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Where we’re at and where we’re going

At this point, we’ve covered the most widely used approaches
to fitting penalized regression models in the standard setting

The remainder of the course will focus on:

Inference for β
Other models, such as logistic regression and Cox regression
Other covariate structures, such as grouping and fusion

We’ll begin with inference

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 2/29



Inference: Overview
False inclusion rates

Case studies

Inferential questions

Up until this point, our inference has been restricted to the
predictive ability of the model (which we can obtain via
cross-validation)

This is useful, of course, but we would also like to be able to
ask the questions:

How reliable are the selections made by the model? What is its
false discovery rate?
How accurate are the estimates yielded by the model? Can we
obtain confidence intervals for β? Can we obtain confidence
intervals for only the selected elements of β?
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Overview

As I’ve remarked previously, little progress was made on these
questions until relatively recently, and the field is still very
much unsettled as far as a consensus on how to proceed with
inference

Broadly speaking, I would classify the proposed approaches
into four major categories:

Debiasing
False inclusion rates
Sample splitting/resampling
Selective inference
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Debiasing

We have already seen the idea of debiasing in the
semi-penalized approach Jian discussed last week

The basic idea behind debiasing is that frequentist inference
tends to work well if β̂j

.∼ N(βj ,SE2)

Penalized regression estimates obviously do not have this
property (with the possible exception of MCP/SCAD), so
debiasing approaches attempt to construct an estimate β̃j ,

based on β̂ in some way, for which approximate unbiased
normality holds
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Implementations

We have already seen one way to accomplish this: simply set
λj = 0 for βj (SPIDR)

Many other approaches along these lines have been proposed,
instead using analytical means to develop a bias correction
term:

Zhang and Zhang (2014)
Bühlmann (2013)
van de Geer et al. (2013)
Javanmard and Montanari (2014)

It is worth noting that these ideas are not exactly inferential
approaches for penalized regression estimates, but rather ways
of using penalized regression estimates as starting points for
high-dimensional inference
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Motivation
Independence case
Correlated case

False inclusion rates: KKT conditions

In contrast, false inclusion rates attempt to directly estimate
the error rates for coefficients selected by penalized regression
estimates

Recall the KKT conditions for the lasso:

1

n
x′jr = λ sign(β̂j) for all β̂j 6= 0

1

n

∣∣x′jr∣∣ ≤ λ for all β̂j = 0
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KKT conditions in terms of partial residuals

Letting X−j and β−j denote the portions of the design
matrix and coefficient vector that remain after removing the
jth feature, let rj = y −X−jβ̂−j denote the partial residuals
with respect to feature j

The KKT conditions thus imply that

1

n

∣∣x′jrj∣∣ > λ for all β̂j 6= 0

1

n

∣∣x′jrj∣∣ ≤ λ for all β̂j = 0

and therefore that the probability that variable j is selected is

P
(

1

n

∣∣x′jrj∣∣ > λ

)
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Orthogonal case

This suggests that if we are able to characterize the
distribution of 1

nx
′
jrj under the null, we can estimate the

number of false selections in the model

Indeed, this is easy to do in the case of orthonormal design
( 1
nX
′X = I)

Theorem: Suppose 1
nX
′X = I. Then for any value of λ,

E |S ∩ N | = 2 |N |Φ(−λ
√
n/σ),

where S is the set of selected variables and N is the set of
null variables (i.e., {j : βj = 0})
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Estimation

To use this as an estimate, two unknown quantities must be
estimated

|N | can be replaced by p, using the total number of variables
as a bound for the null variables
σ2 can be estimated by r′r/(n− |S|) (this is the simplest
approach, but other possibilities exist)

This implies the following estimate for the expected number
of false discoveries:

F̂D = 2pΦ(−
√
nλ/σ̂)

and, as an estimate of the false discovery rate:

F̂DR =
F̂D

S
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Causal diagram

The case of correlated variables, however, is considerably more
complex

Consider the following causal diagram:

A

Y

B

C

Estimating the number of false selections arising from
variables like B is challenging; however, simple approaches still
work well for estimating false selections arising from variables
like C
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Advantages of this definition

In this talk, I will define a false inclusion as a variable like C,
that has no path (direct or indirect) between it and the
outcome; this is in contrast to most other work, which
consider any variable with βj = 0 to be a false discovery

This definition has several advantages:

When two variables (like A and B) are correlated, it is very
challenging to distinguish between which of them (if either, or
both) is driving changes in Y and which is merely correlated
with Y
In many applications, discovering variables like B is not
problematic
Whether or not a variable is a false inclusion is not conditional,
and does not depend on λ
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Independence among predictors

The design matrix does not have to be strictly orthogonal in
order for the proposed estimator to work

Theorem: Suppose 1
nX
′X→ I. Then for any j : βj = 0 and

any value of λ,

1√
n
x′jrj

d−→ N(0, σ2)

This can be relaxed to 1
nX
′
CXC → I; i.e., only the variables in

C need to be uncorrelated
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Design

I conducted both “low-dimensional” (n > p) and
“high-dimensional” (n < p) simulation studies, organized
along the lines of the earlier causal diagram:

Six variables had βj 6= 0 (“causative”)
Each causative feature was correlated (ρ = 0.5) with m other
features (“correlated”; m = 2 for low-dimension and 9 for
high-dimensional)
Independent noise features (“spurious”) were added to bring
the total number of variables up to 60 in the low-dimensional
case and 600 in the high-dimensional case

In each setting, the sample size was n = 100, and the nonzero
β values were set to ±1

Causative/Correlated/Spurious: 6/12/42 for low-dimensional,
6/54/540 for high-dimensional
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Accuracy of false inclusion estimates
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Accuracy of false inclusion estimates

p: 60 p: 600
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Comparison: High-dimensional (nominal FIR/FDR=0.1)
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Univariate
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Correlated case

The preceding results are something of a “best case scenario”
for the proposed method, since the variables in C were
independent

When the null variables are dependent, the estimator becomes
conservative

Conjecture: Suppose 1
n

∑
iX
′X = Σ. Then for any λ,

E |S ∩ N | ≤ 2 |N |Φ(−λ
√
n/σ)

This can be shown for the case when p = 2, and is (my belief)
likely to be true for any p and Σ
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Autoregressive correlation

I carried out the following simulation to investigate the
robustness of the proposed FIR estimator in the presence of
moderate correlation

The generating model contains 6 causative features, and 494
correlated spurious features (n = 100, p = 500, R2 = 0.5)

The correlation structure on the spurious features was set to
be Cor(Xi, Xj) = 0.8|i−j|
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Results: Autoregressive correlation among C
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Still quite accurate, but slightly conservative
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Exchangeable correlation

It is worth mentioning that this conservatism becomes more
extreme as the correlation becomes heavier

Let us consider an extreme case: all variables in C have a
pairwise correlation of ρ = 0.8 (otherwise, all settings are the
same as before)
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Results: Exchangeable correlation among C
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Much less accurate, although once again conservative

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 22/29



Inference: Overview
False inclusion rates

Case studies

Breast cancer data

To see how this works with real data, let’s take a look at the
breast cancer TCGA data (n = 536, p = 17, 322)

We can fit a lasso model with

fit <- ncvreg(X, y, penalty="lasso")
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FIR plots

We can then calculate and plot false inclusion rates with

fir(fit)

plot(fir(fit))
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Remarks

The lasso FIR approach discussed here selects 52 features at a
FIR of 5% (λ = 0.0687)

In contrast, using cross-validation to select λ (λ = 0.0450) we
have 91 features, but a false inclusion rate of 68%

This is in line with earlier remarks we have made: if we select
λ for lasso to achieve the best prediction/estimation accuracy,
we allow many false variables to enter the model
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TCGA: MCP

One nice aspect of the approach is that it can be readily extended
to MCP/SCAD:
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MCP Remarks

With MCP, FIR selects 18 features at a FIR of 10%
(λ = 0.0946)

Meanwhile, using cross-validation to select λ (λ = 0.0687) we
get 20 features and a false inclusion rate of 13%

Note that the discrepancy between the two is far less severe
with MCP than with lasso
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SOPHIA

A GWAS example
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No features can be selected with any confidence that they are not
false inclusions
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Conclusions

False inclusion rates are a useful tool for assessing the
reliability of variable selection in penalized regression models

The estimator is conservative when variables are highly
correlated, although this is not a fatal flaw, and the
conservatism is usually mild

The simplicity of the estimator makes it (a) available at
minimal added computational cost and (b) very easy to
generalize to new methods
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