Gk.

Goal: estimate K and identify the subgroups; estimate

(α1, . . . ,αK) and η.

Method: a concave pairwise fusion penalized least squares

approach.

Algorithm: an alternating direction method of multipliers

(ADMM, Boyd et al. 2011).

Challenge: information of subgroups are unknown (the number of

subgroups, which subjects belong to which subgroups, etc.)



Subgroup Analysis via Concave Pairwise Fusion

Consider the concave pairwise fusion penalized least squares

criterion

Qn(η,β;λ) =
1
2

n∑
i=1

(yi−zTi η−xTi βi)
2+

∑
1≤i<j≤n

p(‖βi−βj‖, λ), (3)

where p(·, λ) is a penalty function with a tuning parameter λ ≥ 0.
Let

(η̂(λ), β̂(λ)) = argmin
η∈IRq

,β∈IRnp
Qn(η,β;λ). (4)

We compute (η̂(λ), β̂(λ)) for λ ∈ [λmin, λmax], where λmax is the

value that forces a constant β̂ solution and λmin is a small positive

number. We are particularly interested in the path

{β̂(λ) : λ ∈ [λmin, λmax]}.



Concave Pairwise Fusion

The penalty shrinks some of the pairs βj − βk to zero. Based on

this, we can partition the sample into subgroups.

Let {α̂1, . . . , α̂K̂} be the distinct values of β̂. Let

Ĝk = {i : β̂i = α̂k, 1 ≤ i ≤ n}, 1 ≤ k ≤ K̂.

Then {Ĝ1, . . . , ĜK̂} constitutes a partition of {1, . . . , n}.



Penalty function

L1 penalty: pγ(t, λ) = λt, leads to biased estimates; In our

numerical studies, the L1 penalty tends to either yield a large

number of subgroups or no subgroups on the solution path.

A penalty which can produce nearly unbiased estimates is more

appealing.

The SCAD penalty (Fan and Li 2001):

pγ(t, λ) = λ

∫ t

0
min{1, (γ − x/λ)+/(γ − 1)}dx, γ > 2

The MCP (Zhang 2010):

pγ(t, λ) = λ

∫ t

0
(1− x/(γλ))+dx, γ > 1



ADMM Algorithm

Introduce a new set of parameters δij = βi − βj.

The minimization of (3) is equivalent to minimizing

L0(η,β, δ) =
1
2

∑n

i=1
(yi − zTi η − xTi βi)

2 +
∑

i<j
pγ(‖δij‖, λ),

subject to βi − βj − δij = 0, (5)

where δ = {δTij , i < j}T.



ADMM

The augmented Lagrangian is

L(η,β, δ,υ) =
1
2

n∑
i=1

(yi − zTi η − xTi βi)
2 +

∑
j<k

pγ(‖δjk‖, λ) (6)

+
∑
j<k

〈
υjk,βj − βk − δjk

〉
+
ϑ

2

∑
j<k

‖βj − βk − δjk‖2.

For a given (δm,υm) at step m, the iteration goes as follows:

(ηm+1,βm+1) = argmin
η,β

L(η,β, δm,υm), (7)

δm+1 = argmin
δ

L(ηm+1,βm+1, δ,υm), (8)

υm+1
ij = υm

ij + ϑ(βm+1
i − βm+1

j − δm+1
ij ). (9)



ADMM

Step (7) is a quadratic minimization problem.

Step (8) involves minimizing

ϑ

2
‖ζm

jk − δjk‖2 + pγ(‖δjk‖, λ) (10)

with respect to δjk, where ζ
m
jk = β

m
j − βm

k + ϑ−1υm
jk. This is a

thresholding operator corresponding to pγ .

For the L1 penalty,

δm+1
jk = S(ζm

jk, λ/ϑ), (11)

where S(z, t) = (1− t/‖z‖)+z is the groupwise soft

thresholding operator. Here (x)+ = x if x > 0 and = 0,
otherwise.



ADMM

MCP with γ > 1/ϑ,

δm+1
ij =

{
S(ζm

ij ,λ/ϑ)

1−1/(γϑ) if ‖ζm
ij ‖ ≤ γλ,

ζ ij if ‖ζm
ij ‖ > γλ.

(12)

SCAD penalty with γ > 1/ϑ+ 1,

δm+1
ij =


S(ζm

ij , λ/ϑ) if ‖ζm
ij ‖ ≤ λ+ λ/ϑ,

S(ζm
ij ,γλ/((γ−1)ϑ))

1−1/((γ−1)ϑ) if λ+ λ/ϑ < ‖ζm
ij ‖ ≤ γλ,

ζm
ij if ‖ζm

ij ‖ > γλ.
(13)



ADMM initial value

To start the ADMM algorithm, it is important to �nd a reasonable

initial value. We consider the ridge fusion criterion given by

LR(η,β) =
1
2
‖Zη − Xβ − y‖2 +

λ∗

2

∑
1≤j<k≤n

‖βj − βk‖2,

where λ∗ is the tuning parameter having a small value. We use

λ∗ = 0.001 in our analysis.



ADMM solution path

To compute the solution path of η and β along the λ values, we

use the warm start and continuation strategy to update the

solutions. Let [λmin, λmax] be the interval on which we compute the

solution path.

Let λmin = λ0 < λ1 < · · · < λK ≡ λmax be a grid of λ values

in [λmin, λmax]. Compute the ridge fusion solution

(η̂(λ0), β̂(λ0)) and use it as the initial value.

Compute (η̂(λk), β̂(λk)) using (η̂(λk−1), β̂(λk−1)) as the
initial value for k = 1, . . . ,K.

Note that we start from the smallest λ value in computing the

solution path.



Statistical Properties

Let W̃= {wik} be an n×K matrix with wik = 1 for i ∈ Gk and

wik = 0 otherwise. Let W =W̃⊗Ip.

Let

MG = {β ∈ IRnp : βi = βj, for any i, j ∈ Gk, 1 ≤ k ≤ K}.

For each β ∈MG , it can be written as β = Wα, where
α = (αT1 , . . . ,α

T
K)
T and αk is a p× 1 vector of the kth

subgroup-speci�c parameter for k = 1, . . . ,K.

Denote the minimum and maximum group sizes by

|Gmin|=min1≤k≤K |Gk| and |Gmax|=max1≤k≤K |Gk|,
respectively.

Let X̃ = XW and U = (Z,XW).



Statistical properties

If the underlying groups G1, . . . ,GK were known, the oracle

estimator of (η,β) is

(η̂or, β̂
or
) = argmin

η∈IRq
,β∈MG

1
2
‖y− Zη − Xβ‖2, (14)

and correspondingly, the oracle estimators for the common

coe�cient α and the coe�cients η are

(η̂or, α̂or) = argmin
η∈ IRq

,α∈ IRKp

1
2
‖y− Zη − X̃α‖2

= (UTU)−1UTy.

Let α0
k be the true common coe�cient vector for group Gk,

k = 1, . . . ,K and α0 = ((α0
k)
T, k = 1, . . . ,K)T. Of course, oracle

estimators are not real estimators, they are theoretical constructions

useful for stating the properties of the proposed estimators.



(C1) The noise vector ε = (ε1, . . . , εn)
T has sub-Gaussian tails

such that P(|aTε| > ‖a‖x) ≤ 2 exp(−c1x2) for any vector

a ∈ IRn and x > 0, where 0 < c1 <∞.

(C2) Let ρ(t) = λ−1pγ(t, λ). Suppose ρ(t) is a symmetric function

of t and is non-decreasing and concave on [0,∞). Also, ρ(t) is
a constant for t ≥ aλ for some constant a > 0, and ρ(0) = 0.
In addition, ρ′(t) exists and is continuous except for a �nite

number of t and ρ′(0+) = 1.

(C3) Assume
∑n

i=1 z2
ij = n for 1 ≤ k ≤ q, and∑n

i=1 x2
ij1{i ∈ Gk } = |Gk| for 1 ≤ j ≤ p,

λmin(UTU) ≥ C1 |Gmin|, supi ‖xi‖ ≤ C2
√

p and

supi ‖zi‖ ≤ C3
√

q for some constants 0 < C1 <∞,

0 < C2 <∞ and 0 < C3 <∞.



Let

φn = c−1/2
1 C−1

1

√
q + Kp |Gmin|−1√n log n. (15)

and

bn = min
i∈Gk,j∈Gk′ ,k 6=k′

‖β0
i − β0

j ‖ = min
k 6=k′
‖α0

k −α0
k′‖

be the minimal di�erence of the common values between two

groups.

Theorem

Suppose (C1)-(C3) hold, Kp = o(n), q = o(n), and

|Gmin| �
√

(q + Kp)n log n.

If bn > aλ and λ� φn, for some constant a > 0, where φn is given

in (15), then there exists a local minimizer (η̂(λ), β̂(λ)) of the

objective function Qn(η,β;λ) given in (3) satisfying

P
(
(η̂(λ), β̂(λ)) = (η̂or, β̂

or
)
)
→ 1.



Simulation Studies

We use the modi�ed Bayes Information Criterion (BIC) (Schwarz,

1978; Wang, Li and Tsai, 2007) for high-dimensional data settings

to select the tuning parameter by minimizing

BIC(λ) = log[
∑n

i=1
(yi−zTi η̂(λ)−xTi β̂i(λ))

2/n]+Cn
log n

n
(K̂(λ)p+q),

(16)

where Cn is a positive number which can depend on n. We use

Cn = log(np + q). We select λ by minimizing the modi�ed BIC.



Example 1

Example 1 (One treatment variable). Consider

yi = zTi η + xiβi+εi, i = 1, . . . , n, (17)

where

zi = (zi1, zi2, . . . , zi5)
T with zi1 = 1 and (zi2, . . . , zi5)

T

generated from multivariate normal with mean 0, variance 1
and an exchangeable correlation ρ = 0.3, xi is simulated from

N(0, 1).
εi are i.i.d. N(0, 0.52).

η = (η1, . . . , η5)
T with ηk simulated from Uniform[1, 2] for

k = 1, . . . , 5.
We randomly assign the treatment coe�cients to two groups

with equal probabilities, i.e., p(i ∈ G1) = p(i ∈ G2) = 1/2, so
that βi = α1 for i ∈ G1 and βi = α2 for i ∈ G2, where α1 = 2
and α2 = −2.
We consider n = 100, 200.



Example 1

Figure 2 : Fusiongram: Solution paths for (β̂1(λ), . . . , β̂n(λ)) against λ
with n = 200 for data from Example 1.
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Example 1

Table 1 : The sample mean, median and standard deviation (s.d.) of K̂
and the percentage (per) of K̂ equaling the true number of subgroups by
MCP and SCAD based on 100 replications with n = 100 and 200 in
Example 1.

n = 100 n = 200
mean median s.d. per mean median s.d. per

MCP 2.380 2.000 0.716 0.710 2.210 2.000 0.520 0.790
SCAD 2.340 2.000 0.708 0.710 2.210 2.000 0.541 0.800



Table 2 : The sample mean, median and asymptotic standard deviation
(ASD) of the estimators α̂1 and α̂2 by MCP and SCAD and oracle
estimators α̂or

1 and α̂or
2 based on 100 replications with n = 100, 200 in

Example 1.

n = 100 n = 200
mean median ASD mean median ASD

α̂1 MCP 1.884 1.928 0.077 1.907 1.963 0.055
SCAD 1.874 1.964 0.078 1.899 1.928 0.057

α̂or
1 1.993 1.998 0.072 1.998 1.999 0.051
α̂2 MCP −1.783 −1.929 0.078 −1.823 −1.959 0.071

SCAD −1.770 −1.954 0.078 −1.778 −1.921 0.071
α̂or

2 −1.993 −1.988 0.073 −2.001 −2.005 0.052



Figure 3 : The boxplots of the MSEs of η̂ using MCP and SCAD,
respectively, with n = 100 (white) and n = 200 (grey) in Example 1.
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Example 2 (Multiple treatment variables). We simulated data

from the heterogeneous model with multiple treatment variables:

yi = zTi η + xTi βi+εi, i = 1, . . . , n, (18)

where

zi, εi and η are simulated in the same way as in Example 1.

Let xi = (xi1, xi2, xi3)
T in which xi1 is simulated from standard

normal and (xi2, xi3)
T are from centered and standardized

binomial with probability 0.7 for one outcome.

We randomly assign the responses to two groups with equal

probabilities, i.e., we let p(i ∈ G1) = p(i ∈ G2) = 1/2, so that

βi = α1 for i ∈ G1 and βi = α2 for i ∈ G2, where

α1 = (α11, α12, α13) and α2 = (α21, α22, α23). Let α1j = α
and α2j = −α for j = 1, 2, 3. We let α = 1, 2 for di�erent

signal-noise ratios. Let n = 200.



Figure 4 : Fusiongram for (β11, . . . , β1n), the �rst component in βi's in
Example 2.
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Table 3 : The sample mean, median and standard deviation (s.d.) of K̂
and the percentage (per) that K̂ equals to the true number of subgroups
by MCP and SCAD based on 100 replications with α = 1, 2 in Example 2.

α = 1 α = 2
mean median s.d. per mean median s.d. per

MCP 2.700 3.000 0.717 0.440 2.180 2.000 0.411 0.830
SCAD 2.690 3.000 0.706 0.440 2.190 2.000 0.419 0.820



Example 3 (No treatment heterogeneity). We generate data from

a model with homogeneous treatment e�ects

yi = zTi η + xiβ+εi, i = 1, . . . , n,

where zi, xi, εi and η are simulated in the same way as in Example

1. Set β = 2 and n = 200.

We use our proposed penalized estimation approach to �t the

model assuming the possible existence of treatment

heterogeneity.

The sample mean of the estimated number of groups K̂ is 1.49

and 1.48 based on 100 replications, respectively, for the MCP

and SCAD methods.

The sample median is 1 for both methods.



Table 4 : The empirical bias (Bias) of the estimates of β and η, and the
average asymptotic standard deviation (ASD) and the empirical standard
deviation (ESD) of MCP and SCAD, as well as the oracle estimator
(ORAC) in Example 3.

β η1 η2 η3 η4 η5

Bias −0.005 −0.002 0.007 0.003 0.002 0.001

MCP ASE 0.035 0.034 0.037 0.037 0.038 0.037

ESE 0.034 0.041 0.038 0.041 0.042 0.038

Bias −0.004 −0.001 0.007 0.003 0.002 0.001

SCAD ASE 0.035 0.034 0.037 0.037 0.037 0.037

ESE 0.034 0.040 0.037 0.041 0.042 0.038

Bias −0.004 −0.001 0.006 0.004 0.002 −0.001
ORAC ASE 0.036 0.035 0.038 0.038 0.039 0.038

ESE 0.036 0.039 0.034 0.039 0.041 0.037



ACTG175 data

We apply our method to the AIDS Clinical Trials Group Study 175

(ACTG175) (Tsiatis et al., 2007), ACTG175 was a randomized

clinical trial to compare the 4 treatments:

zidovudine with other three therapies including

zidovudine and didanosine,

zidovudine and zalcitabine,

didanosine

in adults infected with the human immunode�ciency virus type I.

We randomly select 300 patients from the study to consist of our

dataset.



ACTG175 data

The response variable is the log-transformed value of the CD4

counts at 20±5 weeks.

We use binary variables for the treatments xi = (xi1, xi2, xi3)
T.

There are 12 baseline covariates in the model,
1 age (years),
2 weight (kg),
3 Karnofsky score,
4 CD4 counts at baseline,
5 CD8 counts at baseline,
6 hemophilia (0 =no, 1 =yes),
7 homosexual activity (0 =no, 1 =yes),
8 history of intravenous drug use (0 =no, 1 =yes),
9 race (0 =white, 1 =not white),

10 gender (0 =female, 1 =male),
11 antiretroviral history (0 =naive, 1 =experienced) and
12 symptomatic status (0 =asymptomatic, 1 =symptomatic).



ACTG175 data

We �t the heterogeneous model

yi = zTi η + xTi βi+εi, i = 1, . . . , 300,

where zi = (1, zi2 . . . , zi13)
T with the �rst component for

intercept and other components being the 12 covariates

described above. All the predictors are centered and

standardized.

We identi�ed two subgroups.



ACTG175 data

Figure 5 : Fusiongrams for β1 = (β11, . . . , β1n), β2 = (β21, . . . , β2n), and
β3 = (β31, . . . , β3n).
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Table 5 : The estimates (Est.), standard deviations (s.d.) and p-values
(P-value) of α1 and α2 by the MCP and SCAD methods, and those
values of β = α1 by the OLS method.

α11 α12 α13 α21 α22 α23

MCP Est. 0.141 -0.011 -0.039 0.835 0.666 0.687

s.d. 0.055 0.055 0.055 0.394 0.268 0.251

p-value 0.010 0.841 0.478 0.034 0.013 0.006

SCAD Est. 0.142 -0.010 -0.037 0.805 0.614 0.636

s.d. 0.055 0.055 0.055 0.395 0.268 0.251

p-value 0.010 0.855 0.501 0.041 0.022 0.011

OLS Est. 0.212 0.035 0.036 � � �

s.d. 0.060 0.058 0.058 � � �

p-value < 0.001 0.550 0.532 � � �



Concluding remarks

Extension to other important models (e.g., logistic regression,

Cox regression) is conceptually straightforward, but theoretical

analysis and computation are more di�cult.

Extension to p� n models is also possible, but requires

further sparsity assumption to ensure model identi�ability, and

theoretical analysis is more di�cult.

It is of interest to speed up the ADMM so that it can handle

large n problems.

It is possible to weaken the conditions for the theoretical

results, but this will not change the basic story.

The theoretical results are derived for �xed λ values. It is

much more di�cult to derive the results for λ values selected

based on a data-driven procedure.



Thank you!
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