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Introduction

Today’s lecture will focus on using subsampling, resampling,
and sample splitting as ways to carry out inference for
high-dimensional models

These methods tend to be somewhat computationally
intensive, as they can involve fitting a high-dimensional model
hundreds or thousands of times

This is not necessarily prohibitive from the standpoint of
analyzing a single data set, but it does present a barrier to
comprehensive simulation studies

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 2/26



Sample splitting
Stability selection

Bootstrapping

Example data for today

To illustrate the methods, I’ll apply them to a simulated data set
with the same basic construction as those we looked at last week
(n = 100, p = 60, σ2 = 1):

Six variables with βj 6= 0 (category “A”):

Two variables with βj = ±1:
Four variables with βj = ±0.5:

Each of the six variables is correlated (ρ = 0.5) with two other
variables (i.e., 12 variables fall into this category) for which
βj = 0 (“B”)

The remaining 42 variables are pure noise, βj = 0 and
independent of all other variables (“C”)
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Sample splitting: Idea

We begin with the simplest idea: sample splitting

We have already seen the basic idea of sample splitting when
we discussed the “refitted cross-validation” approach to
estimating σ2

The approach involves two steps:

(1) Take half of the data and fit a penalized regression model
(e.g., the lasso); typically this involves cross-validation as well
for the purposes of selecting λ

(2) Use the remaining half to fit an ordinary least squares model
using only the variables that were selected in step (1)
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Sample splitting: Example (step 1)

Let’s split the example data set into two halves, D1 and D2,
each with n = 50 observations

Fitting a lasso model to D1 and using cross-validation to
select λ, we select 29 variables:

5 from category A
5 from category B
19 from category C

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 5/26



Sample splitting
Stability selection

Bootstrapping

Single split
Multiple splits

Sample splitting: Example (step 2)

Fitting an ordinary linear regression model to the selected
variables (n = 50, p = 29), only two coefficients (the two with
βj = 1) are significant in the p < 0.05 sense

If we relax that to p < 0.1, an additional variable with
βj = 0.5 is found to be significant, as is a variable from
category “B” (as you might expect, the variable it was
correlated with was the one that was not selected by the
original lasso)

We can obtain confidence intervals as well, although note that
we only obtain confidence intervals for coefficients selected in
step (1)
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Sample splitting: Advantages and disadvantages

The main advantage of the sample splitting approach is that
it is clearly valid: all inference is derived from classical linear
model theory

One minor obstacle, as we have seen, is that one can have
increased type I errors if we fail to select all of the important
variables at stage (1)

The main disadvantages are:

Lack of power due to splitting the sample size in half
Results can vary considerably depending on the split chosen
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Multiple splits

An obvious remedy for the second disadvantage is to apply
the sample splitting procedure many times and average over
the splits

To some extent, this will also help with the problem of failing
to select important variables in stage (1)

One major challenge with this approach, however, is how
exactly we average over results in which a covariate was not
included in the model
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Averaging over unselected variables

One conservative remedy is to simply assign pj = 1 whenever
j /∈ S, the set of selected variables from stage 1

With this substitution in place, we will have, for each variable,

a vector of p-values p
(1)
j , . . . , p

(B)
j , where B is the number of

random splits, which we can aggregate in a variety of ways

For the results that follow, I used the median

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 9/26



Sample splitting
Stability selection

Bootstrapping

Single split
Multiple splits

Multiple split approach applied to example data
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Four variables from A have p < 0.05
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Remarks

Certainly, the results are much more stable if we average
across sample splits

The other downside, however, (loss of power from splitting
the sample in two) cannot be avoided

It is possible to extend this idea to obtain confidence intervals
as well by inverting the hypothesis tests, although the
implementation gets somewhat complicated
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TCGA data

To get a feel for how conservative this approach is, let’s apply
it to the TCGA data (n = 536, p = 17, 322)

Using the multiple-splitting approach, only a single variable is
significant with p < 0.05 (one other variable has p = 0.08; all
others are above 0.1)

This is in sharp contrast to our results from yesterday, in
which we were able to identify 52 features using the false
inclusion rate approach
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Stability selection

One could argue that trying to obtain a classical p-value isn’t
really the right goal, that what makes sense for single
hypothesis testing isn’t relevant to high-dimensional modeling

Consider, then, the idea of stability selection (Meinshausen &
Bühlmann, 2010), in which we decide that a variable is
significant if it is selected in a high proportion of penalized
regression models that have been applied to “perturbed” data

The most familiar way of perturbing a data set is via
resampling (i.e., bootstrapping), although the authors also
considered other ideas
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Details

Furthermore, there are a variety of ways of carrying out
bootstrapping, a point we will return to later

For simplicity, I’ll stick to what the authors chose in their
original paper: randomly select n/2 indices from {1, . . . , n}
without replacement (this is based on an argument from
Freedman 1977 that sampling n/2 without replacement is
fairly similar to resampling n with replacement)

Letting πthr denote a specified cutoff and π̂j(λ) the fraction of
times variable j is selected for a given value of λ, the set of
stable variables is defined as

{j : π̂j(λ) > πthr}
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Stability selection for example data

Variables with βj 6= 0 in red:
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Stability selection for TCGA data

Variables that exceed πthr = 0.6 for any λ in red:
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FDR bound

Meinshausen & Bühlmann also provide an upper bound for
the expected number of false selections in the stable set (i.e.,
variables with βj = 0 and π̂j(λ) > πthr):

1

2πthr − 1

S(λ)2

p
,

where S(λ) is the expected number of selected variables

Note that this bound can only be applied if πthr > 0.5

In practice, however, this bound is very conservative and not
particularly useful:

For the example data set, we identify only the two variables
with βj = 1, even if we allow an FDR of 30%
For the TCGA data set, no variables can be stably selected
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Bootstrapping

Stability selection is essentially just bootstrapping, with a

special emphasis on whether β̂
(b)
j = 0

There are a variety of ways of carrying out bootstrapping for
regression models; the one we have just seen, in which one
selects random elements from {(xi, yi)}ni=1, is known as the
pairs bootstrap or pairwise bootstrap

Alternatively, we may obtain estimators β̂ and σ̂2 (e.g., from
the lasso using cross-validation) and use them to bootstrap
residuals parametrically:

ε∗i ∼ N(0, σ̂2),

with y∗i =
∑

j xij β̂j + ε∗i
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Bootstrap intervals: Example data

Bootstrap percentile intervals for the six coefficients with βj 6= 0,

residual approach, λ fixed at λ̂CV
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Bootstrap and stability
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Does bootstrapping work?

This is interesting, but a natural question would be whether or
not bootstrapping actually works in this setting

In particular, we have theoretical results establishing that
bootstrapping works for maximum likelihood; do those proofs
extend to penalized likelihood settings?

It turns out that the answer is a qualified “no”
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Limitations/failures of bootstrapping

Specifically, bootstrapping requires, at a minimum,√
n-consistency

Thus, even if it were to work with the lasso, would only work
for small values of λ; i.e., λ = O(1/

√
n)
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Bootstrap intervals revisited

Bootstrap intervals with a larger regularization parameter,
λ = 0.35:

●

●

●

●

●

●

β

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

A1

A2

A3

A4

A5

A6

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 23/26



Sample splitting
Stability selection

Bootstrapping

Limitations/failures of bootstrapping (cont’d)

A subtler question is whether, even if we have
√
n-consistency,

the bootstrap will work

It turns out that the answer is still “no”, at least for the lasso,
as shown by Chatterjee and Lahiri (2010)

However, in their follow-up paper, Chatterjee and Lahiri
(2011), they show that the bootstrap does work
(asymptotically) for the adaptive lasso (and by extension,
other models with the oracle property, such as MCP and
SCAD)

Of course, just because it works asymptotically doesn’t mean
it works well in finite samples; not much work has been done
in terms of rigorous simulation studies examining the accuracy
of bootstrapping for MCP
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Bootstrap intervals for MCP

Bootstrap percentile intervals, residual approach, λ selected by
cross-validation
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Bootstrap and Bayesian posterior

Finally, it is worth noting that the distribution of bootstrap
realizations β̂

∗
tends to be fairly similar to the posterior

distribution of the corresponding Bayesian model in which the
penalty is translated into a prior

This raises the question, then, of whether examples like the
preceding are truly failures of the bootstrap, or whether they
simply reflect the incompatibility of penalization/priors and
frequentist inference goals like 95% coverage

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 26/26


	Sample splitting
	Single split
	Multiple splits

	Stability selection
	Bootstrapping

