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Introduction

@ Today's lecture will focus on using subsampling, resampling,
and sample splitting as ways to carry out inference for
high-dimensional models

@ These methods tend to be somewhat computationally
intensive, as they can involve fitting a high-dimensional model
hundreds or thousands of times

@ This is not necessarily prohibitive from the standpoint of

analyzing a single data set, but it does present a barrier to
comprehensive simulation studies
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Example data for today

To illustrate the methods, I'll apply them to a simulated data set
with the same basic construction as those we looked at last week
(n =100, p = 60, 0% = 1):

@ Six variables with /3; # 0 (category “A”):

o Two variables with 3; = +£1:
o Four variables with 8; = 30.5:

@ Each of the six variables is correlated (p = 0.5) with two other
variables (i.e., 12 variables fall into this category) for which
B;=0("8")

@ The remaining 42 variables are pure noise, 8; = 0 and
independent of all other variables (“C")
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Single split
Multiple splits

Sample splitting: Idea

@ We begin with the simplest idea: sample splitting

@ We have already seen the basic idea of sample splitting when
we discussed the “refitted cross-validation” approach to
estimating o

@ The approach involves two steps:

(1) Take half of the data and fit a penalized regression model

(e.g., the lasso); typically this involves cross-validation as well
for the purposes of selecting A

(2) Use the remaining half to fit an ordinary least squares model
using only the variables that were selected in step (1)
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Single split

Sample splitting: Example (step 1)

@ Let's split the example data set into two halves, Dy and Do,
each with n = 50 observations
e Fitting a lasso model to D; and using cross-validation to
select A, we select 29 variables:
e 5 from category A
e 5 from category B
e 19 from category C
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le (step 2)

o Fitting an ordinary linear regression model to the selected
variables (n = 50, p = 29), only two coefficients (the two with
Bj = 1) are significant in the p < 0.05 sense

o If we relax that to p < 0.1, an additional variable with
Bj = 0.5 is found to be significant, as is a variable from
category “B" (as you might expect, the variable it was
correlated with was the one that was not selected by the
original lasso)

@ We can obtain confidence intervals as well, although note that
we only obtain confidence intervals for coefficients selected in
step (1)
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Sample splitting: Advantages and disadvantages

@ The main advantage of the sample splitting approach is that
it is clearly valid: all inference is derived from classical linear
model theory

@ One minor obstacle, as we have seen, is that one can have
increased type | errors if we fail to select all of the important
variables at stage (1)

@ The main disadvantages are:

e Lack of power due to splitting the sample size in half
@ Results can vary considerably depending on the split chosen
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Single split

Multiple splits

Multiple splits

@ An obvious remedy for the second disadvantage is to apply
the sample splitting procedure many times and average over
the splits

@ To some extent, this will also help with the problem of failing
to select important variables in stage (1)

@ One major challenge with this approach, however, is how

exactly we average over results in which a covariate was not
included in the model
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Averaging over unselected variables

@ One conservative remedy is to simply assign p; = 1 whenever
j & S, the set of selected variables from stage 1

e With this substitution in place, we will have, for each variable,

a vector of p-values pg-l), cee §B), where B is the number of

random splits, which we can aggregate in a variety of ways

@ For the results that follow, | used the median
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Multiple split approach applied to example data

1.0
] s
L .
0.8
0.6 - ¢
o
0.4
0.2 -
. =
[ T 1
A B c

Four variables from A have p < 0.05
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Multiple splits

Remarks

@ Certainly, the results are much more stable if we average
across sample splits

@ The other downside, however, (loss of power from splitting
the sample in two) cannot be avoided

@ It is possible to extend this idea to obtain confidence intervals
as well by inverting the hypothesis tests, although the
implementation gets somewhat complicated
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Multiple splits

TCGA data

@ To get a feel for how conservative this approach is, let's apply
it to the TCGA data (n = 536, p = 17, 322)

@ Using the multiple-splitting approach, only a single variable is
significant with p < 0.05 (one other variable has p = 0.08; all
others are above 0.1)

@ This is in sharp contrast to our results from yesterday, in
which we were able to identify 52 features using the false
inclusion rate approach
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Stability selection

@ One could argue that trying to obtain a classical p-value isn't
really the right goal, that what makes sense for single
hypothesis testing isn't relevant to high-dimensional modeling

o Consider, then, the idea of stability selection (Meinshausen &
Biihlmann, 2010), in which we decide that a variable is
significant if it is selected in a high proportion of penalized
regression models that have been applied to “perturbed” data

@ The most familiar way of perturbing a data set is via

resampling (i.e., bootstrapping), although the authors also
considered other ideas
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Details

@ Furthermore, there are a variety of ways of carrying out
bootstrapping, a point we will return to later

@ For simplicity, I'll stick to what the authors chose in their
original paper: randomly select n/2 indices from {1,...,n}
without replacement (this is based on an argument from
Freedman 1977 that sampling n/2 without replacement is
fairly similar to resampling n with replacement)

o Letting mh, denote a specified cutoff and 7;(\) the fraction of
times variable j is selected for a given value of A, the set of
stable variables is defined as

{j : ﬁ](A) > 7Tthr}
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Stability selection for example data

Variables with 5; # 0 in red:
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Variables that exceed 7y, = 0.6 for any A in red:
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FDR bound

@ Meinshausen & Biihlmann also provide an upper bound for
the expected number of false selections in the stable set (i.e.,
variables with 5; = 0 and @;(\) > Thy):

2Mehe — 1 p

where S(\) is the expected number of selected variables
@ Note that this bound can only be applied if m,, > 0.5

@ In practice, however, this bound is very conservative and not
particularly useful:
o For the example data set, we identify only the two variables
with 3; = 1, even if we allow an FDR of 30%
e For the TCGA data set, no variables can be stably selected

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600)



Sample splitting
Stability sel ol
Bootstrapping

Bootstrapping

@ Stability selection is essentially just bootstrapping, with a
special emphasis on whether Ej(-b) =0

@ There are a variety of ways of carrying out bootstrapping for
regression models; the one we have just seen, in which one
selects random elements from {(x;,v;)}I, is known as the
pairs bootstrap or pairwise bootstrap

@ Alternatively, we may obtain estimators ,@ and 62 (e.g., from
the lasso using cross-validation) and use them to bootstrap
residuals parametrically:

er ~N(0,62),

with y;* = Zj :L‘ijgj + 6:
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Bootstrap intervals: Example data

Bootstrap percentile intervals for the six coefficients with 3; # 0,
residual approach, X fixed at Acy

Al ——

A2 _—

A3 [
A4 —_—
AS —_—
A6 -
T T T T T T 1
-15 -1.0 -0.5 0.0 0.5 1.0 15
B

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600)



Stability
Bootstra

Bootstrap and stability
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Does bootstrapping work?

@ This is interesting, but a natural question would be whether or
not bootstrapping actually works in this setting

@ In particular, we have theoretical results establishing that
bootstrapping works for maximum likelihood; do those proofs
extend to penalized likelihood settings?

@ It turns out that the answer is a qualified “no”
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Limitations/failures of bootstrapping

@ Specifically, bootstrapping requires, at a minimum,
\/n-consistency

@ Thus, even if it were to work with the lasso, would only work
for small values of A; i.e., A = O(1/y/n)
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Bootstrap intervals revisited

Bootstrap intervals with a larger regularization parameter,
A =0.35:
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@ A subtler question is whether, even if we have \/n-consistency,
the bootstrap will work

@ It turns out that the answer is still “no”, at least for the lasso,
as shown by Chatterjee and Lahiri (2010)

@ However, in their follow-up paper, Chatterjee and Lahiri
(2011), they show that the bootstrap does work
(asymptotically) for the adaptive lasso (and by extension,
other models with the oracle property, such as MCP and
SCAD)

@ Of course, just because it works asymptotically doesn’'t mean
it works well in finite samples; not much work has been done
in terms of rigorous simulation studies examining the accuracy
of bootstrapping for MCP
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Bootstrap intervals for MCP

Bootstrap percentile intervals, residual approach, A selected by
cross-validation

Al —_——

A2 —_—

A3 —_—

A4 —_

A5 —_——

A6 —_—

I T T T T T 1
-15 -1.0 -0.5 0.0 0.5 1.0 15

B

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600)



Bootstrap and Bayesian posterior

e Finally, it is worth noting that the distribution of bootstrap
realizations B tends to be fairly similar to the posterior
distribution of the corresponding Bayesian model in which the
penalty is translated into a prior

@ This raises the question, then, of whether examples like the
preceding are truly failures of the bootstrap, or whether they
simply reflect the incompatibility of penalization/priors and
frequentist inference goals like 95% coverage
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