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Introduction

@ Last week, we introduced penalized regression and discussed
ridge regression, in which the penalty took the form of a sum
of squares of the regression coefficients

@ In this topic, we will instead penalize the absolute values of
the regression coefficients, a seemingly simple change with
widespread consequences
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@ Specifically, consider the objective function

1
QBIX,y) =5 lly - XBII5 + Bl

where [|B[|1 = >, (8| denotes the {1 norm of the regression
coefficients

® As before, estimates of 3 are obtained by minimizing the
above function for a given value of J, yielding B())

@ This approach was originally proposed in the regression
context by Robert Tibshirani in 1996, who called it the least
absolute shrinkage and selection operator, or lasso
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@ Its name captures the essence of what the lasso penalty
accomplishes

o Shrinkage: Like ridge regression, the lasso penalizes large
regression coefficients and shrinks estimates towards zero

o Selection: Unlike ridge regression, the lasso produces sparse
solutions: some coefficient estimates are exactly zero,
effectively removing those predictors from the model

@ Sparsity has two very attractive properties

o Speed: Algorithms which take advantage of sparsity can scale
up very efficiently, offering considerable computational
advantages

o Interpretability: In models with hundreds or thousands of
predictors, sparsity offers a helpful simplification of the model
by allowing us to focus only on the predictors with nonzero
coefficient estimates
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Ridge and lasso penalties
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Semi-differentiable functions

@ One obvious challenge that comes with the lasso is that, by
introducing absolute values, we are no longer dealing with
differentiable functions

@ For this reason, we're going to take a moment and extend
some basic calculus results to the case of non-differentiable
(more specifically, semi-differentiable) functions

@ A function f: R — R is said to be semi-differentiable at a
point z if both d_ f(x) and d4 f(z) exist as real numbers,
where d_ f(x) and dy f(x) are the left- and right-derivatives
of fata

@ Note that f is semi-differentiable implies that f is continuous
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Subderivatives and subdifferentials

@ Given a semi-differentiable function f : R — R, we say that d
is a subderivative of f at z if d € [d_f(z),dy f(x)]; the set
[d_f(z),ds f(x)] is called the subdifferential of f at x, and is
denoted Jf(x)

@ Note that the subdifferential is a set-valued function

@ Recall that a function is differentiable at x if
d_f(xz) = d4 f(x); i.e., if the subdifferential consists of a

single point
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Subdifferentiability

Example: |z

e For example, consider the function f(z) = |z|
@ The subdifferential is

-1 ifx <0
of(x) =14 [-1,1] ifz=0
1 ifx >0

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600)



The lasso
Convex optimization
Soft thresholding

Subdifferentiability

Optimization

@ The essential results of optimization can be extended to
semi-differentiable functions

@ Theorem: If f is a semi-differentiable function and zg is a
local minimum or maximum of f, then 0 € Jf(x¢)

@ As with regular calculus, the converse is not true in general
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Computation rules

As with regular differentiation, the following basic rules apply
Theorem: Let f be semi-differentiable, a, b be constants,
and g be differentiable. Then

o Haf(x)+b} = adf(x)

o {f(z)+g(x)} = 0f(x) +g'()
The notions extend to higher-order derivatives as well; a
function f: R — R is said to be second-order
semi-differentiable at a point z if both d* f(z) and d2 f(z)
exist as real numbers

The second-order subdifferential is denoted

0 f(x) = [d2 f(x),d% f(x)]
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Convexity

@ As in the differentiable case, a convex function can be
characterized in terms of its subdifferential

@ Theorem: Suppose f is semi-differentiable on (a,b). Then f
is convex on (a,b) if and only if 9f is increasing on (a,b).
@ Theorem: Suppose f is second-order semi-differentiable on

(a,b). Then f is convex on (a,b) if and only if
0%f(x) > 0Vx € (a,b).
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Multidimensional results

@ The previous results can be extended (although we'll gloss
over the details) to multidimensional functions by replacing
left- and right-derivatives with directional derivatives

@ A function f: R™ — R is said to be semi-differentiable if the
directional derivative d, f(z) exists in all directions u

@ Theorem: If f is a semi-differentiable function and z is a
local minimum of f, then d, f(z¢) > 0Vu

@ Theorem: Suppose f is a semi-differentiable function. Then
f is convex over a set S if and only if d2 f(z) > 0 for all
x € § and in all directions u
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Score functions and penalized score functions

@ In classical statistical theory, the derivative of the
log-likelihood function is called the score function, and
maximum likelihood estimators are found by setting this
derivative equal to zero, thus yielding the likelihood equations
(or score equations):

0
0=—L(0),
59-(0)
where L denotes the log-likelihood.

o Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions of the form
Q(0) = L(0) + P(0), yielding the penalized score function
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Penalized likelihood equations

@ For ridge regression, the penalized likelihood is everywhere
differentiable, and the extension to penalized score equations
is straightforward

@ For the lasso, and for the other penalties we will consider in
this class, the penalized likelihood is not differentiable —
specifically, not differentiable at zero — and subdifferentials are
needed to characterize them

o Letting 0Q(0) denote the subdifferential of @), the penalized
likelihood equations (or penalized score equations) are:

0 € 9Q(0).
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KKT conditions

@ In the optimization literature, the resulting equations are
known as the Karush-Kuhn-Tucker (KKT) conditions

@ For convex optimization problems such as the lasso, the KKT
conditions are both necessary and sufficient to characterize
the solution

@ A rigorous proof of this claim in multiple dimensions would
involve some of the details we glossed over, but the idea is
fairly straightforward: to solve for ,B we simply replace the
derivative with the subderivative and the likelihood with the
penalized likelihood
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KKT conditions for the lasso

@ Result: B minimizes the lasso objective function if and only if
it satisfies the KKT conditions

Ly XB) = xim(3) B #0
Ry~ XB) <A B =0

@ In other words, the correlation between a predictor and the
residuals, x;-P(y — XB)/n, must exceed a certain minimum
threshold X\ before it is included in the model

@ When this correlation is below A, Bj =0
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Remarks

o If we set

— = T
A= )\max = 1??3}{;3 |Xj Y|/n7

then B = 0 satisfies the KKT conditions

@ That is, for any A > Apax, we have ,@()\) =0

@ On the other hand, if we set A = 0, the KKT con/glitions are
simply the normal equations for OLS, X”(y — X3) =0

@ Thus, the coefficient path for the lasso starts at Ap.x and
may continue until A\ = 0 if X is full rank; otherwise it will

terminate at some Ay > 0 when the model becomes
saturated
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Lasso and uniqueness

@ The lasso criterion is convex, but not strictly convex if XTxX
is not full rank; thus the lasso solution may not be unique

@ For example, suppose n = 2 and p = 2, with
(y1,z11,212) = (1,1,1) and and (y2, z21, x22) = (—1,—1,—1)
@ Then the solutions are

(81
(B

~

) =(0,0) if A> 1,

) €{(B1,B2) : fr+P2=1—=X,01>0,062 >0}
fo<i«l1

752
752
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Special case: Orthonormal design

@ As with ridge regression, it is instructive to consider the
special case where the design matrix X is orthonormal:
nIXTX =1

@ Result: In the orthonormal case, the lasso estimate is

zj— A, ifzp > A,
Bi(A) =10, if 2] < A,
zj + A, if zj < -

where z; = xTy/n is the OLS solution
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Soft thresholding

@ The result on the previous slide can be written more
compactly as

Bi(N) = S(zM),

where the function S(:|)) is known as the soft thresholding
operator

@ This was originally proposed by Donoho and Johnstone in
1994 for soft thresholding of wavelets coefficients in the
context of nonparametric regression

@ By comparison, the “hard” thresholding operator is
H(z,\) = zI{|z| > A}, where I(S) is the indicator function
for set S
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Soft and hard thresholding operators

= Hard =—— Soft
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Probability that §; = 0

@ With soft thresholding, it is clear that the lasso has a positive
probability of yielding an estimate of exactly 0 — in other
words, of producing a sparse solution

@ Specifically, the probability of dropping x; from the model is
P(lzj] < A)

@ Under the assumption that ¢; i N(0, 0?), we have
zj ~N(B,0?/n) and

P(B;(\) = 0) = @(2/_—\/2) - @(ﬁ),

where @ is the Gaussian CDF
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Sampling distribution

Foro=1,n=10, and A =1/2:
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Remarks

@ This sampling distribution is very different from that of a
classical MLE:
o The distribution is mixed: a portion is continuously distributed,
but there is also a point mass at zero
e The continuous portion is not normally distributed
o The distribution is asymmetric (unless 8 = 0)
e The distribution is not centered at the true value of g

@ These facts create a number of challenges for carrying out

inference using the lasso; we will be putting this issue aside for
now, but will return to it later in the course
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