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Introduction

• We now turn to the middle part of this course, where we will
take these tools that we have learned apply them to prove
various theoretical properties of likelihood
• For the most part, we will try to make as few assumptions as
possible about the probability model we are using
• However, the theoretical properties of likelihood turn out to be
particularly simple and straightforward if the probability model
falls into a class of models known as exponential families
• Today we will cover the idea behind exponential families, see
why they are particularly convenient for likelihood, and discuss
some extensions of the family
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History

• First, a bit of history
• In the 19th and early 20th centuries, statistical theory and
practice was almost exclusively focused on classical parametric
models (normal, binomial, Poisson, etc.)
• Starting in the 1930s (but taking a long time to be fully
appreciated), it became apparent that all of these parametric
models have a common construction (the exponential family)
and unified theorems can be obtained that apply to all of them
• In fact, as we will see today, this is not an accident – only

exponential families enjoy certain properties of mathematical
and computational simplicity
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Exponential tilting

• Suppose we have the “standard” Poisson distribution (µ = 1):

p0(x) = e−1/x!;

how can we go about constructing a family of distributions, all
using this as a starting point?
• Consider forming new distributions via exponential tilting:

p̃(x|θ) = p0(x)eθx

• This isn’t a proper distribution, hence the notation p̃(x|θ), but
it would be if we determined the normalizing constant, which I
will denote exp{ψ(θ)}, and divide:

p(x|θ) = p0(x)eθx−ψ(θ)
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Poisson example

• Let’s see how all this plays out for the Poisson distribution
• First, the normalizing constant:

ψ(θ) = eθ − 1

• The family of distributions is therefore

p(x|θ) = exp{xθ − eθ}/x!,

or in terms of the usual Poisson parameterization,

p(x|θ) = µxe−µ/x!,

where θ = logµ
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Remarks on tilting

• Here we “tilted” the reference distribution p0 by eθx, although
note that the tilting parameter did not turn out to be the
same as the “usual” parameter we would think of
• A similar phenomenon can happen for the observation x;

some distributions are formed not by tilting with x itself but
rather with a function s(x)
• Thus, in what follows, I will assume that we have tilted by
esθ, and for simplicity I will suppress the dependency of s on x
in the notation as we could just as easily think of having
observed s directly
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Single parameter exponential family

A one-parameter exponential family therefore has the form

p(x|θ) = exp{sθ − ψ(θ)}p0(x),

where
• θ is the natural parameter
• s is the natural statistic
• ψ(θ) is the cumulant generating function, for reasons that we
will discuss shortly
• p0 is the base or reference distribution, although it need not
be a proper distribution; for example, our Poisson derivation
would have been simpler if we had chosen p0(x) = 1/x!
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Cumulant generating functions

• The cumulant generating function is simply the log of the
moment generating function
• Like moment generating functions, cumulant generating
functions yield the moments of a distribution, but unlike
MGFs, yield central moments:
◦ Its derivative evaluated at zero is the mean
◦ Second derivative evaluated at zero is the variance
◦ Higher order derivatives yield quantities related to the

skewness, kurtosis, etc.
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ψ and cumulants

• Note that for a distribution in the exponential family, the
moment generating function of the random variable s(X) is

M(t) =
∫
etsesθp0(x) dx/eψ(θ)

= eψ(t+θ)/eψ(θ)

• Thus, its cumulant generating function is ψ(t+ θ)− ψ(θ),
although for moment-finding purposes, we can simply treat ψ
itself as the cumulant generating function (i.e., its derivatives
still generate the desired cumulants)
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Mean and variance

• In particular,

E(S) = ψ̇(θ)
V(S) = ψ̈(θ)

• Note that these expressions provide the mean and variance of
the natural statistic (which may or may not be the mean and
variance of X)
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Multi-parameter exponential families

• All of these concepts extend in a straightforward way to the
d-parameter exponential family:

p(x|θ) = exp{s>θ − ψ(θ)}p0(x)

• For example, the Gamma distribution is a 2-parameter
exponential family:

p(x|α, β) = exp{α log β − log Γ(α) + α log x− βx}/x

or, in terms of θ = [−β, α], s = [x, log x]:

p(x|θ) = exp{s>θ − [log Γ(θ2)− θ2 log(−θ1)]}
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Mean and variance

Analogous to the one-parameter case, we have

E(s) = ∇ψ(θ)
V(s) = ∇2ψ(θ),

where E(s) is a d× 1 vector and V(s) is a d× d
variance-covariance matrix
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Repeated sampling

• Why are we interested in exponential tilting as opposed to
some other way of generating new distributions from a base
distribution?
• Let’s consider what happens in the case of repeated sampling,
where x1, . . . , xn

iid∼ p(x|θ):

p(x|θ) =
n∏
i=1

exp{s>
i θ − ψ(θ)}p0(xi)

= exp{n[s̄>θ − ψ(θ)]}p0(x),

where s̄ =
∑

si/n
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Sufficiency

• In other words, the joint distribution of the repeated sample is
still in the same exponential family, just scaled up by a factor
of n
• In particular, a quick look at the factorization theorem will
show that s is a sufficient statistic for the exponential family
• Under repeated sampling, we easily obtain s̄ as a sufficient

statistic
• Thus, no matter how large the sample, we can always reduce
the information it contains down into a d-dimensional vector
of means
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Pitman-Darmois-Koopmans Theorem

• As it turns out, only exponential families have this property, in
which the sufficient statistic remains of fixed dimension under
repeated sampling
• This result was shown for one-dimensional exponential families
by Fisher, who originally introduced the concepts of
sufficiency and exponential tilting
• Later, a trio of authors working independently in different
countries extended this result to multiparameter families; the
result is known as the Pitman-Darmois-Koopmans theorem

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 15 / 30



Construction
Estimation

Additional topics

Repeated sampling
Estimation

Likelihood

• Furthermore, exponential families are particularly convenient
in terms of their likelihood
• In particular, the log-likelihood of any exponential family is
simply n[s̄>θ − ψ(θ)] plus a constant, so its gradient is

∇`(θ|x) ∝ s̄−∇ψ(θ)

and

θ̂ = (∇ψ)−1(s̄)
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Example: Poisson

• Returning to the Poisson distribution, where s = x and
ψ(θ) = eθ, we have

ψ̇(θ) = eθ

and

θ̂ = log x̄

• The inverse is not always so mathematically tractable,
however: for example in the gamma distribution, ∇ψ(θ)
involves the digamma function, whose inverse is not available
in closed form
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Central limit theorem

• Furthermore, since the MLE is simply a function of the mean
in exponential families, it is particularly easy to derive its
limiting distribution
• Letting µ = E(s), the central limit theorem tells us that

√
n(s̄− µ) d−→ N(0,V),

where V = ∇2ψ(θ)
• Thus, letting g denote the transformation θ = g(µ), we have

√
n(θ̂ − θ∗) d−→ N(0,∇g(µ)>V∇g(µ))

by the delta method; keep in mind here that ∇g and V are
both d× d matrices
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Application to the Poisson case

• In the Poisson case, ψ̈(θ) = eθ = µ and g(µ) = logµ, so
√
n(θ̂ − θ) d−→ N(0, e−θ)

• Thus, θ̂ ± 1.96
√
e−θ̂/n is an approximate 95% confidence

interval for θ, which we could transform to get a confidence
interval for µ
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Remarks

• The maximum likelihood estimator is asymptotically normal
not only in exponential families, but in a much wider class of
models
• Specifically, we require only that the likelihood is a “smooth”
function of θ, in a sense that we will discuss later
• We’ll go into more details regarding likelihood-based
inference, confidence intervals, tests, etc., soon
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Introduction

• Until now, we have assumed that the dimension of θ and s
was the same as the number of unknown parameters
• However, it can also be the case that the parameter space Θ

is constrained somehow; for example if θ is a function of β,
with dim(β) = k < d

• In such cases the exponential family is no longer said to be
“full” or “full rank”
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Curved vs flat exponential families

• How large an impact this makes on likelihood-based inference
depends on whether the function θ(β) is linear (“flat”) or not
(“curved”)
• If there is a matrix M such that θ = Mβ, then

exp{s>θ − ψ(θ)} = exp{s>Mβ − ψ(Mβ)}
= exp{s̃>β − ψ̃(β)}

in other words, we still have a regular exponential family,
albeit with reduced rank k < d, new summary statistics s̃, and
a new normalizing function ψ̃
• If θ(β) is a nonlinear function, however, things can be much
more complicated
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Example: Regression

• Flat exponential families come up quite often in regression
models, especially generalized linear models
• For example, we might observe Yi

⊥⊥∼ Pois(θi), but impose a
model g(θi) = x>

i β, which restricts Θ to a lower-dimensional
subspace of Rn

• If the systematic component of our model is θ = Xβ (i.e., we
assume a linear model with respect to the natural
parameters), then our exponential family is not curved
• In the GLM literature, this is known as the canonical link
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Example: Normal, known coefficient of variation

• As a simple example of a curved exponential family, suppose
x ∼ N(µ, c2µ2), where c, the coefficient of variation, is known
• The natural parameter and statistic are 2-dimensional, but
there is only one unknown parameter
• The parameter space forms a one-dimensional line curving
through R2:
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Example: Empirical Bayes

• Curved exponential families also arise commonly in empirical
Bayes procedures
• Here, we again observe something like Yi

⊥⊥∼ Pois(θi), but
instead of a fixed linear model, impose a distribution on the
natural parameters θi

⊥⊥∼ g(β); this is typically done when
estimation of θi using only Yi is noisy or unstable, and we
wish to “borrow information” from other observations
• We won’t delve deeply into the theory of curved exponential
families in this course, but will note that they enjoy many, but
not all, of the theoretical properties of full-rank exponential
families
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Definition

• A variation on exponential tilting, and one that is often very
useful in statistical modeling, is to introduce a dispersion
parameter and tilt by exp{s>θ/φ}
• The resulting model is then of the form

p(x|θ, φ) = exp
{s>θ − ψ(θ)

φ

}
p0(x, φ)

• Note that the normalizing constant is now exp{ψ(θ)/φ}
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Mean and variance

• The primary motivation for doing this is to allow the variance
to be parameterized separately from the mean
• Specifically,

E(s) = ∇ψ(θ) = µ

V(s) = φ∇2ψ(θ) = φV(µ);

you will derive these results in the next homework assignment
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Example: Poisson distribution

• In practice, the normalizing quantity p0(x, φ) is often left
unspecified (or rather, implicitly specified)
• For example, by introducing a dispersion parameter into the
Poisson model, we now have the useful result that
V(X) = φµ; instead of requiring that the variance equals the
mean, we can instead allow the model to accommodate over-
or under-dispersion
• However, p0(x, φ) is the function that satisfies

∞∑
x=0

exp
{
xθ − eθ

φ

}
p0(x, φ) = 1;

not so trivial to find
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Estimation

• Note that this does not actually affect estimation of θ, since
we still have θ̂ = (∇ψ)−1(s̄)
• However, it does have two meaningful implications for
modeling:
◦ We cannot find the MLE of φ
◦ We cannot compute likelihood ratios

• In practice, one typically uses some other estimation strategy,
such as method of moments, to obtain φ̂
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Inference

• Its impact on likelihood-based inference, however, is not so
trivial to remedy
• In practice, what is often done is to simply replace φ with φ̂ in
the likelihood and treat the likelihood as though φ̂ were a
known constant rather than an unknown parameter
• This approach, which goes by a variety of names (approximate
likelihood, estimated likelihood, pseudo-likelihood) often
works reasonably well, but it must be noted that by treating
an unknown quantity as a known one, we are biasing our
inference towards being overconfident (confidence intervals
too narrow)
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