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Introduction

@ In today’s lecture, we will return to nonconvex penalties and
discuss their performance with respect to the signal-to-noise
ratio of the data-generating process, the most critical factor
determining their success relative to the lasso

@ We will then turn our attention to the details of model fitting,
discussing algorithms for nonconvex penalties as well as the
impact of nonconvexity on model-fitting
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Signal to noise ratio

@ For linear regression,
Var(Y) = Var(E(Y|X)) + E(Var(Y|X))
= B8TVar(X)8 + o2

@ The first term in the sum is known as the signal and the
second term the noise

@ Thus, we may define the signal-to-noise ratio

SNR = 87 Var(X)3/0>
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SNR and R?

@ Recall that we have seen this decomposition before, in
calculating R?, which is also a function of the signal and noise

@ In particular, note that

»  SNR
~ 1+SNR

@ As a general piece of advice, | strongly recommend
considering the signal-to-noise ratio when designing
simulations, and avoiding settings where SNR is, say, 50
(R? = .98); is this realistic?
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Simulation: Setup

@ To see the impact of SNR, let's set n = 50, p = 100, and let
all features x; follow independent, standard Gaussian
distributions

@ In the generating model, weset 81 = o =f3=---= 55 #0
and 87 = Bg = --- = B100 = 0, varying the nonzero values of
(1 through Bg to produce a range of signal to noise ratios

@ For each data set, an independent data set of equal size was

generated for the purposes of selecting the regularization
parameter
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Simulation: Results (7 = 3)
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Simulation: Results (cont'd)
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Remarks

@ The motivation of MCP/SCAD/etc. is to eliminate bias for
large coefficients; it should not come as little surprise, then,
that the advantage of these methods only becomes apparent
when some nonzero coefficients are large

@ It is also worth noting that v = 3 is generally a reasonable
choice for MCP — its performance was never far from the best
@ Also note that the SCAD is somewhat less sensitive to the

choice of «, in the sense that many values of ~ produce rather
lasso-like estimates
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Introduction

@ In today’s lecture, we will return to nonconvex penalties and
discuss the details of model fitting / algorithms, and also
examine some case studies to see how nonconvex functions
work with real high dimensional data

o Generally speaking, algorithms for nonconvex penalties are
very similar to those for the lasso: since we have closed form
solutions in the univariate case, coordinate descent is a
natural choice
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Algorithm

Letting zZ = n_lx;fpfj, F ' is the firm-thresholding operator, and

Tscap is the SCAD-thresholding operator, the CD algorithm for
MCP/SCAD is
repeat
for j=1,2,...,p
Zj = n~t Z?:l Tiri + Ej(-s)

B(SH) i F(Z|\,7) for MCP, or
J Tscap(Z|A,y)  for SCAD
Ti < T — (,EJ(S—H) — BJ(S))(L‘U for aII 7

until convergence

The algorithm is identical to our earlier algorithm for the lasso
except for the step in which f; is updated
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Convergence

o Although the MCP and SCAD penalties are not convex
functions, Q(3;|B_;) is still convex

@ As a result, the coordinate-wise updates are unique and always
occur at the global minimum with respect to that coordinate

o Proposition: Let {,8(5)} denote the sequence of coefficients

produced at each iteration of the coordinate descent
algorithms for SCAD and MCP. For all s =0,1,2,...,

QB ) < Q(BY).

Furthermore, the sequence is guaranteed to converge to a
local minimum of Q(3).
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Local linear approximation

@ For MCP and SCAD, one can obtain closed-form
coordinate-wise minima and use those solutions as updates

@ An alternative approach, which is particularly useful in
penalties that do not yield tidy closed-form solutions, is to
construct a local approximation of the penalty

P(|81) = P(I6o]) + P'(1801) (18] = [5o)

@ Note that with this approximation, the penalty takes on the
form of the lasso penalty (with P’'(|5y|) playing the role of the
regularization parameter) plus a constant
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LLA algorithm

@ The approximation is applied in an iterative fashion: at the
sth iteration, letting \; = P’(|ﬂ§371)|), the update is given by
solving for the value minimizing

1 ..
oIy = X8I+ 3 _ ;1841

J=1

@ Note that this equation is essentially identical to the one for
the adaptive lasso; however, the adaptive lasso weights are
assigned in a more or less ad hoc fashion based on an initial
estimator, while the LLA modifications to A are explicitly
determined by the penalty function P
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Remarks

o Like coordinate descent, the local linear approximation (LLA)
algorithm is guaranteed to drive the objective function
downhill with every iteration and to converge to a local
minimum of Q(3)

@ For MCP and SCAD, CD is more efficient, as it avoids the
extra approximation introduced by LLA

@ However, LLA is still quite efficient, and a valuable alternative
when dealing with penalties without a simple solution in the
one-dimensional case
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Convexity challenges

@ While the objective functions for SCAD and MCP are convex
in each coordinate dimension, they are not convex over R?

@ Thus, multiple minima may exist, each satisfying the KKT
conditions

@ Neither the CD or LLA algorithms are guaranteed to converge
to the global minimum in such cases

@ As we have discussed earlier, the existence of multiple minima
poses considerable problems for MLE / penalized MLE
methods, both numerically (convergence to an inferior
solution) and statistically (increased variance as the solution
jumps from one minima to another)
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Global convexity

@ We begin by noting that it is possible for the objective
function @) to be convex with respect to 3 even though the
penalty component is nonconvex

@ Letting cpin denote the minimum eigenvalue of XTX/n, the
MCP objective function is strictly convex if v > 1/cyin, while
the SCAD objective function is strictly convex if
v > 1+ 1/Cmin

@ In this case, the coordinate descent and LLA algorithms will
converge to the unique global minimum of @
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Is global convexity desirable?

@ However, obtaining strict convexity is not always possible or
desirable; for example, in high-dimensional settings where
p > n, ¢min = 0 and the MCP/SCAD objective functions
cannot be globally convex

o Nevertheless, as we saw in the earlier simulations (where
p > n, it is not true in general that convex penalties
outperform nonconvex ones in such scenarios

@ For low signal-to-noise ratios there was indeed some benefit to
increasing v in an effort to make the objective function more
convex; however, for larger SNR values, this strategy
diminished estimation accuracy
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Local convexity

@ One reason this happens is that the solutions are sparse

e Although Q(B) may not be convex over the entire
p-dimensional parameter space (i.e., globally convex), it is still
convex on many lower-dimensional spaces

o If these lower-dimensional spaces contain the solution of
interest, then the existence of other local minima in much
higher dimensions may not be relevant

@ This concept is known as local convexity
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convexity: Details

Recall the conditions for global convexity: v must be greater
than 1/¢, for MCP and 1+ 1/¢, for SCAD, where ¢, denoted
the minimum eigenvalue of X7 X /n

A straightforward modification is to include only the
covariates with nonzero coefficients (the covariates which are
“active” in the model) in the calculation of ¢,

Note that neither v nor X change with \; what does vary
with X is the set of active covariates; generally speaking, this
will increase as A decreases

Thus, local convexity of the objective function will not be an
issue for large A, but may cease to hold as X is lowered past
some critical value \*
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Convexity diagnostic: Example
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Convexity diagnostic: Example (cont'd)
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Remarks

@ As the second figure indicates, when A = 0.42, 3, clearly
minimizes the objective function and when A = 0.11, 3,
clearly minimizes the objective function

@ For A ~ 0.25, however, the objective function is very broad
and flat, indicating substantial uncertainty about which
solution is preferable

e Calculation of the locally convex region (the unshaded region
in the earlier figure) can be a useful diagnostic in practice to
indicate which regions of the solution path may suffer from
multiple local minima and discontinuous paths
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