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Introduction

Today we will discuss the selection of λ and the estimation of
σ2 (which, in turn, allows us to quanify the signal-to-noise
ratio present in the data)

For lasso models, both of these involve tend to revolve around
cross-validation, although we will discuss a few different
approaches
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Degrees of freedom

In our discussion of ridge regression, we used information
criteria to select λ

All of the criteria we discussed required an estimate of the
degrees of freedom of the model

For linear fitting methods, we saw that df = tr(S)

The lasso, however, is not a linear fitting method; there is no
exact, closed form solution to Cov(y, ŷ)
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Degrees of freedom for the lasso

A natural proposal would be to use df(λ) = ‖β̂(λ)‖0, the
number of nonzero coefficients

From one perspective, this might seem to underestimate the
true degrees of freedom, as the variables were not prespecified

For example, in our forward selection example from Jan. 20,
we selected 5 features but the true df was ≈ 19

On the other hand, shrinkage reduces the degrees of freedom
in an estimator, as we have seen in ridge regression; from this
perspective, ‖β̂(λ)‖0 might seem to overestimate the true
degrees of freedom
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Degrees of freedom for the lasso (cont’d)

Surprisingly, it turns out that these two factors exactly cancel
and df(λ) = ‖β̂(λ)‖0 can be shown to be an unbiased
estimate of the lasso degrees of freedom

Given this estimate, we can then use information criteria such
as BIC for the purposes of selecting λ
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ncvreg

To illustrate, we will use the ncvreg package to fit the lasso
path

The primary purpose of ncvreg is to provide penalties other
than the lasso, which we will discuss in our next topic

However, it provides a logLik method, unlike glmnet, so it
can be used with R’s AIC and BIC functions:

fit <- ncvreg(X, y, penalty="lasso")

AIC(fit)

BIC(fit)
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AIC, BIC for pollution data
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Remarks

As we would expect, BIC applies a stronger penalty for
overfitting and chooses a smaller, more parsimonious model
than does AIC

The main advantage of AIC and BIC is that they are
computationally convenient: they can be calculated using the
fit of lasso model at very little computational cost

The primary disadvantage is that both AIC and BIC rely on a
number of asymptotic approximations that can be quite
inaccurate for high-dimensional data
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Cross-validation: Introduction

As we have discussed, a reasonable approach to selecting λ in
an objective manner is to choose the value of λ that yields the
greatest predictive power

An alternative to the approximations of AIC and BIC is to
assess predictive power more directly and empirically through
a technique called cross-validation

Cross-validation is more reliable in general, although it comes
at an added computation cost
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Sample splitting

As we have discussed, using the observed agreement between
fitted values and the data is too optimistic; we require
independent data to test predictive accuracy

One solution, known as sample splitting, is to split the data
set into two fractions, a training set and test set, using one
portion to estimate β̂ (i.e., “train” the model) and the other
to evaluate how well Xβ̂ predicts the observations in the
second portion (i.e., “test” the model)

The problem with this solution is that we rarely have so much
data that we can freely part with half of it solely for the
purpose of choosing λ
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Cross-validation

To finesse this problem, cross-validation splits the data into K
folds, fits the data on K − 1 of the folds, and evaluates prediction
error on the fold that was left out

1 2 3 4 5

Common choices for K are 5, 10, or n (also known as
leave-one-out cross-validation)
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Cross-validation: Details

(1) Specify a grid of regularization parameter values
Λ = {λ1, . . . , λK}

(2) Divide the data into V roughly equal parts D1, . . . , DV

(3) For each v = 1, . . . , V , compute the lasso solution path using
the observations in {Du, u 6= v}

(4) For each λ ∈ Λ, compute the mean squared prediction error

MSPEv(λ) =
1

nv

∑
i∈Dv

{yi − xT
i β̂−v(λ)}2,

where nv is the number of observations in Dv, as well as

CV(λ) =
1

V

V∑
v=1

MSPEv(λ).
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Cross-validation: Details (cont’d)

Then λ̂ is taken to be the value that minimizes CV(λ) and
β̂ ≡ β̂(λ̂) the estimator of the regression coefficients

Note that

MSPEv(λ) is the mean squared prediction error for the model
based on the training data {Du, u 6= v} in predicting the
response variables in Dv

CV(λ) is an estimate of the expected mean squared prediction
error, EPE(λ), defined in the Feb. 10 lecture
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Variability of CV estimates

Regardless of the number of cross-validation folds, each
observation in the data appears exactly once in a test set

Letting µ̂i(λ) = xT
i β̂u(i)(λ), the mean of {yi − µ̂i(λ)}ni=1 is

equal to CV(λ)

Its variability, however, is useful for estimating the accuracy
with which E(MSPE(λ)) is estimated
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CV standard errors

Letting SDCV(λ) denote the sample standard deviation of the
{yi − µ̂i(λ)}ni=1 values, the standard error of CV(λ) is

SECV(λ) =
SDCV(λ)√

n
,

which, in turn, can be used to construct confidence intervals

The cross-validation procedure described in this section, along
with the estimates of CV(λ) and its standard error, are
implemented in glmnet and can be carried out using

cvfit <- cv.glmnet(X, y)

plot(cvfit)

By default, cv.glmnet uses V = 10 folds, but this can be
changed through the nfolds option.
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CV plot for lasso: Pollution data
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Remarks

The value λ = 1.84 minimizes the cross-validation error, at
which point 9 variables are selected

However, as the confidence intervals show, there is substantial
uncertainty about this minimum value

A fairly wide range of λ values (λ ∈ [0.12, 9.83]) yield CV(λ)
estimates falling within ±1SECV of the minimum

This is almost always the case in model selection: a large
number of models could reasonably be considered the “best”
model, subject to random variability
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Repeated cross-validation

Note that CV(λ), and hence β̂, will change somewhat
depending on the random folds

To avoid this, some people carry out repeated cross-validation,
and select λ according to the average CV error

Another option is to carry out n-fold cross-validation, in which
there is only one way to select the fold assignments

It is important to realize, however, that neither of these
approaches does anything to eliminate actual uncertainty with
respect to the selection of λ
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σ2: Plug-in estimator

We have discussed estimation of β; let us now turn our
attention to estimation of the residual variance, σ2

In ordinary least squares regression,

σ̂2OLS =
RSS

n− df

For the lasso, an obvious plug-in alternative is

σ̂2P =
RSS(λ)

n− df(λ)

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 19/25



Selection of λ
Estimation of σ2

Plug-in and cross-validation estimators
Estimation of R2

σ2: CV estimator

The plug-in estimator is based on the observed fit of the
model and tends to underestimate σ2, particularly for low
values of λ

An alternative approach is to use an estimate of the
out-of-sample prediction error in place of the observed RSS(λ)

This is the exact quantity estimated by cross-validation:

σ̂2CV = CV(λ)
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Refitted CV

Other, more computationally intensive methods have also
been proposed based on sample splitting

The basic idea is to randomly partitioning the dataset into
two sets D1 and D2, use the lasso on D1 for the purposes of
variable selection, then fit an OLS model to D2 (using the
predictors selected by D1) for the purposes of estimating σ2

This can be repeated several times, as well as applied in the
reverse direction (switching the roles of D1 and D2) to obtain
a more stable estimate
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Comparison of estimators
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Coefficient of determination

One reason that estimating σ2 is of considerable practical
interest is that it enables us to estimate the proportion of
variance in the outcome that can be explained by the model

This quantity, familiar from classical regression, is known as
the coefficient of determination and denoted R2

The coefficient of determination is given by

R2 = 1− Var(Y |X)

Var(Y )
;

we have just discussed the estimation of σ2 = Var(Y |X);
estimation of Var(Y ) is straightforward
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R2: Calculation in R

Once cross-validation has been carried out, calculation of R2

is straightforward

With glmnet:

cvfit <- cv.glmnet(X, y)

rsq <- 1-cvfit$cvm/var(y)

Also, the coefficient of determination is available as a plot
type in ncvreg:

cvfit <- cv.ncvreg(X, y, penalty="lasso")

plot(cvfit, type="rsq")
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R2 plot: Pollution data
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It is worth noting that only a small about the explained variability
comes from the pollution variables: maxR2 = 0.58 with the
pollution variables; maxR2 = 0.56 without the pollution variables
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