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Introduction

In the previous lecture, we introduced the lasso and derived
necessary and sufficient conditions β̂ must satisfy in order to
minimize the lasso objective function

However, these conditions only allow us to check a solution;
they do not necessarily help us to find the solution in the first
place

Today, we will discuss two algorithms for solving for β̂; the
algorithms are, of course, a practical necessity but also yield
considerable insight into the nature of the lasso as a statistical
method
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`0 penalization

As we saw in the previous lecture, the lasso can be thought of
as performing a multivariate version of soft thresholding

The multivariate version of hard thresholding is `0
penalization, in which we minimize the objective function

1

2n
‖y −Xβ‖2 + λ‖β‖0,

where ‖β‖0 =
∑

j I(βj 6= 0)

For the orthonormal case, the solution is given by
β̂j = H(β̂OLSj ,

√
2λ)

Estimating β in this manner is equivalent to subset selection,
and model selection criteria such as AIC and BIC are simply
special cases corresponding to different λ values
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Lasso as soft relaxation of `0-penalization

Thus, the lasso can be thought of as a “soft” relaxation of `0
penalized regression

This relaxation has two important benefits:

Estimates are continuous with respect to both λ and the data
The lasso objective function is convex

These facts allow optimization of `1-penalized regression to
proceed very efficiently, as we will see; in comparison,
`0-penalized regression is computationally infeasible when p is
large
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Forward selection and the lasso

To get around the difficulty of finding the best possible
subset, a common approach is to employ the greedy algorithm
known as forward selection

Like forward selection, the lasso will allow more variables to
enter the model as λ is lowered

However, the lasso performs a continuous version of variable
selection and is less greedy about allowing selected variables
into the model
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Forward selection and lasso paths

Let us consider the regression paths of the lasso and forward
selection (`1 and `0 penalized regression, respectively) as we
lower λ, starting at λmax where β̂ = 0

As λ is lowered below λmax, both approaches find the
predictor most highly correlated with the response (let xj
denote this predictor), and set β̂j 6= 0:

With forward selection, the estimate jumps from β̂j = 0 all the

way to β̂j = xT
j y/n

The lasso solution β̂j = 0 heads in this direction as well, but
proceeds more cautiously, gradually advancing towards
β̂j = xT

j y/n as we lower λ
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Forward selection and lasso paths: Geometry
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Remarks

The lasso solution proceeds in this manner until it reaches the
point that a new predictor, xk, is equally correlated with the
residual r(λ) = y −Xβ̂(λ)

From this point, the lasso solution will contain both x1 and
x2, and proceed in the direction that is equiangular between
the two predictors

The lasso always proceeds in a direction such that every active
predictor (i.e., one with β̂j 6= 0) is equally correlated with the
residual r(λ), which can also been seen from the KKT
conditions
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Remarks (cont’d)

The geometry of the lasso clearly illustrates the “greediness”
of forward selection

By continuing along the path from y to ȳ1 past the point of
equal correlation, forward selection continues to exclude x2

from the model even when x2 is more closely correlated with
the residuals than x1

The lasso, meanwhile, allows the predictors most highly
correlated with the residuals into the model, but only
gradually, up to the point that the next predictor is equally
useful in explaining the outcome
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LARS

These geometric insights were the key to developing the first
efficient algorithm for finding the lasso estimates β̂(λ)

The approach, known as least angle regression, or the LARS
algorithm, offers an elegant way to carry out lasso estimation

The idea behind the algorithm is to

(1) Project the residuals onto the active variables
(2) Calculate how far we can proceed in that direction before

another variable reaches the necessary level of correlation with
the residuals

then adding it to the set of active variables and repeating (1)
and (2), and so on
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Historical role of LARS

The LARS algorithm played an important role in the history of
the lasso

Prior to LARS, lasso estimation was slow and very computer
intensive; LARS, on the other hand, requires only O(np2)
calculations, the same order of magnitude as OLS

Nevertheless, LARS is not widely used anymore

Instead, the most popular approach for fitting lasso and other
penalized regression models is to employ coordinate descent
algorithms, a less beautiful but simpler and more flexible
alternative
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Coordinate descent

The idea behind coordinate descent is, simply, to optimize a
target function with respect to a single parameter at a time,
iteratively cycling through all parameters until convergence is
reached

Coordinate descent is particularly suitable for problems, like
the lasso, that have a simple closed form solution in a single
dimension but lack one in higher dimensions
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CD notation

Let us consider minimizing Q with respect to βj , while
temporarily treating the other regression coefficients β−j as
fixed:

Q(βj |β−j) =
1

2n

n∑
i=1

(yi −
∑
k 6=j

xijβk − xijβj)2 + λ|βj |+ Constant

Let

r̃ij = yi −
∑
k 6=j

xikβ̃k

z̃j = n−1
n∑
i=1

xij r̃ij ,

where {r̃ij}ni=1 are the partial residuals with respect to the jth

predictor, and z̃j is the OLS estimator based on {r̃ij , xij}ni=1
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CD algorithm

We have already solved the problem of finding a
one-dimensional lasso solution; letting β̃j denote the

minimizer of Q(βj |β̃−j),

β̃j = S(z̃j |λ)

This suggests the following algorithm:

repeat
for j = 1, 2, . . . , p

z̃j = n−1
∑n

i=1 xijri + β̃
(s)
j

β̃
(s+1)
j ← S(z̃j |λ)

ri ← ri − (β̃
(s+1)
j − β̃(s)j )xij for all i.

until convergence
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Remarks

The coordinate descent algorithm has the potential to be
quite efficient, in that its three require only O(2n) operations
(no complicated matrix factorizations, or even matrix
multiplication, just two inner products)

Thus, one full iteration can be completed at a computational
cost of O(2np) operations

Thus, coordinate descent is linear in both n and p, scaling up
to high dimensions even better than LARS, although it is
worth noting that coordinate descent requires an unknown
number of iterations, whereas LARS terminates in a known
number of steps
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Convergence

Numerical analysis of optimization problems of the form
Q(β) = L(β) + P (β) has shown that coordinate descent
algorithms converge to a solution of the penalized likelihood
equations provided that the loss function L(β) is
differentiable and the penalty function Pλ(β) is separable,
meaning that it can be written as Pλ(β) =

∑
j Pλ(βj)

Lasso-penalized linear regression satisfies both of these criteria
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Convergence (cont’d)

Furthermore, because the lasso objective is a convex function,

the sequence of the objective functions {Q(β̃
(s)

)} converges
to the global minimum

However, because the lasso objective is not strictly convex,
there may be multiple solutions

In such situations, coordinate descent will converge to one of
those solutions, but which solution it converges to is
essentially arbitrary, as it depends on the order of the features
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Coordinate descent and pathwise optimization

As we saw with ridge regression, we are typically interested in
determining β̂ for a range of values of λ, thereby obtaining
the coefficient path

In applying the coordinate descent algorithm to determine the
lasso path, an efficient strategy is to compute solutions for
decreasing values of λ, starting at λmax = max1≤j≤p |xTj y|/n,
the point at which all coefficients are 0

By continuing along a decreasing grid of λ values, we can use
the solutions β̂(λk) as initial values when solving for β̂(λk+1)
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Warm starts

Because the coefficient path is continuous, doing this
automatically provides good initial values for the iterative
optimization procedure

This strategy, known as employing “warm starts” substantially
improves the efficiency of the algorithm, as the initial values
are always fairly close to the final solution.

We proceed in this manner down to a minimum value λmin;
because lasso solutions change more rapidly at low values of
λ, the grid of λ values is typically chosen to be uniformly
spaced on the log scale over the interval [λmax, λmin].
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glmnet

To illustrate the coefficient path of the lasso, let’s fit a lasso
model to the pollution data we analyzed earlier in the course
using ridge regression

The coordinate descent algorithm described in this section is
implemented in the R package glmnet

The basic usage of glmnet is straightforward:

library(glmnet)

fit <- glmnet(X, y)

plot(fit)

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 20/23



Lasso geometry
Coordinate descent

Algorithm
Pathwise optimization

Lasso path: Pollution data
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Remarks

Like the corresponding plot for ridge regression,

The estimates are β̂ = 0 on the left side and β̂ = β̂OLS on
the right side
Both indicate that the large OLS effect estimates for HC and
NOX pollution are not to be believed
Both indicate that the pollutant with the greatest effect on
mortality is SO2

However, the lasso path is sparse, with coefficients entering
the model one by one as λ decreases

For example, at λ = 1.84, the value which minimizes the
cross-validation error, there are nine variables in the model –
notably, this does not include HC or NOX, the variables with
the largest OLS regression coefficients
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Remarks (cont’d)

Another, more subtle difference is that with the lasso, coefficients
get larger faster than with ridge regression (i.e., there is greater
separation between the large and small coefficients)
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