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Introduction

• Last time we discussed testing whether two groups differ with
respect to survival/hazard
• One reason such tests are useful is that they provide an
objective criteria (statistical significance) around which to
plan out a study: How many subjects do we need? How long
will the study take to complete? This is our topic for today
• FYI: Our book doesn’t really address this issue; today’s
lecture is largely derived from George and Desu (1974)’s
classic paper on the subject
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Exponential approximation

• The main idea behind George & Desu’s approach is to assume
constant hazards (i.e., exponential distributions) for the sake
of simplicity
• Further work by other authors has indicated that the
power/sample size one obtains from assuming constant
hazards is fairly close to the empirical power of the log-rank
test, provided that the ratio between the two hazard functions
is constant
• Typically in a power analysis, we are simply trying to find the
approximate number of subjects required by the study, and
many approximations/guesses are involved, so using formulas
based on the exponential distribution is often good enough
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Special case: No censoring

• Let us begin with the special case of no censoring
• If Ti

⊥⊥∼ Exp(λ) for i = 1, . . . , d,

L(λ) =
∏
i

λ exp(−λti)

= λd exp(−λV ),

where V =
∑
i ti

• Note that
◦ V is a sufficient statistic
◦ V ∼ Γ(d, λ)
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Type 2 censoring

• Now let’s consider what happens in the case of type II
censoring: in particular, that we have an initial sample size n
and follow d subjects to failure
• In this case,

T(1) ∼ Exp(nλ)
T(2) − T(1) ∼ Exp((n− 1)λ)

. . .

T(j) − T(j−1) ∼ Exp((n− j + 1)λ)

for j = 1, . . . , d, with T(0) = 0
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Normalized spacings

• Alternatively, let Uj = (n− j + 1)(T(j) − T(j−1))

• Now Uj
⊥⊥∼ Exp(λ), and

L(λ) =
∏
j

λ exp(−λuj)

= λd exp(−λV ),

where V =
∑
uj

• Note that, once again, V is a sufficient statistic and follows a
Γ(d, λ) distribution
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Remarks

• The exponential distribution, therefore, has the somewhat
remarkable property that we arrive at the exact same
inference if we follow d subjects until all have failed or if we
follow some larger number n until d have failed
• Thus, we can carry out our calculations ignoring censoring,
provided that we think of the sample size we obtain as the
number of events that must be observed in order to achieve
the desired power
• This is incredibly convenient for sample size planning, as it
allows one to completely separate treatment effect concerns
from censoring concerns
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Exact vs. approximate results

• Note that because the exact distribution of V is known and
easy to work with, it is possible to carry out exact power and
sample size calculations
• However, one can obtain much simpler, closed-form
expressions through a normal approximation
• Personal opinion: In an actual data analysis, exact results are
quite desirable, but in a power analysis, the inaccuracy of the
approximation is typically a minor concern compared to all
other potential sources of error that go into the calculation
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Central limit theorem

• The exponential distribution has mean 1/λ and variance 1/λ2

• Thus, by the central limit theorem,

X̄
.∼ N

( 1
λ
,

1
nλ2

)
• This result, however, is not particularly satisfactory due to the
λ term in the variance, which means we will have to solve a
nonlinear equation to determine power/sample size
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Log transform

• Consider instead the variance-stabilizing transformation
g(x) = log(x)
• By the delta method,

log X̄ .∼ N
(
− log λ, 1

n

)
• In addition to the convenience of linearity, variance-stabilizing
transformations also typically lead to more accurate normal
approximations
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Two samples: Hazard ratio

• With these preliminaries out of the way, let’s get to the actual
business of comparing two samples
• Let Xi

⊥⊥∼ Exp(λ1) and Yi
⊥⊥∼ Exp(λ2), with Xi q Yi

• We have

log
(
Ȳ

X̄

)
.∼ N

(
log ∆, 1

n1
+ 1
n2

)
,

where ∆ = λ1/λ2 is the hazard ratio
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Power formula

• Thus, letting Z = log(Ȳ /X̄)/
√

1/n1 + 1/n2, we have

Under H0 : Z .∼ N(0, 1)

Under HA : Z .∼ N(0, 1) + log ∆√
1
n1

+ 1
n2

• The critical value for Z is therefore CV = Φ−1(1− α/2),
where α is the type I error rate and Φ is the CDF of the
standard normal distribution
• Without loss of generality, we can take ∆ > 1, which yields

Power = 1− Φ
(

CV− log ∆/
√

1/n1 + 1/n2

)
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Sample size formula

• In order to solve for the sample size(s) that yield a power of
1− β, we must solve for the values of n1 and n2 that satisfy
the following equation:

z1−α/2 = −z1−β + log ∆/
√

1/n1 + 1/n2,

where zq is the qth quantile of the standard normal
distribution
• In the special case of n = n1 = n2, we therefore have

n = 2
(
z1−α/2 + z1−β

log ∆

)2

as the per-group sample size
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Remarks

• Note that we do not even need to specify λ1 and λ2 to
calculate power and sample size: we only need their ratio, ∆
• Furthermore, note that for the exponential distribution, the
median survival time is λ−1 log 2
• Thus, the effect size can be equivalently thought of as a ratio
of median survival times, rather than a hazard ratio, which in
my experience is convenient as non-statisticians typically
prefer to think in terms of median survival times than hazards
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NSCLC study: Background

• To illustrate how these formulas are used in practice, I’ll
discuss the planning of a study at the Holden Cancer Center
here at the University of Iowa that I was involved in
• The study was looking at progression-free survival (PFS) in
patients with refractory non-small cell lung cancer
• Historically, the median PFS for these patients is around 2.5
months
• The investigators hypothesized, however, that a novel
combination of protein kinase inhibitors and a cytokines could
extend PFS by 50%
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Sample size

• A 50% increase in median PFS corresponds to ∆ = 1.5
• Thus, to achieve 80% power under 5% type I error rate
control (these are typical numbers), we require

n = 2(1.96 + 0.84)2

(log(1.5))2

= 95.5

events in each arm of the study
• The actual study, however, was only a “single-arm” study
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Single arm study

• In a single-arm study, one assigns all patients to the
experimental therapy, with the intention of comparing it to
historical controls
• The use of historical controls is clearly subject to all sorts of
biases, and a randomized trial would be preferable
• However, single arm studies like this one are common in what
is called “Phase II” of clinical trial research
• The goal of a Phase II study is to learn about the clinical
efficacy of a treatment; if it appears promising, one would
then continue on to a fully randomized trial in Phase III
• Note that for a single-arm study (treating the control group as
a known constant), the number of events in the experimental
arm is cut in half (i.e., the total sample size is cut by 3/4)
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Censoring and accrual

• In this study, since these are patients with very poor prognosis
and a median PFS of only 2.5 months (or ≈ 4 months, if the
treatment is effective), we anticipated that only a small
fraction of patients would remain censored at the end of the
study
• Specifically, we made an assumption of 20% censoring, and
included the following language in the proposal:

Power calculations indicate that to achieve 80% power to
detect a 50% increase in median PFS with a 5% type I
error rate, 48 events must be observed. Allowing for a 20%
censoring rate, we therefore plan to enroll 58 patients.
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Study duration

• The duration of a study is also an important concern in
planning a study with a time-to-event outcome
• In the NSCLC study, the accrual rate was anticipated to be
approximately 50 patients per year
• We therefore made the conservative estimate that we could
enroll our 58 patients in 18 months, and that we should be
able to conclude the whole study within 2 years
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Formal approach

• But is this really an adequate amount of time in which to
observe 48 events?
• To address this question, let’s work through how to calculate
the expected duration of a study
• To start, let (0, T ] denote the “entry” or “accrual” period of
the study, and (T, T + τ ] denote the follow-up period
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Formal approach (cont’d)

• One widely used approach (which is also the approach used by
George & Desu) is to use the fact that the expected number
of patient-years necessary to observe d events is d/λ
• Furthermore, letting Y (t) denote the number of patient-years

accumulated by time t and a denote the average accrual rate,

EY (t) = a

∫ t∗

0

∫ t−v

0
S(u) du dv

= at∗

λ

{
1− (λt∗)−1e−λt(eλt∗ − 1)

}
where t∗ = min(T, t)
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NSCLC study duration: Accrual 50 / year
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50 random instances at 50 / year, T = 1.5
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