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Introduction

Last time, we saw how FWER can be used to address the
question of statistical significance in light of multiple testing

However, especially in high dimensions, FWER seems like a
rather extreme condition to satisfy

For example, in our leukemia data set, we could reject 131
hypotheses with only a 5% chance of a single false rejection
among those 131 . . . this seems like an overwhelming success
story, but FWER says we are right at the limit of what is
allowed
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True and false discoveries

Suppose we arrange the outcomes of all the tests we conduct into
a 2× 2 table on the basis of our decision to reject the null
hypothesis or not (known, random) and whether the null
hypothesis, in reality, is true or not (fixed, unknown):

Decision
Null “Discovery” Total

Reality Null true h0 −A A h0
Null false h1 −B B h1
Total h−R R h
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“Horizontal” and “vertical” rates

Classical frequentist statistics is entirely preoccupied with the
“horizontal” proportions in the previous table

Type I error: A/h0
Power: B/h1

Our focus for today, however, is a “vertical” proportions:

False discovery proportion: A/R

To prove anything about these proportions, we need to
consider their expected values, or rates; thus, we define the
false discovery rate as E(A/R), and so on for the Type I error
rate, etc.
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False discovery rates and high-dimensional data

The false discovery rate has a much more direct interpretation
than the Type I error rate, in that it explicitly tells what
fraction of the discoveries we are claiming we can expect to be
mere coincidences

This is, of course, appealing in the low-dimensional case as
well, but it isn’t possible to make claims along the lines of
“there is a 95% probability the null hypothesis is true, given
the data” without specifying Bayesian priors

With high-dimensional data, however, we can estimate and
control false discovery rates without the requirement of priors
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Benjamini-Hochberg procedure
Estimation of π

Benjamini & Hochberg

In 1995, Yoav Benjamini and Yosef Hochberg published a
paper demonstrating a procedure for rejecting hypotheses in
the multiple comparison setting while controlling the false
discovery rate

The procedure was not necessarily new, nor was the term
“false discovery rate”, but they were the first to prove that
the procedure controlled the FDR

The paper has gone on to become extraordinarily influential,
with over 30,000 citations – one of the most highly cited
papers in the history of statistics
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The BH procedure

The Benjamini-Hochberg procedure is as follows:

For a fixed value q, let imax denote the largest index for which

p(i) ≤
i

h
q

Then reject all hypotheses H0(i) for i = 1, 2, . . . , imax

Note that, unlike the Holm and Westfall-Young procedures we
discussed yesterday, this is not a step-down procedure; rather, it
would be a “step-up” procedure, although that is not how I
describe it above

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 7/21



False discovery rates
FDR control

Empirical Bayes interpretation

Benjamini-Hochberg procedure
Estimation of π

FDR control

Theorem: For independent test statistics and for any
configuration of true and false null hypotheses, the BH
procedure controls the FDR at q

Remark #1: The above theorem depends on taking A/R to
be 0 when R = 0; typically, this is a minor concern in high
dimensions, but seriously distorts the meaning of FDR for, say,
h = 1

Remark #2: The original theorem was proved only for the
case of independent tests; later efforts have extended the
results to tests that are weakly dependent

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 8/21



False discovery rates
FDR control

Empirical Bayes interpretation

Benjamini-Hochberg procedure
Estimation of π

Proof: Illustration

Benjamini & Hochberg’s original
proof was somewhat long and
tedious; a more elegant proof
uses the idea of martingales and
the optional stopping theorem
with respect to the decision rule
pi ≤ t 1.0 0.8 0.6 0.4 0.2 0.0
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Comparison with FWER

For the leukemia data,
FDR control is much more
liberal than FWER control;
at 10%, we can reject 192
hypotheses using the
Westfall-Young approach,
compared with 1,537 using
the Benjamini-Hochberg
approach
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Remarks

With FWER, we want to limit the probability of making even
a single mistake

With FDR, not only do we allow ourselves to make mistakes,
in the leukemia case, we’re allowing ourselves to make well
over a hundred mistakes

Although FDR has become a widely accepted methodology,
there is no conventional standard for FDR cutoffs the way
there is for p-values

Part of the reason for this may be that FDR, being more
directly interpretable, is in less need of a standard: an
investigator can immediately weigh the costs of failing to
reproduce the findings in 20% of discoveries vs. 5%
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q-values

As with FWER and adjusted p-values, it is desirable to
quantify the significance of each test by obtaining a value that
may be simply compared with, say, .1 to find the tests that
can be rejected with a FDR control of 10%

In the FDR literature, this is known as the q value:

qj = inf{q : H0j rejected at FDR ≤ q}

In R, this can be obtained with

p.adjust(p, method='BH')

although keep in mind that the interpretation of false
discovery rates is very different from p-values
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Fraction of null hypotheses

In our proof of the Benjamini-Hochberg theorem, we saw that
their proposed procedure was conservative: its actual FDR is

E(A/R) =
h0
h
q

Letting π0 = h0/h denote the fraction of hypotheses that are
truly null, one potential improvement to the BH procedure is
to estimate π0

Given such an estimate, we can simply replace h with
ĥ0 = hπ̂0 everywhere it appears in the BH procedure
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π̂(t)

Consider the following straightforward estimator for π0,
originally proposed by John Storey:

π̂0(t) =
#{pi > t}
h(1− t)

The idea behind the estimator is that most of the high
p-values should be coming from the population of null
features; the estimator is simply the observed number divided
by the amount you would expect in the region is all
hypotheses were null

There is a bias-variance tradeoff at play here: for low t, we are
likely including non-null hypotheses, while at high t the
sample size is small
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The bias-variance tradeoff
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Somewhere around t = 0.6
seems reasonable, with
π̂(0.6) = .56; thus, we
estimate that 44% of the
genes being tested differ
between ALL and AML
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π̂0 and the p-value histogram
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Empirical Bayes setup

The preceding development of FDR has adopted a purely
frequentist outlook: proposing a procedure and then proving
something about its frequentist properties with respect to
some error rate

The same estimator, however, can be motivated from an
empirical Bayes treatment of the problem as well

Suppose that the z-values come from a mixture of two
groups: the null group with probability π0 and density f0(z),
and the non-null group with probability π1 and density f1(z)
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Bayes’ rule

Consider a region Z and let F0(Z) denote the probability, for
a feature in the null group, of z ∈ Z, with

F (Z) = π0F0(Z) + π1F1(Z)

denoting the marginal probability of z ∈ Z
Suppose we observe z ∈ Z and wish to know the group it
belongs to; applying Bayes’ rule,

P(Null|z ∈ Z) =
π0F0(Z)

F (Z)

This requires three quantities: F0(Z), π0, and F (Z)
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Empirical distribution function

Assuming we believe in the theoretical null, F (Z) = Φ(Z)

We could estimate π0, as we have seen, or we could just use 1
as an upper bound

Finally, since we observe a large number, h, of z-values, we
can use their empirical distribution to estimate F (Z):

F̂ (Z) =
#{zj ∈ Z}

h

Substituting, we have that for the ith ranked z-value,

P(Null|z ∈ Z) =
p(i)

i/h
,

comparing this quantity to q is the same inequality checked by
the BH procedure
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Remarks

Note that the FDR has a nice interpretation here: whereas in
frequentist statistics, a common misconception is that
p = 0.02 means that P(H0|Data) = 2%, here the FDR
actually does mean that (at least, in the aggregate sense)

From the empirical Bayes perspective, the FDR methodology
is not a testing procedure with error rates to be controlled,
but an estimation problem

The biggest consequence of this is with respect to correlated
tests: this poses a considerable challenge to FDR control, but
as an estimate remains reasonably accurate even in the
presence of correlated tests
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Remarks (cont’d)

The accuracy of π̂0F0(Z)/F̂ (Z) depends primarily on the
accuracy of F̂

Correlation among the z-values introduces little or no bias to
the empirical distribution function as an estimate of F (Z)

However, it can have a substantial impact on the variance

This insight offers the clearest picture of how dependence
between tests affects FDR: the estimate remains essentially
unbiased, but our confidence in its accuracy is diminished
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