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Introduction

Our last several lectures have concentrated on methods for
reducing the bias of lasso estimates

This week, we will discuss methods for doing the opposite:
introducing ridge penalties in order to reduce the variance of
lasso estimates at the cost of further increasing their bias

As we saw when discussing the ridge penalty itself, there is
typically some degree of shrinkage we can introduce for which
the gains of variance reduction outweigh the cost of increased
bias to produce more accurate estimates
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Elastic net penalty

Recall that the lasso solutions are not always unique, but that
solutions to ridge regression are

This is somewhat unsatisfactory for the lasso, as we could
re-order the covariates and end up with different estimates

Consider, then, the following penalty, known as the elastic net
penalty:

Pλ(β) = λ1‖β‖1 +
λ2
2
‖β‖22,

which consists of two terms, a lasso term plus a ridge term
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Example (revisited)

Because the ridge penalty is strictly convex, the elastic net
solution β̂ is unique provided that λ2 > 0

To see how this works, let us revisit the example from
February 15, which consisted of two observations:
(y1, x11, x12) = (1, 1, 1) and (y2, x21, x22) = (−1,−1,−1)
For λ < 1, the lasso admits infinitely many solutions along the
line β1 + β2 = 1− λ in the β1 > 0, β2 > 0 quadrant
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Example (revisited, continued)

In contrast, the elastic net penalty always yields a unique
solution: {

β̂1 = β̂2 = 0 if λ1 ≥ 1,

β̂1 = β̂2 =
1−λ1
2+λ2

if λ1 < 1.

Note that regardless of λ1 and λ2, β̂1 is always equal to β̂2;
this is reasonable, given that x1 = x2

Indeed, this is a general property of the elastic net: whenever
xj = xk, β̂j = β̂k
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Remarks

The example also illustrates that the elastic net retains
properties of both the lasso and ridge regression methods

From the lasso, it inherits sparsity – in particular, β = 0 if
λ1 > 1

From ridge regression, the elastic net inherits the ability to
always produce a unique solution as well as ridge regression’s
property of proportional shrinkage:
β̂1 = β̂2 = (1− λ1)/(2 + λ2) for elastic net, compared to
β̂1 = β̂2 = (1− λ1)/2 for (one possible solution of) the lasso
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Reparameterization

A common reparameterization of the elastic net is to express
the regularization parameters in terms of λ, which controls
the overall degree of regularization, and α, which controls the
balance between the lasso and ridge penalties:

λ1 = αλ

λ2 = (1− α)λ

This reparameterization is useful in practice, as it allows one
to fix α and then select a single tuning parameter λ, which is
more straightforward than attempting to select λ1 and λ2
separately
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Orthonormal solutions: Introduction

As with several other penalties we have considered, the elastic
net has a closed form solution in the orthonormal case

Considering this special case lends considerable insight into
the nature of the and in addition, proves useful for
optimization via the coordinate descent algorithm
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KKT conditions

The KKT conditions, or penalized likelihood equations, are
given by:

1

n
xTj (y −Xβ̂)− λ2β̂j = λ1sign(β̂j) β̂j 6= 0

1

n
|xTj (y −Xβ̂)| ≤ λ1 β̂j = 0

Simplifying these conditions for the orthonormal case yields

zj − β̂j − λ2β̂j = λ1sign(β̂j) β̂j 6= 0

|zj | ≤ λ1 β̂j = 0,

where zj = xTj y/n
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Orthonormal solutions

These equations can be further simplified by writing them in
terms of the soft-thresholding operator:

β̂j =
S(zj |λ1)
1 + λ2

In the orthonormal case, then, the elastic net solutions are
simply the lasso solutions divided by 1 + λ2

In other words, the additional ridge penalty has the same
effect on the lasso as the ridge penalty itself has on ordinary
least squares regression: it provides shrinkage
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Remarks

As with ridge regression itself, shrinking the coefficients
towards zero increases bias, but reduces variance

Since this involves drawbacks as well as advantages, adding a
ridge penalty is not always universally beneficial, as the bias
can dominate the variance

Still, as with ridge regression itself, it is typically the case that
a profitable compromise can be reached by incorporating some
(possibly small) ridge term into the penalty
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The grouping effect: Introduction

Our earlier example is an extreme example of a property
possessed by the elastic net known as the grouping effect

The property states that highly correlated features will have
similar estimated coefficients, which seems intuitively
reasonable

Even if a data set does not contain identical variables as in
the toy example, many data sets – particularly high
dimensional ones – contain highly correlated predictors

The shrinkage and grouping effects produced by the elastic net
are an effective way of dealing with these correlated predictors
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Grouping effect

The property can be described formally in terms of an upper
bound on the difference between two coefficients as it relates
to the correlation between the predictors:

|β̂j − β̂k| ≤
‖y‖

√
2(1− ρjk)
λ2
√
n

where ρjk is the sample correlation between xj and xk

Note, in particular, that as ρjk → 1, the difference between β̂j
and β̂k goes to zero
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Simulation example: Setup

To see the effect of the grouping property, we will carry out a
simulation study with n = 50 and p = 100

All features xj will follow standard Gaussian distributions in
the marginal sense, but we introduce correlation between the
features in one of two ways:

Compound symmetric: All features have the same pairwise
correlation ρ
Block diagonal: The 100 features are partitioned into blocks of
5 features each, with a pairwise correlation of ρ between
features in a block, but features from separate blocks are
independent

In the generating model, we will set β1 = β2 = · · · = β5 = 0.5
and β6 = β7 = · · · = β100 = 0
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Simulation example: Setup (cont’d)

Note that in the block diagonal case, this introduces a
grouping property: correlated features have identical
coefficients

In the compound symmetric case, on the other hand,
correlation between features does not tell us anything about
their corresponding coefficients

For the elastic net penalty, for the sake of simplicity we set
λ1 = λ2 and select λ by independent validation
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Simulation example: Results
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Remarks

This simulation demonstrates that when the correlation
between features is not large, there is often little difference
between the lasso and elastic net estimators in terms of their
estimation accuracy; indeed, when correlation is near zero, the
lasso is often more accurate

When the correlation between features is large, however, the
elastic net has an advantage over the lasso

This advantage is much more pronounced in the block
diagonal case, where the coefficients have a grouping property
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Commentary on the grouping property

In practice, the grouping effect is often one of the strongest
motivations for applying an elastic net penalty

For example, in gene expression studies, genes that have
similar functions, or that work together in a pathway to
accomplish a certain function, are often correlated

It is often reasonable to assume, then, that if the function is
relevant to the response we are analyzing, the coefficients will
be similar across the correlated group
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Commentary on the grouping property (cont’d)

It is worth pointing out, however, that grouping does not
always hold

For example, in a genetic association study, it is certainly
quite possible for two nearby variants to be highly correlated
in their inheritance patterns, but for one variant to be
harmless and the other to be highly deleterious

Nevertheless, in such a case, it is often quite difficult to
determine which of two highly correlated features is the
causative feature, and the elastic net, which splits the
estimated signal between the correlated features, offers a
reasonable compromise
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Ridge + nonconvex penalty

The motivation for adding a ridge penalty to the lasso penalty
also applies to nonconvex penalties such as MCP and SCAD

In fact, the motivation is perhaps even stronger in this case

As we saw last week, the objective functions for MCP and
SCAD may fail to be convex and present multiple local
minima, which leads to difficulty in optimization and
decreased numerical stability

Adding a strictly convex ridge penalty can often substantially
stabilize the problem
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Orthonormal solutions for MCP

The addition of a ridge penalty has a similar shrinkage effect
on MCP and SCAD as it does on lasso-penalized models

In particular, for MCP in the orthonormal case,

β̂j =


zj

1 + λ2
|zj | > γλ1(1 + λ2)

S(zj |λ1)
1− 1

γ + λ2
|zj | ≤ γλ1(1 + λ2).

Similar, if somewhat more complicated, results are available
for SCAD (equation 4.7 in the book)

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 21/32



Elastic Net
Combining ridge and nonconvex penalties

Method and derivation
Simulation studies

Remarks

From this solution, we can see that the shrinkage role played
by λ2 is, in a sense, the opposite of the bias reduction role
played by γ

While dividing by 1− γ−1 inflates the value of S(zj |λ1),
dividing by 1 + λ2 shrinks it

When both are present in the model, the orthonormal solution
is the soft-thresholding solution divided by 1− γ−1 + λ2,
which could either shrink or inflate S(zj |λ1) depending on the
balance between γ and λ2
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Remarks

It should be noted, however, that the terms are not entirely
redundant; while they cancel each other out in the
denominator of the orthonormal solution, they do not cancel
out elsewhere

In particular, they can have rather different effects in the
presence of correlation among the features

Finally, as in the elastic net, the regularization parameters for
the ridge-stabilized versions of MCP and SCAD are often
expressed in terms of λ and α
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Simulation 1: Setup

We close this lecture with two simulation studies comparing
the estimation accuracy of lasso, MCP, the elastic net, and
what we will abbreviate “MNet”, the MCP version of the
elastic net (i.e., a penalty that consists of MCP + Ridge)

First, suppose all covariates {xj} follow independent standard
Gaussian distributions, and that the outcome y equals Xβ
plus errors drawn from the standard Gaussian distribution

For each independently generated set of data set, let n = 100
and p = 500, with 12 nonzero coefficients equal to s and the
remaining 488 coefficients equal to zero; we will consider
varying the signal strength s between 0.1 and 1.1
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Simulation 1: Setup (cont’d)

For all methods, tuning parameters are selected on the basis
of mean-squared prediction error on an independent validation
data set also of size n = 100

For lasso and MCP, only one tuning parameter (λ) was
selected (for MCP, γ = 3 was fixed)

For the Enet and Mnet estimators, we consider both fixed-α
estimators and estimators in which both λ and α were
selected by external validation (i.e., prediction error was
calculated over a two-dimensional grid and the best
combination of λ and α was chosen)
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Simulation 1: Results
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Fixed-α remarks

All methods behave rather similarly when s is small, as all
models end up with estimates of β̂ ≈ 0 in these settings

As one might expect, a modest ridge penalty is beneficial in
the medium-signal settings, with α = 0.5 achieving the
highest accuracy when s = 0.5

As signal increases, however, the downward bias of ridge and
lasso play a larger role, and MCP becomes the most accurate
estimator along with the α = 0.9 Mnet estimator, which is
similar to MCP
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Variable-α remarks

In the variable-α case, there is little difference between the
lasso and elastic net estimators

In particular, when s is large the two are virtually identical
due, in part, to the fact that α is typically selected to be ≈ 1
for Enet when s is large

MCP and Mnet are similar to lasso and Enet when s is small,
but substantially outperform the lasso and elastic net when
the signal is increased

One can improve estimation accuracy by adding a ridge
penalty, although the gains are not particularly dramatic when
the features are independent
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Simulation 2: Setup

Let us modify the previous simulation to examine how
correlation among the features affects the results

In particular, all covariates {xj} follow a standard Gaussian
distribution marginally, but are now correlated with a common
(compound symmetric) correlation ρ = 0.7 between any two
covariates

This is a rather extreme amount of correlation, but helps to
clearly illustrate the effect of correlation on the relative
performance of the methods
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Simulation 2: Results
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Remarks

The primary point illustrated by the figure is that the benefits
of shrinkage are much more pronounced in the presence of
correlation

For example, while MCP was never far from the best
estimator in the uncorrelated case, it is one of the worst
methods for most signal strengths in the correlated case

Meanwhile, although Mnet and MCP were generally similar in
Simulation #1, here Mnet outperforms MCP rather
dramatically
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Conclusions

The addition of a ridge penalty typically yields little
improvement in the absence of correlation

Benefits are more substantial in the presence of correlation,
and very substantial in grouped scenarios

Adding ridge penalties offers much more potential advantage
for nonconvex penalties; indeed, adjusting α to stabilize MCP
in this way is often a more fruitful approach than adjusting γ

It is difficult to rely on any particular value of α; in practice, it
is advisable to try out several values of α and use
cross-validation to guide its selection
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