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Introduction

Last week, we introduced penalized regression and discussed
ridge regression, in which the penalty took the form of a sum
of squares of the regression coefficients

In this topic, we will instead penalize the absolute values of
the regression coefficients, a seemingly simple change with
widespread consequences
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Specifically, consider the objective function

Q(β|X,y) =
1

2n
‖y −Xβ‖22 + λ‖β‖1,

where ‖β‖1 =
∑

j |βj | denotes the `1 norm of the regression
coefficients

As before, estimates of β are obtained by minimizing the
above function for a given value of λ, yielding β̂(λ)

This approach was originally proposed in the regression
context by Robert Tibshirani in 1996, who called it the least
absolute shrinkage and selection operator, or lasso
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Shrinkage, selection, and sparsity

Its name captures the essence of what the lasso penalty
accomplishes

Shrinkage: Like ridge regression, the lasso penalizes large
regression coefficients and shrinks estimates towards zero
Selection: Unlike ridge regression, the lasso produces sparse
solutions: some coefficient estimates are exactly zero,
effectively removing those predictors from the model

Sparsity has two very attractive properties

Speed: Algorithms which take advantage of sparsity can scale
up very efficiently, offering considerable computational
advantages
Interpretability: In models with hundreds or thousands of
predictors, sparsity offers a helpful simplification of the model
by allowing us to focus only on the predictors with nonzero
coefficient estimates
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Ridge and lasso penalties
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Semi-differentiable functions

One obvious challenge that comes with the lasso is that, by
introducing absolute values, we are no longer dealing with
differentiable functions

For this reason, we’re going to take a moment and extend
some basic calculus results to the case of non-differentiable
(more specifically, semi-differentiable) functions

A function f : R→ R is said to be semi-differentiable at a
point x if both d−f(x) and d+f(x) exist as real numbers,
where d−f(x) and d+f(x) are the left- and right-derivatives
of f at x

Note that f is semi-differentiable implies that f is continuous
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Subderivatives and subdifferentials

Given a semi-differentiable function f : R→ R, we say that d
is a subderivative of f at x if d ∈ [d−f(x), d+f(x)]; the set
[d−f(x), d+f(x)] is called the subdifferential of f at x, and is
denoted ∂f(x)

Note that the subdifferential is a set-valued function

Recall that a function is differentiable at x if
d−f(x) = d+f(x); i.e., if the subdifferential consists of a
single point
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Example: |x|

For example, consider the function f(x) = |x|
The subdifferential is

∂f(x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0
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Optimization

The essential results of optimization can be extended to
semi-differentiable functions

Theorem: If f is a semi-differentiable function and x0 is a
local minimum or maximum of f , then 0 ∈ ∂f(x0)

As with regular calculus, the converse is not true in general
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Computation rules

As with regular differentiation, the following basic rules apply

Theorem: Let f be semi-differentiable, a, b be constants,
and g be differentiable. Then

∂{af(x) + b} = a∂f(x)
∂{f(x) + g(x)} = ∂f(x) + g′(x)

The notions extend to higher-order derivatives as well; a
function f : R→ R is said to be second-order
semi-differentiable at a point x if both d2−f(x) and d2+f(x)
exist as real numbers

The second-order subdifferential is denoted
∂2f(x) = [d2−f(x), d2+f(x)]
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Convexity

As in the differentiable case, a convex function can be
characterized in terms of its subdifferential

Theorem: Suppose f is semi-differentiable on (a, b). Then f
is convex on (a, b) if and only if ∂f is increasing on (a, b).

Theorem: Suppose f is second-order semi-differentiable on
(a, b). Then f is convex on (a, b) if and only if
∂2f(x) ≥ 0 ∀x ∈ (a, b).
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Multidimensional results

The previous results can be extended (although we’ll gloss
over the details) to multidimensional functions by replacing
left- and right-derivatives with directional derivatives

A function f : Rn → R is said to be semi-differentiable if the
directional derivative duf(x) exists in all directions u

Theorem: If f is a semi-differentiable function and x0 is a
local minimum of f , then duf(x0) ≥ 0∀u
Theorem: Suppose f is a semi-differentiable function. Then
f is convex over a set S if and only if d2uf(x) ≥ 0 for all
x ∈ S and in all directions u
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Score functions and penalized score functions

In classical statistical theory, the derivative of the
log-likelihood function is called the score function, and
maximum likelihood estimators are found by setting this
derivative equal to zero, thus yielding the likelihood equations
(or score equations):

0 =
∂

∂θ
L(θ),

where L denotes the log-likelihood.

Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions of the form
Q(θ) = L(θ) + P (θ), yielding the penalized score function
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Penalized likelihood equations

For ridge regression, the penalized likelihood is everywhere
differentiable, and the extension to penalized score equations
is straightforward

For the lasso, and for the other penalties we will consider in
this class, the penalized likelihood is not differentiable –
specifically, not differentiable at zero – and subdifferentials are
needed to characterize them

Letting ∂Q(θ) denote the subdifferential of Q, the penalized
likelihood equations (or penalized score equations) are:

0 ∈ ∂Q(θ).
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KKT conditions

In the optimization literature, the resulting equations are
known as the Karush-Kuhn-Tucker (KKT) conditions

For convex optimization problems such as the lasso, the KKT
conditions are both necessary and sufficient to characterize
the solution

A rigorous proof of this claim in multiple dimensions would
involve some of the details we glossed over, but the idea is
fairly straightforward: to solve for β̂, we simply replace the
derivative with the subderivative and the likelihood with the
penalized likelihood
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KKT conditions for the lasso

Result: β̂ minimizes the lasso objective function if and only if
it satisfies the KKT conditions

1

n
xT
j (y −Xβ̂) = λsign(β̂j) β̂j 6= 0

1

n
|xT

j (y −Xβ̂)| ≤ λ β̂j = 0

In other words, the correlation between a predictor and the
residuals, xT

j (y −Xβ̂)/n, must exceed a certain minimum
threshold λ before it is included in the model

When this correlation is below λ, β̂j = 0
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Remarks

If we set

λ = λmax ≡ max
1≤j≤p

|xT
j y|/n,

then β̂ = 0 satisfies the KKT conditions

That is, for any λ ≥ λmax, we have β̂(λ) = 0

On the other hand, if we set λ = 0, the KKT conditions are
simply the normal equations for OLS, XT (y −Xβ̂) = 0

Thus, the coefficient path for the lasso starts at λmax and
may continue until λ = 0 if X is full rank; otherwise it will
terminate at some λmin > 0 when the model becomes
saturated
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Lasso and uniqueness

The lasso criterion is convex, but not strictly convex if XTX
is not full rank; thus the lasso solution may not be unique

For example, suppose n = 2 and p = 2, with
(y1, x11, x12) = (1, 1, 1) and and (y2, x21, x22) = (−1,−1,−1)

Then the solutions are

(β̂1, β̂2) =(0, 0) if λ ≥ 1,

(β̂1, β̂2) ∈{(β1, β2) : β1 + β2 = 1− λ, β1 ≥ 0, β2 ≥ 0}
if 0 ≤ λ < 1
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Special case: Orthonormal design

As with ridge regression, it is instructive to consider the
special case where the design matrix X is orthonormal:
n−1XTX = I

Result: In the orthonormal case, the lasso estimate is

β̂j(λ) =


zj − λ, if zj > λ,

0, if |zj | ≤ λ,
zj + λ, if zj < −λ

,

where zj = xT
j y/n is the OLS solution
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Soft thresholding

The result on the previous slide can be written more
compactly as

β̂j(λ) = S(zj |λ),

where the function S(·|λ) is known as the soft thresholding
operator

This was originally proposed by Donoho and Johnstone in
1994 for soft thresholding of wavelets coefficients in the
context of nonparametric regression

By comparison, the “hard” thresholding operator is
H(z, λ) = zI{|z| > λ}, where I(S) is the indicator function
for set S
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Soft and hard thresholding operators
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Probability that β̂j = 0

With soft thresholding, it is clear that the lasso has a positive
probability of yielding an estimate of exactly 0 – in other
words, of producing a sparse solution

Specifically, the probability of dropping xj from the model is
P(|zj | ≤ λ)

Under the assumption that εi
iid∼ N(0, σ2), we have

zj ∼ N(β, σ2/n) and

P(β̂j(λ) = 0) = Φ
(λ− β
σ/
√
n

)
− Φ

(−λ− β
σ/
√
n

)
,

where Φ is the Gaussian CDF
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Sampling distribution

For σ = 1, n = 10, and λ = 1/2:
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Remarks

This sampling distribution is very different from that of a
classical MLE:

The distribution is mixed: a portion is continuously distributed,
but there is also a point mass at zero
The continuous portion is not normally distributed
The distribution is asymmetric (unless β = 0)
The distribution is not centered at the true value of β

These facts create a number of challenges for carrying out
inference using the lasso; we will be putting this issue aside for
now, but will return to it later in the course
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