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Introduction

There is an enormous body of literature concerning theoretical
results for high-dimensional penalized regression

Our goal for today is to get an introduction to these results,
focusing on proving some interesting, relevant results in
relatively simple cases

Time permitting, we may return to this topic later in the
course and cover some additional extensions
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Notation

In today’s lecture, we will let β̂ denote the estimator in
question and β0 denote the (unknown) true value of β

We will let S = {j : β0j 6= 0} denote the set of nonzero
coefficients (i.e., the sparse set), with βS and XS the
corresponding subvector and submatrix

Similarly, we will let N = {j : β0j = 0} denote the set of
“null” coefficients equal to zero
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Types of results

There are three main categories of theoretical results, depending
on various qualities we would like our estimator to possess:

Prediction The mean squared prediction error is small:

1

n
‖Xβ̂ −Xβ0‖2

Estimation The mean squared error is small:

‖β̂ − β0‖2

Selection The probability that sign(β̂j) = sign(β0j) for all j
is large
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Asymptotic setup: Fixed p

As often in statistics, closed-form results for finite sample
sizes are typically difficult to obtain, so we focus on
asymptotic results as n→∞
Classically, we would treat β as fixed and consider the
behavior of β̂ as n grows

This offers a number of interesting insights, and is the setup
we will mainly be sticking to today
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Asymptotic setup: p > n

However, these results also have the potential to be
misleading, in that, if n increases while β remains fixed, in the
limit we are always looking at n� p situations; is this really
relevant to p� n?

For this reason, many researchers prefer instead to consider
the high-dimensional case where p is allowed to increase with
n

Typically, this involves assuming that the size of the sparse
set, |S|, stays fixed, and it is only the size of the null set that
increases, so that |S| � n and |N | � n
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Sparsity regimes

The setup we have been describing is sometimes referred to as
“hard sparsity”, in which β has a fixed, finite number of
nonzero entries

An alternative setup is to assume that most elements of β are
small, but not necessarily exactly zero; i.e., assume something
along the lines of letting m = max{|β0j | : j ∈ N}
Yet another setup is to assume that β is not necessarily
sparse, but is limited in size in the sense that

∑
j |β0j | ≤ R

(i.e., within an `1 “ball” of radius R about 0)
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Orthonormal case: Introduction

We will begin our examination of the theoretical properties of
the lasso by considering the special case of an orthonormal
design: XTX/n = I for all n, with y = Xβ + ε and

εi
iid∼ N(0, σ2)

For the sake of brevity, I’ll refer to these assumptions in what
follows as O1

This might seem like an incredibly special case, but many of
the important theoretical results carry over to the general
design case provided some additional regularity conditions are
met

Once we show the basic results for the lasso, it is
straightforward to extend them to MCP and SCAD
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Theorem: Correct sparsity

In this setting, it would seem possible for the lasso to set λ
high enough that all the coefficients in N are eliminated

How large must λ be in order to accomplish this?

Theorem: Under O1,

P(∃j ∈ N : β̂j 6= 0) ≤ 2 exp

{
−nλ

2

2σ2
+ log p

}
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Corollary

So how large must λ be in order to accomplish this with
probability 1?

Corollary: Assume O1. If
√
nλ→∞, then

P(β̂j = 0∀j ∈ N )→ 1

Note that if instead
√
nλ→ c, where c is some constant, then

P(β̂j = 0∀j ∈ N )→ 1− ε, where ε > 0

In other words, even with an infinite amount of data, there is
still the possibility that the lasso will select some variables
from the null set N

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 10/23



Introduction
Orthonormal case

General case

A glimpse of p� n theory

It is worth mentioning that if λ = O(σ
√
n−1 log p), then there

is at least a chance of completely eliminating all variables in N
Setting λ to something of this order comes up very often in
extending theoretical results to the case where p is allowed to
grow with n, and gives us a glimpse of how it is possible to
carry out statistical analyses in this setting

Specifically, unless p is growing exponentially fast with n, the
ratio log(p)/n can still go to zero even if p > n
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Selection consistency

Likewise, we can ask: what is required in order for the lasso to
select all of the variables in S?

Theorem: Suppose O1 and λ→ 0 as n→∞. Then

P{sign(β̂j) = sign(β0j)∀j ∈ S} → 1

Note that it is possible to satisfy λ→ 0 and
√
nλ→∞

simultaneously; i.e., for the lasso to be selection consistent
(select the correct model with probability tending to 1)
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Estimation consistency

Let us now consider estimation consistency

Theorem: Under O1, β̂ is a consistent estimator of β0 if
λ→ 0.

A more demanding condition is
√
n-consistency

Theorem: Under O1, β̂ is a
√
n-consistent estimator of β0 if

and only if
√
nλ→ c, with c <∞
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Remarks

It is possible for the lasso to be both selection consistent and√
n-consistent for estimation

However, it is not possible to achieve both goals at the same
time

Specifically, we require
√
nλ→∞ to correctly select the

model with probability 1, but we require λ = O(n−1/2) for√
n-consistency
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Lasso recovery and variable screening

Note that in the orthonormal case,

1

n
‖Xβ̂ −Xβ0‖2 = ‖β̂ − β0‖2

The tendency, then, if use a prediction-based criterion such as
cross-validation to choose λ is that we emphasize estimation
accuracy and select λ values for which the probability of
allowing null coefficients into the model is high (this is the
case for non-orthonormal X as well)

This means that lasso models tend not to be as sparse as the
ideal model would be, although it does make the lasso useful
for variable screening (as in the adaptive lasso and other
procedures), as it recovers the true variables with high
probability
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Extension to MCP and SCAD

It is possible, however, to achieve both
√
n-consistency and

selction consistency simultaneously with MCP and SCAD,
however

Theorem: Under O1, β̂ is a
√
n-consistent estimator of β0 if

λ→ 0, where β̂ is either the MCP or SCAD estimate

As we previously noted, it is possible to satisfy λ→ 0 and√
nλ→∞ simultaneously

A related result can also be shown for the adaptive lasso,
although we will not prove it in class
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General case: Introduction

The essence of these results carries over to the case of a
general design matrix and a general likelihood, although
additional regularity conditions are required

Generally speaking, these are the basic regularity conditions
required to ensure asymptotic normality of the MLE: common
support, identifiability, the Fisher information I(β) is positive
definite at β0, and all third derivatives of the log-likelihood
are bounded

It is worth mentioning that these regularity conditions need to
be revised substantially if we allow p > n, since I(β) cannot
be positive definite in that case

In what follows, I will refer to this set of assumptions as G1
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Notation

We will present and prove some results from Fan & Li’s 2001
paper introducing the SCAD estimator, which concern general
likelihoods and general penalties (i.e., the same theorem will
apply to lasso, SCAD, and MCP)

Let v = (p′(|β0j |)sign(β0j))pj=1, with v = maxj∈S |vj |, where
p is the penalty function

Likewise, let A = diag{p′′(|β0j |)}pj=1, with a = maxj∈S |ajj |
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General case:
√
n-consistency

Fan & Li prove three key theorems in their seminal paper; the
first concerns

√
n-consistency

Theorem 1: Under G1, suppose that λ→ 0 and a→ 0.
Then there exists a local maximizer of the objective function
Q such that

‖β̂ − β0‖ = Op(n
−1/2 + v)
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General case: Sparsity

Their second theorem concerns the sparsity of β̂

Theorem 2: Suppose the conditions of Theorem 1 are met,
with λ→ 0,

√
nλ→∞, and limθ→0+ p

′(θ) = λ. Then with
probability tending to 1, β̂N = 0 is a minimizer of Q(β)
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General case: Asymptotic normality

Their final result concerns the asymptotic normality of β̂S

Theorem 3: Suppose that the conditions of Theorem 2 are
met, with λ→ 0 and

√
nλ→∞. Then

√
n(IS +AS)(β̂S − β0S) +

√
nvS

d−→ N(0,IS),

where IS is the Fisher information for βS knowing that
βN = 0
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Corollary: MCP and SCAD

Note that for MCP and SCAD, AS → 0 and vS → 0 as
λ→ 0

Thus, for MCP and SCAD, the result of Theorem 3 simplifies
to

√
nIS(β̂S − β0S)

d−→ N(0,IS)

Note that this is the same asymptotic result we have for the
“oracle estimator”, in which we know in advance which
coefficients are zero and which ones are not, and maximum
likelihood is applied using only the nonzero variables
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Oracle property and corollary for lasso

This property, in which asymptotically, an estimator performs
as well as the oracle MLE, is known as the oracle property

Note that the lasso does not have the oracle property:

For the lasso, vS = λsS , where sS = (sign(β̂j))j∈S
Thus, if

√
nλ→∞, the

√
nvS term in the final theorem goes

to infinity and
√
n(β̂S − β0S) no longer converges to a normal

distribution
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