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Introduction

Large-scale testing is, of course, a big area and we could keep
talking about it

However, for the rest of the course we will take up the issue of
high-dimensional regression: using the features to
predict/explain the outcome

As we saw in our first lecture, ordinary least squares is
problematic in high dimensions

Reducing the dimensionality through model selection allows
for some progress, but has several shortcomings

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 2/27



Penalized regression
Ridge regression

Bayesian interpretation

Basic idea
Standardization

Likelihood and loss

More broadly speaking, this can be seen as a failure of
likelihood-based methods

In this course, we will use the notation L to refer to the
negative log-likelihood:

L(θ|Data) = − log `(θ|Data)

= − log p(Data|θ)

Here, L is known as the loss function and we seek estimates
with a low loss; this is equivalent to finding a value (or
interval of values) with a high likelihood
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Likelihood for linear regression

In the context of linear regression, the loss function is

L(β|X,y) =
n

2
log(2πσ2) +

1

2σ2

∑
i

(yi − xTi β)2

It is only the difference in loss functions between two values,
L(β1|X,y)− L(β2|X,y), i.e., the likelihood ratio, that is
relevant to likelihood-based inference; thus, the first term may
be ignored

For the purposes of finding the MLE, the (2σ2)−1 factor may
also be ignored, although we must account for it when
constructing likelihood-based intervals
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Penalized likelihood

Given the aforementioned problems with likelihood methods,
consider instead the following modification:

Q(β|X,y) = L(β|X,y) + Pλ(β),

where

P is a penalty function that penalizes what one would
consider less realistic values of the unknown parameters

λ is a regularization parameter that controls the tradeoff
between the two components

The combined function Q is known as the objective function
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Meaning of the penalty

What exactly do we mean by “less realistic” values?

The most common use of penalization is to impose the belief
that small regression coefficients are more likely than large
ones; i.e., that we would not be surprised if βj was 1.2 or 0.3
or 0, but would be very surprised if βj was 9.7× 104

Later in the course, we consider other uses for penalization to
reflect beliefs that the true coefficients may be grouped into
hierarchies, or display a spatial pattern such that βj is likely to
be close to βj+1
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Remarks

Some care is needed in the application of the idea that small
regression coefficients are more likely than large ones

First of all, it typically does not make sense to apply this line
of reasoning to intercept; hence β0 is not included in the
penalty

Second, the size of the regression coefficient depends on the
scale with which the associated feature is measured;
depending on the units xj is measured in, βj = 9.7× 104

might, in fact, be realistic
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Standardization

This is a particular problem if different features are measured
on different scales, as the penalty would not have an equal
effect on all coefficient estimates

To avoid this issue and ensure invariance to scale, features are
usually standardized prior to model fitting to have mean zero
and standard deviation 1:

x̄j = 0

xTj xj = n ∀j

This can be accomplished without any loss of generality, as
any location shifts for X are absorbed into the intercept and
scale changes can be reversed after the model has been fit
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Added benefits of standardization

Centering and scaling the explanatory variables has added benefits
in terms of computational savings and conceptual simplicity

The features are now orthogonal to the intercept term,
meaning that in the standardized covariate space, β̂0 = ȳ
regardless of the rest of the model

Also, standardization simplifies the solutions; to illustrate with
simple linear regression,

β̂0 = ȳ − β̂x̄

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

However, if we center and scale x and center y, then we get
the much simpler expression β̂0 = 0, β̂1 = xTy/n

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 9/27



Penalized regression
Ridge regression

Bayesian interpretation

Objective and estimate
Understanding the penalty’s effect
Properties

Ridge regression: Penalty

If penalized regression is to impose the assumption that small
regression coefficients are more likely than large ones, we
should choose a penalty that discourages large regression
coefficients

A natural choice is to penalize the sum of squares of the
regression coefficients:

Pλ(β) =
1

2τ2

p∑
j=1

β2j

Applying this penalty in the context of penalized regression is
known as ridge regression, and has a long history in statistics,
dating back to 1970
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Objective function

The ridge regression objective function is

Q(β|X,y) =
1

2σ2

∑
i

(yi − xTi β)2 +
1

2τ2

p∑
j=1

β2j

It is often convenient to multiply the above objective function
by σ2/n; as we will see, doing so tends to simplify the
expressions involved in penalized regression:

Q(β|X,y) =
1

2n

∑
i

(yi − xTi β)2 +
λ

2

p∑
j=1

β2j ,

where λ = σ2/(nτ2)
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Solution

For linear regression, the ridge penalty is particularly
attractive to work with because the maximum penalized
likelihood estimator has a simple closed form solution

This objective function is differentiable, and it is
straightforward to show that its minimum occurs at

β̂ = (n−1XTX + λI)−1n−1XTy

The solution is similar to the least squares solution, but with
the addition of a “ridge” down the diagonal of the matrix to
be inverted

Note that the ridge solution is a simple function of the
marginal OLS solutions n−1XTy and the correlation matrix
n−1XTX
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Orthonormal solutions

To understand the effect of the ridge penalty on the estimator
β̂, it helps to consider the special case of an orthonormal
design matrix (XTX/n = I)

In this case,

β̂J =
β̂OLS
J

1 + λ

This illustrates the essential feature of ridge regression:
shrinkage; i.e., the primary effect of applying ridge penalty is
to shrink the estimates toward zero
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Simple example

The benefits of ridge regression are most striking in the
presence of multicollinearity

Consider the following very simple simulated example:

> x1 <- rnorm(20)

> x2 <- rnorm(20, mean=x1, sd=.01)

> y <- rnorm(20, mean=3+x1+x2)

> lm(y~x1+x2)

...

(Intercept) x1 x2

2.582064 39.971344 -38.040040

Although there are only two covariates, the strong correlation
between X1 and X2 causes a great deal of trouble for
maximum likelihood
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Ridge regression for the simple example

The problem here is that the likelihood surface is very flat
along β1 + β2 = 2, leading to tremendous uncertainty

When we introduce the added assumption that small
coefficients are more likely than large ones by using a ridge
penalty, however, this uncertainty is resolved:

> lm.ridge(y~x1+x2, lambda=1)

x1 x2

2.6214998 0.9906773 0.8973912
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Ridge regression always has unique solutions

The maximum likelihood estimator is not always unique: If X
is not full rank, XTX is not invertible and an infinite number
of β values maximize the likelihood

This problem does not occur with ridge regression

Theorem: For any design matrix X, the quantity
n−1XTX + λI is always invertible provided that λ > 0; thus,
there is always a unique solution β̂.
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Is ridge better than maximum likelihood?

In our simple example from earlier, the ridge regression
estimate was much closer to the truth than the MLE

An obvious question is whether ridge regression estimates are
systematically closer to the truth than MLEs are, or whether
that example was a fluke

To address this question, let us first derive the bias and
variance of ridge regression
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Bias and variance

The variance of the ridge regression estimate is

Var(β̂) = σ2WXTXW,

where W = (XTX + nλI)−1

Meanwhile, the bias is

Bias(β̂) = −nλWβ

Both bias and variance contribute to overall accuracy, as
measured by mean squared error (MSE):

MSE(β̂) = E
∥∥∥β̂ − β

∥∥∥2
=
∑
j

Var(β̂j) +
∑
j

Bias(β̂j)
2
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Existence theorem

So, is ridge regression better than maximum likelihood (OLS)?

Theorem: There always exists a value λ such that

MSE
(
β̂λ

)
< MSE

(
β̂
OLS
)

This is a rather surprising result with somewhat radical
implications: despite the typically impressive theoretical
properties of maximum likelihood and linear regression, we
can always obtain a better estimator by shrinking the MLE
towards zero
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Sketch of proof
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Bayesian justification for the penalty

From a Bayesian perspective, one can think of the penalty as
arising from a formal prior distribution on the parameters

Let p(y|β) denote the distribution of y given β and p(β) the
prior for β; then the posterior density is

p(β|y) =
p(y|β)p(β)

p(y)
∝ p(y|β)p(β),

or

log p(β|y) = log p(y|β) + log p(β) + constant

on the log scale; this is exactly the generic form of a penalized
likelihood
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Ridge regression from a Bayesian perspective

By optimizing the objective function, we are finding the mode
of the posterior distribution of β; this is known as the
maximum a posteriori, or MAP, estimate

Specifically, suppose that we assume the prior

βj
iid∼ N(0, τ2);

the resulting log-posterior is exactly the ridge regression
objective function (up to a constant)

Furthermore,

The ridge regression estimator β̂ is the posterior mean (in
addition to being the posterior mode)
The regularization parameter λ is the ratio of the prior
precision (1/τ2) to the information (n/σ2)
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Similarities and differences

Thus, we arrive at the same estimator β̂ whether we view it as
a modified maximum likelihood estimator or a Bayes estimator

In other inferential respects, however, the similarity between
Bayesian and Frequentist breaks down

Two aspects, in particular, are worthy of mention
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Properties of intervals

First is the inferential goal of constructing intervals for β and
what properties such intervals should have

Frequentist confidence intervals are required to maintain a
certain level of coverage for any fixed value of β

Bayesian posterior intervals, on the other hand, may have
much higher coverage at some values of β than others
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Properties of intervals (cont’d)
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Bayes coverage for a 95%
posterior interval at βj ≈ 0
is > 99%, but only ≈ 20%
for βj ≈ 3.5

The interval nevertheless
maintains 95% coverage
across a collection of βj
values, integrated with
respect to the prior
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Point properties at 0

The other aspect in which a clear divide emerges between
Bayes and Frequentist perspectives is with regard to the
specific value β = 0

From a Bayesian perspective, the posterior probability that
β = 0 is 0 because its posterior distribution is continuous

From a Frequentist perspective, however, the notion of testing
whether β = 0 is still meaningful and indeed, often of interest
in an analysis
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Final remarks

The penalized regression literature generally adopts the
perspective of maximum likelihood theory, although the
appearance of a penalty in the likelihood somewhat blurs the
lines between Bayes and Frequentist ideas

The vast majority of research into penalized regression
methods has focused on point estimation and its properties,
so these inferential differences between Bayesian and
Frequentist perspectives are relatively unexplored

Nevertheless, developing inferential methods for penalized
regression is an active area of current research, and we will
come back to some of these issues when we discuss inference
for high-dimensional models
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