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Introduction

• In our previous lecture, we saw how likelihood-based inference
works for exponential families
• Starting today, we are going to adopt a more general outlook
on likelihood, and not make any specific assumptions about
its form
• As we remarked at the outset of the course, the likelihood
function is minimal sufficient
• This means that the entire function is the object that contains

the information necessary for objective inference
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Maximum likelihood estimation

• However, a number is of course much simpler and easier to
communicate and manipulate than an entire function, so it is
desirable to summarize and simplify the likelihood
• The single most important information about the likelihood is
surely the value at which it is maximized
• The maximum likelihood estimator, θ̂, of a parameter θ, given
observed data x, is

θ̂ = arg max
θ

L(θ|x).

• This was Fisher’s original motivation for the likelihood, as a
means of estimating scientific quantities of interest (in his
later years, however, he no longer thought of likelihood as
merely a device for producing point estimates)
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Curvature

• A single number is not enough to represent a function
• However, if the likelihood function is approximately quadratic,
then two numbers are enough to represent it: the location of
its maximum and its curvature at the maximum
• Specifically, what I mean by this is that any quadratic
function can be written

f(x) = c(x−m)2 + Const,

where c is the curvature and m the location of its maximum;
the constant is irrelevant given our earlier remarks about how
only likelihood comparisons are only meaningful in the relative
sense
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Quadratic approximation: Illustration
The likelihood itself does not tend to be quadratic, but the
log-likelihood does; revisiting the two examples from our first
lecture:
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Remarks

• Log is a monotone function, so the value of θ that maximizes
the log-likelihood also maximizes the likelihood
• Even good approximations break down for θ far from θ̂:
regularity is a local phenomenon
• As we will be referring to it often, we will use the symbol ` to

denote the log-likelihood: `(θ) = logL(θ)
• The situation is similar in multiple dimensions; any quadratic
function can be written

f(x) = (x−m)>C(x−m) + Const;

we now require a d× 1 vector m to denote the location of the
maximum and a d× d matrix C to describe the curvature
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Regularity

• Likelihood functions that can be adequately represented by a
quadratic approximation are called regular1

• Conditions that ensure the validity of the approximation are
called regularity conditions
• We will discuss regularity conditions in detail later; for now,
we will just assume that the likelihood is regular

1When we say that the likelihood has a quadratic approximation, what we
really mean of course is that the log-likelihood has a quadratic approximation
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The score statistic

• The derivative of the log-likelihood is a critical quantity for
describing this quadratic approximation
• The quantity is so important that it is given its own name in
statistics, the score, and often denoted u:

u(θ) = ∇`(θ|x)

• Note that
◦ u is a function of θ
◦ For any given θ, u(θ) is a random variable, as it depends on

the data x; usually suppressed in notation
◦ For independent observations, the score of the entire sample is

the sum of the scores for the individual observations:

u(θ) =
∑

i

ui(θ)
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Score equations

• If the likelihood is regular, we can find θ̂ by setting the
gradient equal to zero; the MLE is the solution to the
equation(s)

u(θ) = 0;

this system of equations is known as the score equation(s) or
sometimes the likelihood equation(s)
• For example, suppose we have Xi

iid∼ N(θ, σ2) with σ2 known
◦ Ui(θ) = (Xi − θ)/σ2

◦ U(θ) =
∑

i(Xi − θ)/σ2

◦ U(θ̂) = 0 =⇒ θ̂ = x̄
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Illustration (vertical line at θ∗)
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Information

• Meanwhile, the curvature is given by the second derivative
• This quantity is called the information,

I(θ) = −∇2`(θ);

the negative sign arises because the curvature at the
maximum is negative
• The name “information” is an apt description: the larger the
curvature, the sharper (less flat) the peak, so the less
uncertainty we have about θ
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Information: Illustration

Random sample from the Poisson distribution:
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Information: Example

• As an analytic example, let’s return to the situation with
Xi

iid∼ N(θ, σ2) and σ2 known
◦ Ii(θ) = 1/σ2

◦ I(θ) = n/σ2

• Note that
◦ For independent samples, the total information is the sum of

the information obtained from each observation
◦ Noisier data =⇒ less information

• In general, the information depends on both X and θ (the
normal is a special case); we’ll return to this point later
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Information: Another example

• As another example, suppose there are 5 observations taken
from a N(θ, 1) distribution, but we observe only the maximum
x(5) = 3.5
• Here, it is not clear how we would find the MLE, score, and
information analytically, but we can use numerical procedures
to optimize and calculate derivatives
• In this case, the information is 2.4, implying that knowing the
maximum of 5 observations is worth 2.4 observations – better
than a single observation, but not as good as having all 5
observations
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Normal likelihood
• From an inferential standpoint, we can view this quadratic
approximation as a normal approximation, as a quadratic
log-likelihood corresponds to the Gaussian distribution
• As we mentioned in our first class, connecting likelihood to
probability is challenging in general; however, it is easy in the
case of the normal distribution
• For an iid sample from a N(θ, σ2) distribution (assuming σ2

known; we’ll consider the multiparameter case next), the
likelihood is

L(θ) ∝ exp
{
− 1

2σ2

∑
i

(xi − θ)2
}

∝ exp
{
− n

2σ2 (x̄− θ)2
}

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 15 / 33



Maximum and curvature of likelihood
Properties of the score and information

A graphical introduction
Inference: Single parameter
Inference: Multiple parameters

Likelihood ratios

• The likelihood ratio, then, is simply

log L(θ)
L(θ̂)

= − n

2σ2 (x̄− θ)2

• Furthermore, letting θ∗ denote the true value of θ, we know
that (x̄− θ∗)/(σ/

√
n) ∼ N(0, 1), so

2 log L(θ̂)
L(θ∗) ∼ χ

2
1

• This means that the likelihood interval {θ : L(θ)/L(θ̂) ≥ c}
has (frequentist) probability P(χ2

1 ≤ −2 log c) of containing θ∗
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Standard errors

• In other words, if we want a 95% confidence interval, we
should set c = exp{−1

2χ
2
1,(.95)} ≈ 0.15

• Furthermore, solving for the endpoints of the interval, we have

x̄±
√
−2 log c · (n/σ2)−1/2,

or θ̂ ± zSE, where SE = (n/σ2)−1/2 = I−1/2 and z is an
appropriate quantile of the standard normal distribution
• These probabilities are exact in the special case of the normal
distribution with known variance, but it stands to reason that
they should be approximately correct if the likelihood is
regular (we’ll formalize this idea in the coming lectures)
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Binomial illustration (n=10, θ = 0.8)
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Binomial illustration (n=100, θ = 0.8)
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Binomial illustration (n=1000, θ = 0.8)

0.77 0.78 0.79 0.80 0.81 0.82 0.83

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

θ

ℓ (
θ
)

Binomial (n=1000, x=800)

Actual coverage (simulation): 94.9%
Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 20 / 33



Maximum and curvature of likelihood
Properties of the score and information

A graphical introduction
Inference: Single parameter
Inference: Multiple parameters

Multiparameter case

• Similarly, for the multivariate normal (assuming a nonsingular
variance),

log L(θ)
L(θ̂)

= −1
2(x̄− θ)>Σ−1(x̄− θ),

so the likelihood interval {θ : L(θ)/L(θ̂) ≥ c} has probability
P(χ2

d ≤ −2 log c) of containing θ∗

• Note that the presence of multiple parameters changes the
probability calibration; for example, with d = 5
◦ c = 0.15 now provides only a 0.42 probability of containing θ∗

◦ We now need c = 0.004 to attain 95% coverage
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“Pure” likelihood for multiparameter problems?

• The interval {θ : L(θ)/L(θ̂) ≥ c} is based purely on
likelihood; as we remarked in our first lecture, the interval
itself is neither Bayesian nor frequentist – those paradigms
arise only in attempting to assign this interval a probability
• Is a “pure” likelihood approach possible in the multiparameter
case (i.e., without the frequentist χ2 calculations to guide us)?
• Suppose the (relative) likelihood of each parameter is
(approximately) independent so that, for example, if
L(θ1) = 0.2 and L(θ2) = 0.2, then L(θ) = 0.22 = 0.04
• Using c = 0.15 leads to something of a contradiction: θ1 and
θ2 are both “likely”, but somehow the pair (θ1, θ2) is
“unlikely”
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“Pure” likelihood for the multiparameter case

• An obvious solution is to use cd: now if L(θ) < 0.152, then
we must have L(θ1) < 0.15 or L(θ2) < 0.15
• Furthermore, we can write {θ : L(θ)/L(θ̂) ≥ cd} as

2`(θ)− 2`(θ̂) ≥ 2d log c,

or, using the specific value c = e−1,

−2`(θ̂) + 2d ≥ −2`(θ)

• In other words, we have arrived at the AIC criterion: θ̂ is an
attractive model, despite adding d parameters, if the above
inequality holds
• Note that c = e−1 = 0.37, quite a bit larger than the c = 0.15

the likelihood ratio test would imply
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AIC vs χ2

However, this relationship changes as d grows: from a model
selection perspective, AIC is more permissive at low d, but more
restrictive at larger d
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Properties of the score: Introduction

• Earlier, we defined the score as the random function
u(θ) = ∇`(θ|x)
• With some mild conditions, the random variable u(θ∗) turns
out to have some rather elegant properties
• These properties are at the core of proving many important
results about likelihood theory
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Expectation

• We saw earlier that u(θ∗) tends to vary randomly about zero;
let us now formalize this observation
• Theorem: Suppose the likelihood allows its gradient to be
passed under the integral sign. Then Eu(θ∗) = 0.
• A derivative is a type of limit, so whether or not it can be
passed under the integral sign is governed by the dominated
convergence theorem
• In this particular context, note that θ∗ cannot be on the

boundary of the parameter space, and that
‖∇L(θ|x)‖ ≤ g(x), where Eg(X) <∞
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Variance of the score

• Under similar conditions involving the second derivative, we
also have a nice result involving the variance: namely, that the
variance of the score is the expected information
• The variance of the score is called the Fisher information,

which we will denote I: I(θ) = Vu(θ|X); its connection
with our previous definition of information is made clear in the
following theorem
• Theorem: Suppose the likelihood allows its Hessian to be
passed under the integral sign. Then I(θ∗) = EI(θ∗|X).
• This requires the same sort of smoothness conditions as
before, except now applied to the second derivatives
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Remarks

• Recall that the information I(θ) = −∇2`(θ) depends on the
data X
• By taking an expected value, we are essentially averaging over
different data sets that could occur, weighted by their
probability
• To distinguish between the two, the information using the
observed data is called the observed information
• Note: Keep in mind that that I is random, while I is fixed
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Notation

• We have something of a notation dilemma, as we need to
distinguish between the “total” information from all
observations and the information you would expect to get
from a single sample, as well as between the observed and
Fisher information
• In this class, I’ll use the convention of using I to denote the

total observed information, while I denotes the expected
information per observation; i.e., I ≈ nI (we expect)
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Distribution

• Furthermore, since u(θ|x) =
∑

i u(θ|xi), we can apply the
central limit theorem to see that

√
n{ū(θ∗)− Eu(θ∗)} d−→ N(0,I(θ∗)),

or

u(θ∗)√
n

d−→ N(0,I(θ∗))

• Showing that the maximum likelihood estimators, on the
other hand, are asymptotically normal (thereby justifying our
earlier normal-based inferential procedures) involves a bit
more work (we’ll take up this question in a later lecture)
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Observed vs expected information

• Earlier, we discussed the idea that the width of, say,
confidence intervals depends on the information
• We’ve now introduced two kinds of information; which should
we use for inferential purposes?
• Broadly speaking, either one is fine: by the WLLN,

1
nI(θ) P−→I(θ), so we have both

1√
n
I(θ∗)−1/2u(θ∗) d−→ N(0, I)

and

I(θ∗)−1/2u(θ∗) d−→ N(0, I)

assuming I and I are positive definite
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Observed vs expected information (cont’d)

• At the same time, with any finite sample, they aren’t the
same . . . surely one tends to be better than the other?
• We’ll come back to this point later in the course, but yes,
observed information does tend to be better than expected
information
• Often, however, practical considerations outweigh theoretical
ones
• When the Fisher information is easy to calculate and results in
cancellation/simplification, it is often used
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Observed vs expected information (cont’d)

• Conversely, sometimes the Fisher information is impractical to
calculate (e.g., survival analysis)
• If survival times Ti

iid∼ Exp(θ) are subject to right censoring,
then the observed information is d/θ2 while the expected
information is Ed/θ2, where d is the number of uncensored
events
• First of all, the expected number of uncensored events is
usually completely unknown and depends on many things that
are not of scientific interest
• Second, does it even matter? Suppose we got lucky and
observed more events than expected . . . is it really relevant
that we could have obtained a sample with much less
information?
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