
Likelihood Theory and Extensions (BIOS:7110)
Breheny

Assignment 12

Due: Wednesday, December 6

1. Marginal likelihood for linear mixed models. This question deals with the mixed model discussed in
class during the “Marginal likelihood” lecture, in which paired observations share a random intercept

αi, with the assumption that αi
iid∼ N(µ, τ2).

(a) Given estimates µ̂ and β̂, derive estimators for σ2 and τ2. Provide specific formulas, introducing
notation as needed. If you introduce a symbol, please define it clearly. The estimators σ̂2 and
τ̂2 can be the maximum likelihood estimators, but do not have to be.

(b) Write a function, paired_lmm(X, y), that fits this linear mixed model. For the purposes of this
assignment, your function may assume that consecutive observations are paired. The function
should work as follows (some code to simulate paired data is provided; here β has dimension 2
but your function should work for any dimension):

n <- 100

x <- cbind(runif(n*2), runif(n*2))

u <- rep(rnorm(n), each=2)

y <- rnorm(n*2, x+u)

paired_lmm(X, y)

The function should return

� mu: µ̂

� beta: β̂

� sigma: σ̂

� tau: τ̂

� info: The information matrix for the fixed effects (µ and β)

Hint: To set up a block diagonal matrix, you may wish to use the bandSparse function from
the Matrix package. For the specific covariance structure in this problem, the following code
works:

V <- bandSparse(n*2, k=0:1,

diagonals=list(rep(sig^2+tau^2, n*2),

c(rep(c(tau^2, 0), n), 1)),

symmetric=TRUE)

2. Logistic regression for case control studies. Let Y denote a binary outcome and x a vector of predictors
that are thought to affect the probability of Y . Our goal is to estimate odds ratios of the form

OR =
P(Y = 1|x)/P(Y = 0|x)
P(Y = 1|x0)/P(Y = 0|x0)

,

where x0 is a reference individual. For a logistic regression model applied to a prospective simple
random sample, these odds ratios are of the form

OR = exp{(x− x0)
⊤β}.

1



If the data come from a case-control study, however, the contributions to the likelihood are

Li =

{
p(xi|yi = 1, si = 1) case

p(xi|yi = 0, si = 1) control,

where Si is a variable indicating whether or not the subject was sampled. Below, let τ1 = P(s =
1|y = 1) and τ0 = P(s = 1|y = 0) denote the sampling fractions.

(a) An implicit assumption in the above setup is that τ1 and τ0 are constants that do not depend
on the covariates x. In other words, it is important that p(s = 1|x, y = 1) = p(s = 1|y = 1) = τ1
and p(s = 1|x, y = 0) = p(s = 1|y = 0) = τ0. Comment on this assumption and provide a
specific, realistic example of a situation in which this assumption would not hold as well as
what kind of bias it might introduce.

(b) Assuming that the logistic regression model is correct and that the assumption in part (a) holds,
show that

p(y = 1|x, s = 1) =
exp(η̃)

1 + exp(η̃)
,

where η̃ = log(τ1/τ0) + x⊤β. In other words, using the prospective likelihood for a case-control
study is correct up to the factor log(τ1/τ0), which only affects the intercept and therefore does not
affect the odds ratio estimates. Note that the prospective likelihood here is a pseudo-likelihood,
in the sense that it does not represent the actual likelihood of the experiment.

(c) Suppose the ratio τ1/τ0 were known. Given the pseudo-MLE of the intercept, β̃0, from fitting
the pseudo-likelihood model, how can we estimate the true intercept β0 (and thereby estimate
probabilities in addition to odds ratios)?

(d) Suppose that a case-control study of a single exposure was carried out with an equal number of
cases and controls, and that the study obtained the estimates β̂0 = −1/2, β̂1 = 1. In the actual
population, however, the prevalence of the disease is known to be 1%. Based on this study and
its results, provide two sets estimates for the probability of disease for exposed and unexposed
individuals – the raw/naive predictions from the model itself and the adjusted estimates you
would obtain using your derivation from part (c).
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