Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 3

Due: Wednesday, September 13

1. O-notation proofs. Prove the following results:
(a) $O(1) o(1)=o(1)$.
(b) $\{1+o(1)\}^{-1}=O(1)$.
(c) $o\{O(1)\}=o(1)$.

Remarks:

- Part (b) is trivial if you use properties of limits. For the purposes of this problem, however, prove the result using only the definition of o and O. I realize that a simpler proof exists, but I consider the longer proof quite instructive.
- In part (c), you cannot use the result $o\left(r_{n}\right)=r_{n} o(1)$. This result is a consequence of the results in part (a) and part (c); using it would be circular logic.

2. Exponential Taylor series. Note: (b) and (c) are not trick questions; they take little effort to derive, but the results are useful to know.
(a) Show that for any x,

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

Note: one can partially prove this using the Poisson distribution, but this proof would only work for $x>0$.
(b) Starting with the result in (a), derive the infinite series for $e^{a x}$.
(c) Starting with the result in (a), derive the infinite series for b^{x}.
(d) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. What is the second-order Taylor series for $f(\mathbf{x})=\exp \left(\mathbf{a}^{\top} \mathbf{x}\right)$ about $\mathbf{x}=\mathbf{0}$? Give both the o-notation and Lagrange forms.
(e) Suppose $\mathbf{a}=\left[\begin{array}{ll}2 & -1\end{array}\right]^{\top}$ and $\mathbf{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$. Find the point $\overline{\mathbf{x}}$ on the line segment connecting \mathbf{x} and $\mathbf{0}$ that satisfies the Lagrange form of Taylor's theorem.
3. Matrix square root. Let A be a symmetric, positive definite matrix.
(a) Suppose $\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{\top}$ is the eigendecomposition of \mathbf{A}. What is $\mathbf{A}^{1 / 2}$? Show that your answer satisfies $\mathbf{A}^{1 / 2} \mathbf{A}^{1 / 2}=\mathbf{A}$ (the definition of a matrix square root).
(b) Show that $\mathbf{A}^{-1 / 2} \mathbf{A} \mathbf{A}^{-1 / 2}=\mathbf{I}$.
(c) Suppose A was not symmetric. Would your derivation in (a) and (b) still work?
(d) Suppose A was symmetric, but positive semidefinite. Would your derivation in (a) and (b) still work?

