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Introduction

One final lecture of analysis review, in which we go over three
indispensable tools that we will use constantly in the remainder of
the course:
• O, o notation

• Taylor series expansions

• Linear algebra
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o-notation: Motivation

• When investigating the asymptotic behavior of functions, it is
often convenient to replace unwieldy expressions with
compact notation
• For example, if we encountered the mathematical expression

x2 + a− a,

we would obviously want to replace it with x2 since a− a = 0
• However, what if we encounter something like

x2 + 5θ√
n
− 3θ
n+ 5?

• We can no longer just replace this with x2
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o-notation: Motivation (cont’d)

• However, as n gets larger, the expression gets closer and
closer to x2

• It would be convenient to have a shorthand notation for this,
something like x2 + on, where on represents some quantity
that becomes negligible as n becomes large
• This is the basic idea behind o-notation, and its simplifying

powers become more apparent as the mathematical expression
we are dealing with becomes more complicated:

x2 + 5θ√
n
− 3θ

n+5

(n2 + 5n− 2)/(n2 − 3n+ 1) +
exp{−1

2‖x− µ‖2}
2
√
nθ
∫∞

0 g(s)ds
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o-notation

• There is where something called o-notation comes in: a formal
way of handling terms that effectively “cancel out” as we take
limits
• Definition: A sequence of numbers xn is said to be o(1) if it
converges to zero. Likewise, xn is said to be o(rn) if

xn
rn
→ 0

as n→∞.
• When the rate is constant, o notation is pretty straightforward:

x2 + 5θ√
n
− 3θ
n+ 5 = x2 + o(1)
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o-notation remarks

• When the rate is not constant, expressions are a bit harder to
think about – it helps to go over some cases:
• For example:

◦ xn →∞, but rn →∞ even faster:

n = o(n2)

◦ rn → 0, but xn → 0 even faster:

1
n2 = o(1/n)
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O-notation

• A very useful companion of o-notation is O-notation, which
denotes whether or not a term remains bounded as n→∞
• Definition: A sequence of numbers xn is said to be O(1) if
there exist M and N such that

|xn| < M

for all n > N . Likewise, xn is said to be O(rn) if there exist
M and N such that for all n > N ,∣∣∣∣xnrn

∣∣∣∣ < M.
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• For example,

exp{−1
2‖x− µ‖2}

2
√
nθ
∫∞

0 g(s)ds = O(n−1/2)

• Note that xn = O(1) does not necessarily mean that xn is
bounded, just that it is eventually bounded
• Note also that just because a term is O(1), this does not
necessarily mean that it has a limit; for example,

sin
(
nπ

2

)
= O(1),

even though the sequence does not converge
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O-notation remarks (cont’d)

• You may encounter the ambiguous phrase “xn is of order rn”
• The author may mean that xn = O(rn)
• However, it might also mean something stronger: that there
exist positive constants m and M such that

m ≤
∣∣∣∣xnrn

∣∣∣∣ ≤M
for large enough n; i.e., the ratio is bounded above but also
bounded below
• In other words, xn = O(rn) but in addition xn 6= o(rn); some
authors use the notation xn � rn to denote this situation
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Informative-ness of o and O notation

• There are typically many ways of writing an expression using O
notation, although not all of them will be equally informative
• For example, if xn = 1 + 1

n , then all of the following are true:

xn = 1 + o(1)
xn = 1 +O(1) (least informative)
xn = 1 +O( 1

n) (more informative)
xn � 1 +O( 1

n) (most informative)
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Algebra of O, o notation

O, o-notation are useful in combination because simple rules
govern how they interact with each other
Theorem: For a ≤ b:

O(1) +O(1) = O(1) O{O(1)} = O(1)
o(1) + o(1) = o(1) o{O(1)} = o(1)
o(1) +O(1) = O(1) o(rn) = rno(1)
O(1)O(1) = O(1) O(rn) = rnO(1)
O(1)o(1) = o(1) O(na) +O(nb) = O(nb)

{1 + o(1)}−1 = O(1) o(na) + o(nb) = o(nb)
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Remarks

• O, o “equations” are meant to be read left-to-right; for
example, O(

√
n) = O(n) is a valid statement, but

O(n) = O(
√
n) is not

• Exercise: Determine the order of

n−2
{

(−1)n n
√

2 + n(1 + 1
n)n

}
.

• As we will see in a week or two, there are stochastic
equivalents of these concepts, involving convergence in
probability and being bounded in probability
• As such, we won’t do a great deal with O, o-notation right

now, but will use the stochastic equivalents extensively
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Taylor series: Introduction

As we will see (many times!), it is useful to be able to approximate
a complicated function with a simple polynomial (this is the idea
behind Taylor series approximation):

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−4

−3

−2

−1

0

1

x

f(
x)
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Taylor series: Introduction (cont’d)

• It is difficult to overstate the importance of Taylor series
expansions to statistical theory, and for that reason we are
now going to cover them fairly extensively
• In particular, Taylor’s theorem comes in a number of versions,
and it is worth knowing several of them, since they come up in
statistics quite often
• Furthermore, students often have not seen the multivariate
versions of these expansions
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Taylor’s theorem

• Theorem (Taylor): Suppose n is a positive integer and
f : R→ R is n times differentiable at a point x0. Then

f(x) =
n∑
k=0

f (k)(x0)
k! (x− x0)k +Rn(x, x0),

where the remainder Rn satisfies

Rn(x, x0) = o(|x− x0|n)as x→ x0

• If f (n+1)(x0) exists, you could also say that Rn is
O(|x− x0|n+1)
• This form of the remainder is sometimes called the Peano form
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Taylor’s theorem: Lagrange form

• Theorem (Taylor): Suppose f : R→ R is n+ 1 times
differentiable on an open interval containing x0. Then for any
point x in that interval, there exists x̄ ∈ (x, x0):

Rn(x, x0) = f (n+1)(x̄)
(n+ 1)! (x− x0)n+1.

• This is also known as the mean-value form, as the mean value
theorem is the central idea in proving the result
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Comparing the two forms

• Comparing the Basic and Lagrange forms for a second-order
expansion,

f(x0) + f ′(x0)(x− x0) + 1
2f
′′(x0)(x− x0)2 + o(|x− x0|2)

f(x0) + f ′(x0)(x− x0) + 1
2f
′′(x̄)(x− x0)2

• We can see that in the second case, we have a simpler
expression, but to obtain it, we require f ′′ to exist along the
entire interval from x to x0, not just at the point x0
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Example: Absolute value

• For example, consider approximating the function f(x) = |x|
at x0 = −0.1
• Note that f ′ exists at x0, but not at 0
• The basic form of Taylor’s theorem says that if we get close
enough to x0, the approximation f(−0.1) + f ′(−0.1)(x+ 0.1)
becomes very accurate – indeed, the remainder is exactly zero
for any x within 0.1 of x0

• However, suppose x = 0.2; since f is not differentiable at zero,
we are not guaranteed the existence of a point x̄ such that

f(0.2) = f(−0.1) + 0.3f ′(x̄);

and indeed in this case no such point exists
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Lagrange bound

• One reason why the Lagrange form is more powerful is that it
allows us to establish error bounds – to know exactly how
close x must be to x0 in order to ensure that the
approximation error is less than ε
• In particular, if there exists an M such that

∣∣∣f (n+1)(x)
∣∣∣ ≤M

over the interval (x, x0), then

|Rn(x)| ≤ M

(n+ 1)! |x− x0|n+1

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 19 / 38



O notation
Taylor series expansions

Linear algebra background

Single variable
Multivariate

Multivariable forms of Taylor’s theorem

• We now turn our attention to the multivariate case
• For the sake of clarity, I’ll present the first- and second-order
expansions for each of the previous forms, rather than
abstract formulae involving f (n)

• Lastly, I’ll provide a form that goes out to third order,
although higher orders are less convenient as they can’t be
represented compactly using vectors and matrices
• Note that these forms are only covering the case of
scalar-valued functions f : Rd → R; we will need results for
the vector-valued case f : Rd → Rk as well, but we will go
over that in a later lecture
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Taylor’s theorem

• Theorem (Taylor): Suppose f : Rd → R is differentiable at a
point x0. Then

f(x) = f(x0) +∇f(x0)>(x− x0) + o(‖x− x0‖)

• Theorem (Taylor): Suppose f : Rd → R is twice
differentiable at a point x0. Then

f(x) = f(x0) +∇f(x0)>(x− x0)+
1
2(x− x0)>∇2f(x0)(x− x0) + o(‖x− x0‖2)
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Taylor’s theorem: Lagrange form

• Theorem (Taylor): Suppose f : Rd → R is differentiable on
Nr(x0). Then for any x ∈ Nr(x0), there exists x̄ on the line
segment connecting x and x0 such that

f(x) = f(x0) +∇f(x̄)>(x− x0)

• Theorem (Taylor): Suppose f : Rd → R is twice
differentiable on Nr(x0). Then for any x ∈ Nr(x0), there
exists x̄ on the line segment connecting x and x0 such that

f(x) = f(x0) +∇f(x0)>(x− x0)+
1
2(x− x0)>∇2f(x̄)(x− x0)

• “x̄ on the line segment connecting x and x0” means that
there exists w ∈ [0, 1] such that x̄ = wx + (1− w)x0
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Taylor’s theorem: Third order

Theorem (Taylor): Suppose f : Rd → R is three times
differentiable on Nr(x0). Then for any x ∈ Nr(x0), there exists x̄
on the line segment connecting x and x0 such that

f(x) = f(x0) +
d∑
j=1

∂f(x0)
∂xj

(xj − x0j)

+ 1
2

d∑
j=1

d∑
k=1

∂2f(x0)
∂xj∂xk

(xj − x0j)(xk − x0k)

+ 1
6

d∑
j=1

d∑
k=1

d∑
`=1

∂3f(x̄)
∂xj∂xk∂x`

(xj − x0j)(xk − x0k)(x` − x0`),

where ∂f(x0)/∂xj is shorthand for ∂f(x)/∂xj evaluated at x0
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Linear algebra

• Our last mathematical topic to review/reference is linear
algebra, which we will use right away in our next lecture on
the multivariate normal distribution
• If this material is new to you, then I would encourage you to
read this as well
• It is often useful to switch the rows and columns of a matrix
around. The resulting matrix is called the transpose of the
original matrix, and denoted with a superscript > or an
apostrophe ′:

M =

 3 2
4 −1
−1 2

 M> =
[

3 4 −1
2 −1 2

]
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Inner and outer products

• Two particularly common situations in which transposes arise
are when we multiply a vector by itself
• There are two ways to do this:

◦ Inner product: x>x; note that this is a scalar:

x>x =
∑

j

x2
j

◦ Outer product: xx>; note that this is a d× d matrix (where d
is the dimension of x):

(xx>)ij = xixj

• Note that x2 has no meaning; never write this
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Linear and quadratic forms

• Matrix products involving linear and quadratic forms come up
very often in statistics, and it is important to have an intuitive
grasp on what they represent
• Here are some useful identities/relationships involving matrix
products and their scalar representations:

a>x =
∑
i

aixi; 1>x =
∑
i

xi

A>x = (
∑
i

ai1xi · · ·
∑
i

aikxi)>

a>Wx =
∑
i

∑
j

aiwijxj ; a>1x =
∑
i

∑
j

aixj

(AWB)ij =
∑
k

∑
m

aikwkmbmj
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Inverses

• Definition: The inverse of an n× n matrix A, denoted A−1,
is the matrix satisfying AA−1 = A−1A = In, where In is the
n× n identity matrix.
• Note: We’re sort of getting ahead of ourselves by saying that

A−1 is “the” matrix satisfying AA−1 = In, but it is indeed
the case that if a matrix has an inverse, the inverse is unique
• Some useful results:

(A + B)> = A> + B>

(AB)> = B>A>

(AB)−1 = B−1A−1

(A>)−1 = (A−1)>
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Singular matrices

• However, not all matrices have inverses; for example

A =
[

1 2
2 4

]

• There does not exist a matrix such that AA−1 = I2

• Such matrices are said to be singular
• Remark: Only square matrices have inverses; an n×m matrix

A might, however, have a left inverse (satisfying BA = Im)
or right inverse (satisfying AB = In)
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Positive definite

• A related notion is that of a “positive definite” matrix, which
applies to symmetric matrices
• Definition: A symmetric n× n matrix A is said to be

positive definite if for all x ∈ Rn,

x>Ax > 0 if x 6= 0

• The two notions are related in the sense that if A is positive
definite, then (a) A is not singular and (b) A−1 is also
positive definite
• If x>Ax ≥ 0, then A is said to be positive semidefinite
• In statistics, these classifications are particularly important for
variance-covariance matrices, which are always positive
semidefinite (and positive definite, if they aren’t singular)
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Square root of a matrix

• These concepts are important with respect to knowing
whether a matrix has a “square root”
• Definition: An n× n matrix A is said to have a square root
if there exists a matrix B such that BB = A.
• Theorem: Let A be a positive definite matrix. Then there

exists a unique matrix A1/2 such that A1/2A1/2 = A.
• Positive semidefinite matrices have square roots as well,
although they aren’t necessarily unique

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 30 / 38



O notation
Taylor series expansions

Linear algebra background

Basic linear algebra
Random matrices
Eigenvalues

Rank

• We also need to be familiar with the concept of matrix rank
(there are many ways of defining rank; all are equivalent)
• Definition: The rank of a matrix is the dimension of its

largest nonsingular submatrix.
• For example, the following 3× 3 matrix is singular, but
contains a nonsingular 2× 2 submatrix, so its rank is 2:

A =

 1 2 �3
�2 �4 �6
1 0 �1



• Note that a nonsingular n× n matrix has rank n, and is said
to be full rank
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Rank and multiplication

• There are many results and theorems involving rank; we’re not
going to cover them all, but it is important to know that rank
cannot be increased through the process of multiplication
• Theorem: For any matrices A and B with appropriate

dimensions, rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).
• In particular, rank(A>A) = rank(AA>) = rank(A)
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Expectation and variance

• In addition, we need some results on expected values of
vectors and functions of vectors
• First of all, we need to define expectation and variance as
they pertain to random vectors
• Definition: Let x = (X1 X2 · · ·Xd)> denote a vector of
random variables, then E(x) = (EX1 EX2 · · ·EXd)>.
Meanwhile, Vx is a d× d matrix:

Vx = E{(x− µ)(x− µ)>} with elements
(Vx)ij = E {(Xi − µi)(Xj − µj)} ,

where µi = EXi. The matrix Vx is referred to as the
variance-covariance matrix of x.
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Linear and quadratic forms
• Letting A denote a matrix of constants and x a random

vector with mean µ and variance Σ,

E(A>x) = A>µ

V(A>x) = A>ΣA
E(x>Ax) = µ>Aµ + tr(AΣ),

where tr(A) =
∑
iAii is the trace of A

• Some useful facts about traces:

tr(AB) = tr(BA)
tr(A + B) = tr(A) + tr(B)

tr(cA) = c tr(A)
tr(A) = rank(A) if AA = A

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 34 / 38



O notation
Taylor series expansions

Linear algebra background

Basic linear algebra
Random matrices
Eigenvalues

Eigendecompositions

• Finally, we’ll also take a moment to introduce some facts
about eigenvalues
• The most important thing about eigenvalues is that they
allow us to “diagonalize” a matrix: if A is a symmetric d× d
matrix, then it can be factored into:

A = QΛQ>,

where Λ is a diagonal matrix containing the eigenvalues
λ1, λ2, . . . , λd of A and the columns of Q are its eigenvectors
• Furthermore, eigenvectors are orthonormal, so we have

Q>Q = QQ> = I
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Eigenvalues and “size”

• This is very helpful from a conceptual standpoint, as it allows
us to separate the “size” of a matrix (Λ) from its
“direction(s)” (Q)
• For example, we have already seen that one measure of the
size of a matrix is based on λmax (for a symmetric matrix, its
spectral norm is its largest eigenvalue)
• In addition, the trace and determinant, two other ways of
quantifying the “size” of a matrix, are simple functions of the
eigenvalues:
◦ tr(A) =

∑
i λi

◦ |A| =
∏

i λi
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Eigenvalues and inverses

• Once one has obtained the eigendecomposition of A,
calculating its inverse is straightforward
• If A is not singular, then A−1 = QΛ−1Q>; note that since Λ

is diagonal, its inverse is trivial to calculate
• Even if A is singular, we can obtain something called a
“generalized inverse”: A− = QΛ−Q>, where (Λ−)ii = λ−1

i if
λi 6= 0 and (Λ−)ii = 0 otherwise
• Many other important properties of matrices can be deduced
entirely from their eigenvalues:
◦ A is positive definite if and only if λi > 0 for all i
◦ A is positive semidefinite if and only if λi ≥ 0 for all i
◦ If A has rank r, then A has r nonzero eigenvalues and the

remaining d− r eigenvalues are zero
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Extreme values

• Lastly, there is a connection between a matrix’s eigenvalues
and the extreme values of its quadratic form
• Let the eigenvalues λ1, . . . , λd of A be ordered from largest to

smallest. Over the set of all vectors x such that ‖x‖2 = 1,

max x>Ax = λ1

and

min x>Ax = λd
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