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Introduction

• Before we get to likelihood theory, we are going to spend the
first part of this course reviewing/extending/deepening our
knowledge of mathematical and statistical tools
• In particular, lower-level analysis and mathematical statistics
courses often focus on single-variable results
• In practice, however, statistics is almost always a multivariate
pursuit
• Thus, one of the things we will focus on in this review is
covering results you may have seen for single variables in
terms of vectors
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Asymptotic theory

• A large amount (but not all) of statistical theory is based on
asymptotic, or large sample, arguments
• Exact theoretical results are often very complicated and
difficult to obtain, but we can typically simplify the problem
greatly by considering what happens as n→∞
• A core idea here from analysis is that of a convergent
sequence: xn converges to x if, as n gets larger, xn gets
closer and closer to x
• We’ll provide a formal definition later (and of course, discuss
probabilistic versions), but first, we need to take a step back
and define what it means for xn to be “close” to x
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Norms: Introduction

• Throughout this course, we need to be able to measure the
distance between two vectors, or equivalently, the size of a
vector; such a measurement is called a norm
• This is straightforward for scalars: the distance from a to b is
|a− b|
• Vectors are more complicated; as we will see, there are many
ways of measuring the size of a vector
• In order to be a meaningful measure of size, however, there
are certain conditions any norm must satisfy
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Norm: Definition

• Definition: A norm is a function ‖·‖ : Rd → R such that for
all x,y ∈ Rd,
◦ ‖x‖ ≥ 0, with ‖x‖ = 0 iff x = 0 (positivity)
◦ ‖ax‖ = |a| ‖x‖ for any a ∈ R (homogeneity)
◦ ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

• The triangle inequality is also sometimes expressed as

‖x− z‖ ≤ ‖x− y‖+ ‖y− z‖,

or

d(x, z) ≤ d(x,y) + d(y, z),

where d(x,y) quantifies the distance between x and y
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Reverse triangle inequality

• A related inequality:

• Theorem (reverse triangle inequality): For any x,y ∈ Rd,

‖x‖ − ‖y‖ ≤ ‖x− y‖

• Corollary: For any x,y ∈ Rd,

‖x‖ − ‖y‖ ≤ ‖x + y‖
‖y‖ − ‖x‖ ≤ ‖x + y‖
‖y‖ − ‖x‖ ≤ ‖x− y‖
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Examples of norms

• By far the most common norm is the Euclidean (L2) norm:

‖x‖2 =
√∑

i
x2
i

• However, there are many other norms; for example, the
Manhattan (L1) norm:

‖x‖1 =
∑

i
|xi|

• Both Euclidean and Manhattan norms are members of the Lp
family of norms: for p ≥ 1,

‖x‖p =
(∑

i
|xi|p

)1/p
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Examples of norms (cont’d)

• Another norm worth knowing about is the L∞ norm:

‖x‖∞ = max
i
|xi| ,

which is the limit of the family of Lp norms as p→∞
• One last “norm” worth mentioning is the L0 norm:

‖x‖0 =
∑

i
1{xi 6= 0};

be careful, however: this is not a proper norm! (why not?)
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Matrix norms

• There are also matrix norms, although we will not work with
these as often
• In addition to the three requirements listed earlier, matrix
norms must also satisfy a requirement of submultiplicativity:

‖AB‖ ≤ ‖A‖‖B‖;

unlike the other requirements, this only applies to n× n
matrices
• The simplest matrix norm is the Frobenius norm

‖A‖F =
√∑

i,j
a2
ij
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Spectral norm

• Another common matrix norm is the spectral norm:

‖A‖2 =
√
λmax,

where λmax is the largest eigenvalue of A>A
• There are many other matrix norms
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Cauchy-Schwarz

• There are several important inequalities involving norms that
you should be aware of; the most important is the
Cauchy-Schwarz inequality, arguably the most useful
inequality in all of mathematics
• Theorem (Cauchy-Schwarz): For x,y ∈ Rd,

x>y ≤ ‖x‖2‖y‖2,

where equality holds only if x = ay for some scalar a
• Note: the above is the Cauchy-Schwarz inequality, but in
statistics, its probabilistic version goes by the same name:

E |XY | ≤
√
E(X2)E(Y 2)

for random variables X and Y , with equality iff X = aY
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Hölder’s inequality

• The Cauchy-Schwarz inequality is actually a special case of
Hölder’s inequality:
• Theorem (Hölder): For 1/p+ 1/q = 1 and x,y ∈ Rd,

x>y ≤ ‖x‖p‖y‖q,

again with exact equality iff x = ay for some scalar a (unless
p or q is exactly 1)
• Probabilistic analogue:

E |XY | ≤ p

√
E |X|p q

√
E |Y |q
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Jensen’s inequality

• Another extremely important inequality is Jensen’s inequality;
surely you’ve seen it before, but perhaps not in vector form
• Theorem (Jensen): For a,x ∈ Rd with ai > 0 for all i, if g

is a convex function, then

g

(∑
i aixi∑
i ai

)
≤
∑
i aig(xi)∑

i ai

• Probabilistic analog:

g(EX) ≤ Eg(X)

• The inequalities are reversed if g is concave
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Relationships between norms

• Getting back to the different norms, there are many important
relationships between norms that are often useful to know
• Theorem: For all x ∈ Rd,

‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2

• Obvious, but useful:

‖x‖∞ ≤ ‖x‖1 ≤ d‖x‖∞
‖x‖∞ ≤ ‖x‖2 ≤

√
d‖x‖∞
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Equivalence of norms

• The relationships on the previous slide suggest the following
statement, which is in fact always true: for any two norms a
and b, there exist constants c1 and c2 such that

‖x‖a ≤ c1‖x‖b ≤ c2‖x‖a

• This result is known as the equivalence of norms and means
that we can often generalize results for any one norm to all
norms
• For example, we will often encounter results that look like:

A = B + ‖r‖

and show that ‖r‖ → 0, so A→ B
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Equivalence of norms (cont’d)

• By the equivalence of norms, if, say, ‖r‖1 → 0, then ‖r‖2 → 0
and so on for all norms (except not the L0 “norm”!)
• In this course, we will almost always be working with the
Euclidean norm, so much so that I will typically write ‖x‖ to
mean the Euclidean norm and not even bother with the
subscript
• That said, it is important to note that with these
relationships, we can always derive corollaries that extend
results to other norms
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Equivalence of matrix norms

• Like vector norms, matrix norms are also equivalent
• For example,

‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2,

where r is the rank of A
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Neighborhoods

• One essential use of norms is to define what it means for
elements of a vector space to be “close”
• Definition: The neighborhood of a point p ∈ Rd, denoted
Nδ(p), is the set {x : ‖x− p‖ < δ}.
• This will come up quite often in this course

◦ For example, we will often need to make assumptions about
the likelihood function L(θ)

◦ However, we don’t necessarily need these assumptions to hold
everywhere – it’s enough that they hold in a neighborhood of
θ∗, the true value of the parameter
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Convergence (scalar)

• Let’s now go back and provide a formal definition of
convergence, starting with the scalar case
• A sequence of scalar values xn is said to converge to x, which
we denote xn → x, if for every ε > 0, there is a number N
such that n > N implies that |xn − x| < ε

• If you’ve never taken a course in real analysis, pay very close
attention to the wording here
◦ We are not saying that there is a single N that always works
◦ Instead, we are saying that if you (1) pick an ε, then (2) you

can always find an N that works, where N is allowed to
depend on ε (and typically, must)
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Convergence

• There are two potential ways we could extend this idea to the
multivariate case
• Definition: We say that the vector xn converges to x,

denoted xn → x, if each element of xn converges to the
corresponding element of x.
• Alternatively, we can use norms to construct a more direct
definition
• Definition: A sequence xn is said to converge to x, which we
denote xn → x, if for every ε > 0, there is a number N such
that n > N implies that ‖xn − x‖ < ε.
• We’ll establish in a moment that these two definitions are
equivalent
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Continuity

• It’s fairly obvious that, say, xn + yn → x + y, but what about
more complicated functions? Does √xn →

√
x? Does

f(xn)→ f(x) for all functions?
• The answer to the second question is no: not all functions
possess this property at all points
• This is obviously a very useful property, so functions that
possess it are given a specific name: continuous functions
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Continuity (cont’d)

• Definition: A function f : Rd → R is said to be continuous
at a point p if for all ε > 0, there exists δ > 0:

‖x− p‖ < δ =⇒ |f(x)− f(p)| < ε

• Note that by the equivalence of norms, we can just say that a
function is continuous – it can’t be, say, continuous with
respect to ‖·‖2 and not continuous with respect to ‖·‖1
• Theorem: Suppose xn → x0 and f : Rd → R is continuous
at x0. Then f(xn)→ f(x0).
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Continuity and convergence

• The norm itself is a continuous function:
• Theorem: Let f(x) = ‖x‖, where ‖·‖ is any norm. Then
f(x) is continuous.
• One consequence of this result is that element-wise
convergence is equivalent to convergence in norm
• Theorem: xn → x element-wise if and only if ‖xn − x‖ → 0.
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Convergence of functions

• One final important concept with respect to convergence is
the convergence of functions
• Definition: Suppose f1, f2, . . . is a sequence of functions and
that for all x, the sequence fn(x) converges. We can then
define the limit function f by

f(x) = lim
n→∞

fn(x)

• Sequences of functions come up constantly in statistics, the
most relevant example being the likelihood function
L(θ|xn) = Ln(θ)
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Combining the two types of convergence

• Furthermore, we are often interested in combining
convergence of the function with convergence of the argument
• For example, does fn(θ̂)→ f(θ) as θ̂ → θ?
• This raises a number of additional issues we have not
encountered before
• We’ll return to the probabilistic question later in the course;
for now, let’s discuss the problem in deterministic terms: does
fn(x)→ f(x0) as x→ x0?
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Counterexample

• Unfortunately, the answer is no – in general, this is not true
• For example:

fn(x) =
{
xn x ∈ [0, 1]
1 x ∈ (1,∞)

• We have

lim
x→1−

lim
n→∞

fn(x) = 0 6= f(1)
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Illustration
The underlying issue is that fn doesn’t really converge to f in the
sense of always lying within ±ε of it:

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)
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Uniform convergence

• The relationship between fn and f is one of pointwise
convergence; we need something stronger
• Definition: A sequence of functions f1, f2, . . . : Rd → R
converges uniformly on a set E to a function f if for every
ε > 0 there exists N such that n > N implies

|fn(x)− f(x)| < ε

for all x ∈ E
• Corollary: fn → f uniformly on E if and only if

sup
x∈E
|fn(x)− f(x)| → 0.
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Supremum and infimum

• In case you haven’t seen it before, the sup notation on the
previous slide stands for supremum, or least upper bound
• As the name implies, α is a least upper bound of the set E if

(i) α is an upper bound of E and (ii) if γ < α, then γ is not
an upper bound of E
• Similarly, the greatest lower bound of a set is known as the
infimum, denoted α = inf E
• The concept is similar to the maximum/minimum of E, but if
E is an infinite set, it doesn’t necessarily have a
largest/smallest element, which is why we need sup/inf
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Supremum and infimum: Example

• For example, consider the set {x2 : x ∈ (0, 1)}
• Its least upper bound (sup) is 1, but 1 is not an element of
the set
• To prove that 1 is the least upper bound, note that (a) 1 is an
upper bound and (b) if I choose any number b < 1, then b is
not an upper bound; this is standard technique
• Similarly, the greatest lower bound (inf) of the set is 0, but 0
is not an element of the set
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Why uniform convergence is useful

• Uniform convergence is useful because it allows us to reach
the kind of conclusion we originally sought
• Theorem: Suppose fn → f uniformly, with fn continuous for

all n. Then fn(x)→ f(x0) as x→ x0.
• Note that this argument does not work without uniform
convergence
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Preview

• Later on in the course, this idea will be quite relevant to
likelihood theory: we will often require that In(θ̂) is close to
I(θ∗)
• A common way of ensuring uniform convergence is by
bounding the derivative; here, this would mean requiring that∣∣∣∣ ∂∂θIn(θ)

∣∣∣∣ ≤M
for all n and for all θ
• Note that this must be a uniform bound in the sense that the

bound M does not depend on θ or n
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Extensions

• The theorem on the previous page can actually be made
somewhat stronger:
• Theorem: Suppose fn → f uniformly on E and that

limx→x0 fn(x) exists for all n. Then for any limit point x0 of
E,

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x).

• Corollary: If {fn} is a sequence of continuous functions on E
and if fn → f uniformly on E, then f is continuous on E.
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Related concepts

• There are number of related concepts similar to uniform
convergence
• Definition: A function f : Rd → R is called uniformly

continuous if for all ε > 0, there exists δ > 0 such that for all
x,y ∈ Rd : ‖x− y‖ < δ, we have |f(x)− f(y)| < ε.
• For example, f(x) = x2 is uniformly continuous over [0, 1] but

not over [0,∞)
• Definition: A sequence X1, X2, . . . of random variables is
said to be uniformly bounded if there exists M such that
|Xn| < M for all Xn.
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