Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 4

Due: Monday, September 18

1. Gaussian graphical model. As we discussed in class, the precision matrix $\boldsymbol{\Theta}$ is of interest as it describes conditional independence relationships. One way to estimate $\boldsymbol{\Theta}$ is $\widehat{\boldsymbol{\Theta}}=\mathbf{S}^{-1}$, where \mathbf{S} is the sample variance-covariance matrix (throughout this problem, you may assume that both \mathbf{S} and $\boldsymbol{\Sigma}$ are full rank). Here, we consider a different approach.
(a) Suppose we partition $\boldsymbol{\Theta}$ so that the top left corner is isolated (i.e., the top left corner of the partition is 1×1 and the bottom right is $(d-1) \times(d-1)$, where d is the dimension of the multivariate distribution). Show that

$$
-\boldsymbol{\theta}_{21} / \theta_{11}=\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}
$$

where $\boldsymbol{\Sigma}$ is the variance-covariance matrix, partitioned in the same way as $\boldsymbol{\Theta}$. Hint: use the definition of a matrix inverse.
(b) Now consider the conditional distribution of $x_{1} \mid \mathbf{x}_{2}$. Show that if \mathbf{x} is multivariate normal, then the conditional distribution of $x_{1} \mid \mathbf{x}_{2}$ can be written as

$$
X_{1}=\alpha+\mathbf{x}_{2}^{\top} \boldsymbol{\beta}+\varepsilon,
$$

where $\varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$. Express $\boldsymbol{\beta}$ and σ^{2} in terms of the precision matrix $\boldsymbol{\Theta}$.
(c) Part (b) suggests that we can estimate $\boldsymbol{\Theta}$ using linear regression. Simulate some multivariate normal data using the following code:

```
set.seed(1)
n <- 100
A <- rnorm(n)
B <- A + rnorm(n)
C <- B + rnorm(n)
D <- B + rnorm(n)
X <- cbind(A, B, C, D)
S <- cov(X)
```

Then regress each element of \mathbf{x} on the others. We are going to use these regression fits to estimate $\boldsymbol{\Theta}$; however, let us carry out a simple model selection procedure first, in which we drop any covariates that are not significant at the $\alpha=0.05$ level. Then refit the model with only the significant covariates, and use $\widehat{\boldsymbol{\beta}}$ and $\hat{\sigma}^{2}$ to fill in the appropriate elements of $\boldsymbol{\Theta}$; set $\beta_{j}=0$ if the term was not included in the model. As an answer, you only need to provide $\hat{\boldsymbol{\Theta}}$, not the full summary of all the regression fits.
(d) Does your estimate of $\boldsymbol{\Theta}$ from (c) reflect the correct conditional independence relationships among $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D ? Comment briefly.
(e) Letting $\mathbf{x}^{\top}=[A B C D]$, show that the data generating mechanism of the above code results in \mathbf{x} having a multivariate normal distribution, and calculate the true precision matrix $\boldsymbol{\Theta}^{*}$.
(f) We now have two estimators for $\boldsymbol{\Theta}: \mathbf{S}^{-1}$ and the estimator from part (c). Which one is more accurate (for this particular data set)? Quantify the overall accuracy using $\left\|\widehat{\boldsymbol{\Theta}}-\boldsymbol{\Theta}^{*}\right\|_{F}$.
(g) One downside of the approach in (c) is that the estimate it produces, $\widehat{\boldsymbol{\Theta}}$, is asymmetric. One simple remedy is to use $\widetilde{\boldsymbol{\Theta}}=\frac{1}{2} \widehat{\boldsymbol{\Theta}}+\frac{1}{2} \widehat{\boldsymbol{\Theta}}^{\top}$ instead. Does this symmetrized estimate improve accuracy?
2. Power calculation using the noncentral χ^{2} distribution. Suppose there is a latent random variable of interest Z that is continuously distributed between 0 and 1 , but we observe only which of 10 bins it falls into: $(0,0.1),(0.1,0.2), \ldots,(0.9,1.0)$. Thus, we observe \mathbf{x}, a 10 -dimensional random vector of counts corresponding to the bins, with n denoting the total count. This problem involves attempting to test the null hypothesis that all bins are equally likely by assuming that \mathbf{x} (approximately) follows a multivariate normal distribution.
(a) Using the mean and variance of a multinomial distribution under the null, provide a function of \mathbf{x} that follows an approximate χ^{2} distribution (i.e., that would follow a χ^{2} distribution if \mathbf{x} were multivariate normal with the specified mean and variance).
(b) Now suppose that $Z \sim \operatorname{Beta}(1,2)$. Create a plot overlaying two beta distributions: this one and the one corresponding to the null hypothesis.
(c) Under the alternative distribution specified in (b), the quantity from (a) will no longer follow an ordinary χ^{2} distribution, but instead a noncentral χ^{2} distribution. Create a plot overlaying two χ^{2} densities, one of the null hypothesis and the other with a noncentrality parameter of 10 . Use the number of degrees of freedom appropriate to this problem.
(d) Derive the noncentrality parameter for the distribution of \mathbf{x} under the alternative hypothesis. Note that there is a problem with this calculation, in that the alternative hypothesis affects both the mean and the variance. For the purposes of this calculation, only account for its effect on the mean - assume that the variance is unchanged. Implement this calculation in a function, $\operatorname{ncp}(\mathrm{n})$; turn this code in separately as a . R file so that I can run it and see that it works correctly.
(e) Create a plot of n versus power (assuming an $\alpha=0.05$ significance threshold), where n ranges from 10 to 100 . Note that this calculation uses both the null distribution from (a) and the alternative distribution you derived in (d).
(f) In the power calculation above, there are two potential issues: (a) the true distribution is multinomial, not multivariate normal, and (b) we ignored the impact of the alternative distribution on variance when calculating the noncentrality parameter. Carry out a simulation to compare the true power to our approximation. Draw samples of size $n=50$ from the multinomial distribution and carry out the χ^{2} test that you derived above (don't "correct" for continuity). Calculate the average power over $N=10,000$ replications.
(g) Comment briefly on the how the two approaches compare. In particular, suppose you were had to perform a power calculation like this for a real-world project: which approach would you use? Why?
3. Bounded in probability vs convergence in distribution. Prove that if a sequence of random variables X_{n} converges in distribution, then X_{n} is bounded in probability. Note: this is true for random vectors as well, of course, but main ideas of this proof come across more clearly in the scalar case.

